On characterization of certain maximal curves

by Saeed Tafazolian (IASBS at Zanjan, Iran)

Let \mathcal{C} be a (non-singular, projective, geometrically irreducible, algebraic) curve of genus g defined over a finite field \mathbb{F}_q with q elements. We know after A. Weil that the number of \mathbb{F}_q -points of a curve of genus g defined over \mathbb{F}_q satisfies the following limitations:

$$q+1-2g\sqrt{q} \le \#\mathcal{C}(\mathbb{F}_q) \le 1+q+2g\sqrt{q},$$

where $\mathcal{C}(\mathbb{F}_q)$ denotes the set of \mathbb{F}_q -rational points of the curve \mathcal{C} .

Here we will be interested in maximal (resp. minimal) curves over \mathbb{F}_{q^2} , that is, we will consider curves \mathcal{C} attaining Hasse-Weil's upper (resp. lower) bound:

$$\#\mathcal{C}(\mathbb{F}_{q^2}) = q^2 + 1 + 2gq \text{ (resp. } q^2 + 1 - 2gq).$$

Here we are interested to consider the hyperelliptic curve \mathcal{C} given by the equation $y^2 = x^m + 1$ over \mathbb{F}_{q^2} . We are going to determine when this curve is maximal over \mathbb{F}_{q^2} . In fact, we show that

Theorem 0.1. Suppose q is an odd prime power and let m be a positive integer such that gcd(q, m) = 1. The smooth complete hyperelliptic curve C corresponding to

$$y^2 = x^m + 1$$

is maximal over \mathbb{F}_{q^2} if and only if m divides q+1.

This generalizes [1, Propositions 2, 3 and 5]) which deals with the particular case when m = 7, 8 and 12.

References

[1] T. Kodama, J. Top and T. Washio, Maximal hyperelliptic curves of genus three, *Finite Fields Appl* **15** (2009), 392-403.