Loading [MathJax]/jax/output/HTML-CSS/config.js
Pular para o conteúdo
Orientações
Orientações atuais
Orientações anteriores
Doutores(as)
- Joyce Aparecida Casimiro, Piecewise smooth vector fields: index of singularities and some results about the existence of limit cycles, 2024.
- Mayara Duarte de Araújo Caldas, Periodic orbits and pseudo-cycles in smooth and piecewise smooth dynamical systems with compact discontinuity manifolds, 2023.
- Guilherme T. da Silva, Non-Smooth Dynamical Systems with Singular Switching Manifolds: the double discontinuity case, 2021
- Anna Paula M. de Oliveira, Homoclinic and heteroclinic solutions in piecewise smooth dynamical systems, 2017.
- Thais Damacena, Discontinuous perturbations on smooth systems (co-advisor), 2016.
- Kamila da Silva Andrade, On degenerate cycles in discontinuous vector fields and the Dulac’s problem (co-advisor), 2016
Mestres(as)
- Samuel Krüger, The appearance of limit cycles in perturbations of three-dimensional differential equations that have invariant submanifolds filled by periodic orbits, 2023
- Tiago Miguel Pires de Abreu, Limit cycles in Generalized Liénard Non-smooth Differential Equations, 2022.
- Matheus M. de Castro, Local and Σ-semilocal structural stability structural of piecewise smooth vector fields in compact 3-dimensional manifolds, 2020.
- Mayara Caldas, Piecewise linear dynamical systems (in infinite zones): structural and asymptotic stability, 2019.
- Thaylon Oliveira, Limit cycles for linear and nonlinear perturbations of discontinuous differential equations in the plane, 2019.
- Joyce Casimiro, Limit cycles for piecewise smooth dynamical systems in dimension n>2 and in compact manifolds, 2019.
- Guilherme T. da Silva, Cycles in tridimensional continuous piecewise linear systems, 2017.
- Otávio M. L. Gomide, Limit cycles in smooth and non-smooth dynamical systems, 2015.
- Paulo R. S. Malta, Existence of algebraic limit cycles for polynomial planar differential equations, 2015.
Mestres(as)/Profmat
- Cláudia Meneghin de Oliveira, Propostas de uso do teorema de Euler para poliedros em sala de aula, 2021.
- Jair Antonio Bueno Jr, O tabuleiro de xadrez no ensino de matemática, 2017.
- Fabiana Tesine Baptista, O ensino de coordenadas polares através do software GeoGebra, 2017.
- Kiscinger M. de Carvalho, A álgebra das equações polinomiais e sua solubilidade, 2016.
- Giselle C. Pedroso, Um estudo sobre cônicas e curvas cúbicas no plano, e o aplicativo EasyMath, 2015.
- Glaucia I. J. P. Paiva, Números primos e testes de primalidade, 2014.
- André Vinícius Spina, Números primos e criptografia, 2014.
Ex-orientandos(as) de Iniciação Científica
- José Ricardo de Aguiar Coelho, Projeto Supervisionado em Matemática Aplicada: Análise matemática de jogos: soluções, estratégias e aplicações, 2s2024.
- Helena Girardeli Simões Costa, O Teorema de Sharkovsky e suas generalizações (23-24).
- Júlia Oliveira Miranda, O Teorema de Euler: poliedros, grafos e o problema das três casas (2s23).
- André Boscariol Rasera, Uma introdução aos sistemas dinâmicos: tempo contínuo e tempo discreto (21-22), Uma introdução à teoria ergódica com aplicações em teoria dos números (22-23)
- Beatriz Franzan, Análise dos planos de desenvolvimento de disciplinas de Ciências Exatas das Unicamp durante os anos letivos de 2020 e 2021 e proposta de criação de um repositório de metodologias (22-23).
- Ana Zangrandi, Equações diferenciais: modelagem matemática e introdução à estabilidade assintótica de equações diferenciais (23).
- Daniele Souza Gonçalves, Introdução aos Sistemas Dinâmicos unidimensionais por meio de análises gráficas (22).
- Beatriz Evelyn Rodrigues, Uma análise comparativa dos currículos básicos de matemática no ensino básico de Brasil, Portugal, Espanha e Estados Unidos (2s22)
- Eldiane Borges dos Santos Durães, Equações diferenciais e modelagem matemática (22-23)
- Beatriz Benatti da Rocha e Silva, Soluções periódicas para equações diferenciais contínuas por partes (20-21), Conjuntos invariantes em sistemas dinâmicos suaves por partes definidos em variedades compactas de dimensão 2 (21-22).
- Stephanie Nietto, Estabilidade estrutural de sistemas lineares e lineares por partes de equações diferenciais, (20-21), Equações diferenciais aplicadas ao estudo de modelos para fenômenos biológicos (21-22).
- Gabriel Belém Barbosa, Métodos numéricos em equações diferenciais suaves por partes em dimensão 2, (21-22), (projeto supervisionado, 2o e 3o lugar).
- João Vitor Gonçalves Oliveira
- Nicole Karen Moura, Aplicações dos sistemas de Filippov a modelos de Engenharia Elétrica: otimização de conversores DC-DC (20-21)
- João Pedro Moresca Martins, O Problema do Centro-Foco (20-21)
- Samuel Krüger, Equações Diferenciais Lineares por Partes com Região de Descontinuidade Singular (18-19), Um estudo da existência de ciclos limite para equações diferenciais suaves por partes utilizando o método de Newton-Kantorovich (19-20), Ciclos limite de equações diferenciais lineares por partes em dimensão 𝑛≥3 (20-21)
- Edson Cidral Filho, Equações diferenciais suaves por partes e teoria do controle, (19-20)
- Henrique Tonello Pereira
- Matheus M. de Castro, Sistemas Dinâmicos Lineares por Partes: Teoria Local e Global (15-16), O Problema do Centro-Foco, Integrais Abelianas e o 16o Problema de Hilbert (16-17)
- Mayara D. de A. Caldas, Sistema Lineares por Partes em Duas Zonas do Plano (15-16), Sistemas Dinâmicos Lineares por Partes em Dimensão 2: o Caso das 3 Zonas (16-17)
- Yudi B. Kawamura, Introdução aos sistemas dinâmicos discretos unidimensionais (14-15).
- Guilherme T. da Silva, Introdução aos Sistemas Dinâmicos Planares, (13-14).
Orientandos(as) em Projetos BAS
- Resolução de Exercícios de disciplinas do Ciclo Básico do IMECC usando o Mathematica
- Samuel dos Santos (09/2024 – 12/2024)
- Kaio Henrique Rodrigues da Silva (03/2023 – 09/2024)
- Victor Hebert Dos Reis Cardoso (05/2021 – 12/2021)
- Gislaine de Oliveira Queiroz (03/2020 – 03/2021)