Geometrically Uniform Subspace Codes

Gabriella Akemi Miyamoto

Advisor: Prof. Dr. Reginaldo Palazzo Jr.

January of 2015
The aim of our work is to construct a class of geometrically uniform subspace codes. We establish a relationship between this class of codes with that of classical coding theory. Subspace codes are used in the context of network coding, which is a new way to approach the problem of efficient transmission of information.
The subspace distance between U and V is defined as:

$$d(U, V) = \dim(U) + \dim(V) - 2\dim(U \cap V)$$

where U and V are vector subspaces.

The codes that we construct have constant dimension and constant distance.

Example

Take the vector space \mathbb{F}_2^4, and consider the following codewords

- $S_1 = \{0000, 1000, 0010, 0001, 1010, 1001, 0011, 1011\}$
- $S_2 = \{0000, 0100, 0001, 1000, 0101, 1100, 1001, 1101\}$
- $S_3 = \{0000, 0010, 1000, 0100, 1010, 0110, 1100, 1110\}$
- $S_4 = \{0000, 0001, 0100, 0010, 0101, 0011, 0110, 0111\}$

The distance between the codewords is 2.
Definition

The *subspace distance* between U and V is defined as:

$$d(U, V) = \dim(U) + \dim(V) - 2\dim(U \cap V)$$

where U and V are vector subspaces.

The codes that we construct have constant dimension and constant distance.

Example

Take the vector space \mathbb{F}_2^4, and consider the following codewords

- $S_1 = \{0000, 1000, 0010, 0001, 1010, 1001, 0011, 1011\}$
- $S_2 = \{0000, 0100, 0001, 1000, 0101, 1100, 1001, 1101\}$
- $S_3 = \{0000, 0010, 1000, 0100, 1010, 0110, 1100, 1110\}$
- $S_4 = \{0000, 0001, 0100, 0010, 0101, 0011, 0110, 0111\}$

The distance between the codewords is 2.
Definition

The subspace distance between U and V is defined as:

$$d(U, V) = \text{dim}(U) + \text{dim}(V) - 2\text{dim}(U \cap V)$$

where U and V are vector subspaces.

The codes that we construct have constant dimension and constant distance.

Example

Take the vector space \mathbb{F}_2^4, and consider the following codewords

- $S_1 = \{0000, 1000, 0010, 0001, 1010, 1001, 0011, 1011\}$
- $S_2 = \{0000, 0100, 0001, 1000, 0101, 1100, 1001, 1101\}$
- $S_3 = \{0000, 0010, 1000, 0100, 1010, 0110, 1100, 1110\}$
- $S_4 = \{0000, 0001, 0100, 0010, 0101, 0011, 0110, 0111\}$

The distance between the codewords is 2.
Take the vector space \mathbb{F}_2^7. Code C with parameters $(7, 3, 4)$ has the following codewords:

- $S_1 = \langle 0000000 \rangle$
- $S_2 = \langle 1000000, 0100000, 0001000 \rangle$
- $S_3 = \langle 0100000, 0010000, 0000100 \rangle$
- $S_4 = \langle 0010000, 0001000, 0000010 \rangle$
- $S_5 = \langle 0001000, 0000100, 0000001 \rangle$
- $S_6 = \langle 0000100, 0000010, 1000000 \rangle$
- $S_7 = \langle 0000010, 0000001, 0100000 \rangle$
- $S_8 = \langle 0000001, 1000000, 0010000 \rangle$

The distance between the codewords is 4.
This code can be identified with the simplex code P of parameters $(7, 3, 4)$, whose generator matrix is

\[
G = \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{bmatrix}
\]
Take the vector space \mathbb{F}_2^7. Code C with parameters $(7, 3, 4)$ has the following codewords:

\begin{align*}
S_1 &= \langle 0000000 \rangle \\
S_2 &= \langle 1000000, 0100000, 0001000 \rangle \\
S_3 &= \langle 0100000, 0010000, 0000100 \rangle \\
S_4 &= \langle 0010000, 0001000, 0000010 \rangle \\
S_5 &= \langle 0001000, 0000100, 0000001 \rangle \\
S_6 &= \langle 0000100, 0000010, 1000000 \rangle \\
S_7 &= \langle 0000010, 0000001, 0100000 \rangle \\
S_8 &= \langle 0000001, 0000000, 0010000 \rangle \\
\end{align*}

The distance between the codewords is 4.

This code can be identified with the simplex code P of parameters $(7, 3, 4)$, whose generator matrix is

\[
G = \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{bmatrix}
\]
Take the vector space \mathbb{F}_2^7. Code C with parameters $(7, 3, 4)$ has the following codewords:

\begin{align*}
S_1 &= \langle 0000000 \rangle \\
S_2 &= \langle 1000000, 0100000, 0001000 \rangle \\
S_3 &= \langle 0100000, 0010000, 0000100 \rangle \\
S_4 &= \langle 0010000, 0001000, 0000010 \rangle \\
S_5 &= \langle 0001000, 0000100, 0000001 \rangle \\
S_6 &= \langle 0000100, 0000010, 1000000 \rangle \\
S_7 &= \langle 0000010, 0000001, 0100000 \rangle \\
S_8 &= \langle 0000001, 1000000, 0010000 \rangle
\end{align*}

The distance between the codewords is 4.

This code can be identified with the simplex code P of parameters $(7, 3, 4)$, whose generator matrix is

$$
G = \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{bmatrix}
$$
Thank You!