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Abstract

If X and Y are continuous random variables with joint distribution function H , then the Kendall distribution
function of (X; Y ) is the distribution function of the random variable H (X; Y ). Kendall distribution functions
arise in the study of stochastic orderings of random vectors. In this paper we study various properties of
Kendall distribution functions for both populations and samples.
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1. Introduction

The Kendall stochastic ordering ≺K of continuous random vectors (X1; Y1) and (X2; Y2), with
distribution functions H1 and H2, respectively, is de>ned as (X1; Y1) ≺K (X2; Y2) if and only if
H1(X1; Y1) ≺st H2(X2; Y2), where ≺st denotes the ordinary stochastic ordering for (one-dimensional)
random variables (Cap%era?a et al., 1997). If we let Ki denote the distribution function of the random
variable Hi(Xi; Yi), then

(X1; Y1) ≺K (X2; Y2) if and only if K1(t)¿K2(t) for all t in R: (1)

Kendall’s name is associated with this ordering since the population version of the mea-
sure of association known as Kendall’s tau can be expressed (Genest and Rivest, 1993, 2001) as
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	(X; Y )=3−4 ∫ 10 K(t) dt. While in Genest and Rivest (1993) and Cap%era?a et al. (1997) the distribu-
tion function K (of H (X; Y )) is called a “decomposition of Kendall’s tau,” we shall call it the Kendall
distribution function of (X; Y ). This function also appears in Genest and Rivest (2001) and Nelsen
et al. (2001) as a bivariate probability integral transform.
In this paper, we study various properties of Kendall distribution functions and their consequences.

After some preliminaries concerning copulas, we use the Bertino family of copulas to show that
every distribution function satisfying the properties of a Kendall distribution function is the Kendall
distribution function of some pair of random variables. We also examine the equivalence relation on
the set of copulas induced by Kendall distribution functions. In the >nal section, we study empirical
Kendall distribution functions and their relationships to the ordinary sample version of Kendall’s tau.

2. Preliminaries

As is often the case when dealing with bivariate distributions, the use of copulas simpli>es matters.
A (two-dimensional) copula is a function C : I2 → I= [0; 1] which satis>es (a) C(t; 0)=C(0; t)= 0
and C(t; 1) = C(1; t) = t for all t in I, and (b) C(u2; v2)− C(u2; v1)− C(u1; v2) + C(u1; v1)¿ 0 for
all u1; u2; v1; v2 in I such that u16 u2 and v16 v2. Equivalently, a copula is the restriction to I2 of
a continuous bivariate distribution whose margins are uniform on I. Recall from Sklar’s Theorem
(Sklar, 1959) that any bivariate distribution function H with marginal distribution functions F and
G can be written as H (x; y) = C(F(x); G(y)), where C is a copula. M and W denote the copulas
for the Fr%echet–HoeSding upper and lower bounds, respectively, which for any copula C satisfy
W (u; v) =max(u+ v− 1; 0)6C(u; v)6min(u; v) =M (u; v) for all u; v in I. For continuous random
variables X and Y , each one is almost surely an increasing (decreasing) function of the other if and
only if their copula is M (W ). The copula of any pair of independent continuous random variables
is �(u; v) = uv. For further details, see Nelsen (1999).
As a consequence of Sklar’s Theorem, the Kendall distribution function K of (X; Y ) depends only

on the copula C of X and Y , since if �H (�C) denotes the measure induced on R2 (I2) by H (C),
then for any t in I,

K(t) = �H ({(x; y)∈R2|H (x; y)6 t}) = �C({(u; v)∈ I2|C(u; v)6 t}) (2)

(Nelsen et al., 2001). So if U and V are random variables uniformly distributed on I whose joint
distribution function is C, the copula of X and Y , then (X; Y ) and (U; V ) have the same Kendall
distribution function. We also note that 	(X; Y ) = 4E[C(U; V )]− 1 (Genest and Rivest, 1993). As a
consequence, we will often refer to the “Kendall distribution function of C,” and write KC for K in
(2). If the copulas of (X1; Y1) and (X2; Y2) are C1 and C2, respectively, we will rewrite the left side
of (1) as C1 ≺K C2, thus ordering the set of copulas via their Kendall distribution functions.

3. Basic properties of Kendall distribution functions

As a consequence of (2), the Kendall stochastic ordering ≺K in (1) is a “nonparametric” ordering,
in the sense that it depends only on the copulas C1 and C2 of (X1; Y1) and (X2; Y2), respectively.
Another such ordering is the positive quadrant dependence ordering ≺pqd: (X1; Y1) ≺pqd (X2; Y2)



R.B. Nelsen et al. / Statistics & Probability Letters 65 (2003) 263–268 265

if and only if C1(u; v)6C2(u; v) on I2 (so named since (X; Y ) is positive quadrant dependent (PQD)
if C¿�). In spite of the apparent similarity in form of these two orders (C1(U; V ) ≺st C2(U; V )
for ≺K , and C1(u; v)6C2(u; v) for ≺pqd), it is known (Cap%era?a et al., 1997) that ≺K does not imply
≺pqd. We now show that ≺pqd does not imply ≺K .

Example 3.1. Let C be the copula given by C(u; v) = min(M (u; v); 1=4 + W (u; v)), that is, C is
the copula whose probability mass is uniformly distributed on three line segments in I2, one from
(0; 0) to (1=4; 1=4), one from (1=4; 3=4) to (3=4; 1=4), and one from (3=4; 3=4) to (1; 1). Then � ≺pqd

C. However, KC(t) = max(t; (3=4)	t + 3=4
) and K�(t) = t − t ln t (Nelsen et al., 2001), so that
KC(1=e) = 3=4¿ 2=e = K�(1=e), i.e., it is not true that � ≺K C.

The Kendall stochastic ordering induces a positive dependence property (similar to PQD) for
bivariate vectors known as positive K-dependence (PKD) (Averous and Dortet-Bernadet, 2002):
(X; Y ) is PKD if their copula C satis>es C �K �, or equivalently, if KC(t)6K�(t) = t − t ln t.
Example 3.1 illustrates that PQD does not imply PKD; the following example shows that PKD does
not imply PQD.

Example 3.2. Let C be the copula given by C(u; v)=min(M (u; v);max(0; u−1=3; v−1=3; u+v−2=3)),
that is, C is the copula whose probability mass is uniformly distributed on three line segments in I2,
one from (0; 1=3) to (1=3; 2=3), one from (1=3; 0) to (2=3; 1=3), and one from (2=3; 2=3) to (1; 1). Then
KC(t)=min(2t;max(t; 2=3)), and thus KC(t)6K�(t). However, C(1=3; 1=3)=0¡ 1=9=�(1=3; 1=3),
i.e., it is not true that C �pqd �.

Since every copula C satis>es W 6C6M on I2, the Frechet–HoeSding bounds M and W
are the upper and lower bounds for the set of copulas with respect to the PQD ordering. The
same is true for the Kendall ordering: W ≺K C ≺K M for every copula C, or equivalently,
t=KM (t)6KC(t)6KW (t)=1 for all t in I (Cap%era?a et al., 1997). This observation, along with
C(0; 0) = 0, establishes

Theorem 3.1. Let C be a copula, and KC its Kendall distribution function. Then (a) t6KC(t) for
all t in I, and (b) KC(0−) = 0.

We now show that the properties in Theorem 3.1 actually characterize Kendall distributions func-
tions, that is, that if F is any right-continuous distribution function which satis>es t6F(t) on I and
F(0−) = 0, then there exists a copula C such that the Kendall distribution function of C is F , i.e.,
KC =F . Genest and Rivest (1993) proved this result for distribution functions F satisfying a further
condition—F(t−)¿t for t in (0; 1)—using Archimedean copulas. To provide a construction without
the restriction that F(t−)¿t for t in (0; 1), we use a family of functions introduced by Bertino
(1977). Let � : I → I be a function such that �(1) = 1, �(t)6 t, and 06 �(t2)− �(t1)6 2(t2 − t1)
for t, t1 and t2 in I with t1¡t2; and for u; v in I set

B�(u; v) = min(u; v)−min(s− �(s)|min(u; v)6 s6max(u; v)): (3)

Each B� is a copula; for t in I, B�(t; t) = �(t); if �(t) = t, B� = M ; and if �(t) = max(2t −
1; 0), B� =W (Fredricks and Nelsen, 2002). We also let �(−1) denote the cadlag inverse of �, i.e.,
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�(−1)(t)=sup{u|�(u)6 t} for t in I. The following lemma presents the Kendall distribution function
of the Bertino copula B�.

Lemma 3.2. Let B� be the copula given by (3). Then for t in I, KB�(t) = 2�
(−1)(t)− t.

Proof. Let B� be given by (3), >x t in I, and set SB={(u; v)∈ I2|B�(u; v)6 t} and SM ={(u; v)∈ I2|
min(u; v)6 �(−1)(t)}. Since �B�(SM ) = 2�(−1)(t)− t (Nelsen et al., 2001), we need only show that
�B�(SB) = �B�(SM ), which we accomplish by showing that SB ⊆ SM and �B�(SM \ SB) = 0. But
B�(u; v)6 t implies �(min(u; v))6 t, whence min(u; v)6 �(−1)(t), from which it follows that SB ⊆
SM . Now assume u6 v (the case v¡u is similar and is omitted). Since the portion of the boundary
of {(u; v)∈ I2|B�(u; v)¡t} contained in (0; 1)2 is a nonincreasing set (a set S in R2 is nonincreasing
if for any (a; b) and (c; d) in S, a¡c implies b¿d), to show that �B�(SM \SB)=0 it will suUce to
show that �B�([u; �

(−1)(t)]×[v; 1])=0 for all (u; v) such that u∈ [t; �(−1)(t)] and v=min(s|B�(u; s)=t).
With such u and v, B�(u; v) = t, [u; �(−1)(t)]× [v; 1] ⊆ [u; v]× [v; 1], and we claim that �B�([u; v]×
[v; 1]) = 0. First, �B�([u; v]× [v; 1]) = v− u− �(v) + t, and from the de>nition of v, B�(u; r)¡t for
r in [u; v), so that min(s− �(s)|s∈ [u; r])¿u− t. Hence r − �(r)¿u− t for r in [u; v). But since
B�(u; v) = t, min(s − �(s)|s∈ [u; v]) = u − t, so that v − �(v) = u − t. Hence �B�([u; v] × [v; 1]) = 0,
which completes the proof.

We now have:

Theorem 3.3. Let F be a right-continuous distribution function such that F(0−) = 0 and F(t)¿ t
for all t in I. Then there exists a copula C such that KC(t) = F(t) for all t.

Proof. Let F satisfy the hypotheses above, and let % and � be the functions de>ned on I by
%(t)=[t+F(t)]=2 and �(t)=sup{s∈ I|%(s)6 t}. It is immediate that �(1)=1, �(t)6 t, %(�(t))¿ t,
and �(t1)6 �(t2) for t1 and t2 in I with t1¡t2. Furthermore, �(−1)(t)=%(t) for t in I. If �(t1)=�(t2),
then it is immediate that �(t2)− �(t1)6 2(t2 − t1). Suppose that �(t1)¡�(t2). If �(t1)6 r ¡�(t2),
then %(r)6 t2. Hence r − �(t1)6 r − �(t1) + F(r)− F(�(t1)) = 2[%(r)− %(�(t1))]6 2(t2 − t1), and
thus �(t2)− �(t1)6 2(t2 − t1). Therefore, B�, as given by (3), is a copula; and KB�(t) = 2�

(−1)(t)−
t = 2%(t)− t = F(t).

Kendall distribution functions induce an equivalence relation ≡K on the set C of copulas: if C1
and C2 are copulas with Kendall distribution functions K1 and K2, respectively, then C1 ≡K C2 if
and only if K1(t) = K2(t) for all t in I. The following corollary illustrates that the set of Bertino
copulas is a system of distinct representatives for the equivalence classes of ≡K .

Corollary 3.4. Each equivalence class of the equivalence relation ≡K on C contains a unique
Bertino copula.

Proof. The proof of Theorem 3.3 shows that each equivalence class contains at least one Bertino
copula. If both B� and B& belong to the same equivalence class, then 2�(−1)(t) − t = 2&(−1)(t) − t
for all t in I, from which it follows that �= &, hence B� = B&.
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Remark. Theorem 3.3 can also be proved by another method, showing that for each distribution
function F satisfying the hypotheses of the theorem, there is an associative copula, i.e., a copula C
such that C(C(u; v); w)=C(u; C(v; w)) for u; v; w in I, such that the Kendall distribution function of
C coincides with F . As a consequence, each equivalence class of ≡K contains a unique associative
copula (see %Ubeda Flores (2001) for details).

As noted in Section 1, the population version of the measure of association known as Kendall’s
tau for continuous random variables X and Y , whose copula is C, is expressible in terms of the
Kendall distribution function of C: 	(X; Y )=	C=3−4

∫ 1
0 K(t) dt. We use this result to show that the

equivalence classes of ≡K containing the copulas M and W for the Fr%echet–HoeSding bounds are
singletons. Let K1; K2 and 	1; 	2 denote the Kendall distribution functions and the values of Kendall’s
tau associated with copulas C1 and C2, respectively.

Theorem 3.5. If C1 ≡K M , then C1 =M ; and if C2 ≡K W , then C2 =W .

Proof. Suppose C1 ≡K M and C2 ≡K W . Then K1(t) = t and K2(t) = 1 on I, and hence 	1 = 1 and
	2=−1. But M and W are the unique copulas for which Kendall’s tau equals 1 and −1, respectively,
hence C1 =M and C2 =W .

With the notation preceding the above proof, note that if C1 ≺K C2, then 	16 	2 (Cap%era?a
et al., 1997). However, the reverse implication does not hold. For example, if C1 is � and C2 is
the copula from Example 3.1, then 	1 = 0¡ 1=2 = 	2, yet C1 ≺K C2 does not hold.

4. The empirical Kendall distribution function

Let {(xk ; yk)}nk=1 denote a sample of size n from a continuous distribution, and let x(i) and y(j),
16 i; j6 n, denote the order statistics from the sample. Then the empirical copula C ′ and the
empirical Kendall distribution function KC′ are de>ned as

C ′(i=n; j=n) = (1=n)(number of points(xk ; yk) such that xk6 x(i) and yk6y(j));

and for all t,

KC′(t) = (1=n)(number of pairs (xk ; yk) whose ranks (i; j) satisfy C ′(i=n; j=n)6 t):

A pair (xk ; yk) and (xm; ym) of points in the sample are concordant if xk ¡xm and yk ¡ym or
xk ¿xm and yk ¿ym; and discordant if xk ¡xm and yk ¿ym or xk ¿xm and yk ¡ym. We let tn
denote the value of Kendall’s tau for the sample, i.e.,

tn = [(number of concordant pairs)− (number of discordant pairs)]
/( n

2

)
: (4)

Analogous to 	 = 4E[C(U; V )] − 1 and 	 = 3 − 4
∫ 1
0 K(t) dt for the population value of Kendall’s

tau, we have
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Theorem 4.1. Let {(xk ; yk)}nk=1 denote a sample of size n from a continuous distribution, and let
tn denote the value of Kendall’s tau for the sample. Then

(a) tn =
4

n− 1

∑
C ′(i=n; j=n)− n+ 3

n− 1
;

where the sum is over the n points in the sample; and

(b) tn = 3− 4n
n− 1

∫ 1

0
KC′(t) dt:

Proof. Part (a) readily follows from the observations that
∑

C ′(i=n; j=n) =1+(number of concordant
pairs)=n and (4), tn=(4=n(n−1))(number of concordant pairs)−1. For part (b), we note that since
KC′ is a step function,

∫ 1
0 KC′(t) dt=(1=n)

∑n−1
m=1 KC′(m=n). In this sum, a sample point whose ranks

are (i; j) is counted n − m times when C ′(i=n; j=n) = m=n, and thus
∑n−1

m=1 KC′(m=n) = (1=n)
∑
(n−

nC ′(i=n; j=n)), where the last sum is over the n points in the sample. Invoking the result in (a) and
simple algebra establishes (b).
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