,		
Alcohro	Lincor	(144.297)
Aigebra	Linear	(MA327)

Prova 2 (30/06/2016)

RA:	Turma:	Y
	$D\Lambda$.	$D \Lambda$. Turme.

JUSTIFIQUE TODAS AS SUAS RESPOSTAS!!! Boa sorte!
Respostas não justificadas apropriadamente serão desconsideradas.
Coloque o seu RA na mesa e mostre o seu RA na hora de entregar a prova.

- 1. Quais das afirmações seguintes são verdadeiras? Quais são falsas?
 - (a) Se $f: \mathbb{R} \to \mathbb{R}$ é continuamente diferenciavel então f representa uma transformação linear. (0,5 pt)
 - (b) Se dim $(V) = n < m = \dim(W)$, então não existe uma transformação linear sobrejetiva $\varphi : V \to W$. (0.5 pts)
- 2. Seja $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$. A transformada Fourier discreta unidimensional pode ser vista como o mapeamento $\mathcal{T} : \mathcal{F}(\mathbb{Z}_n; \mathbb{C}) \to \mathcal{F}(\mathbb{Z}_n; \mathbb{C})$ que satizfaz

$$[\mathcal{T}(f)](j) = \sum_{k=0}^{n-1} f(k)e^{-\frac{2\pi kji}{n}}, j = 0, \dots, n-1.$$

para todo $f \in \mathcal{F}(\mathbb{Z}_n; \mathbb{C}) = \{f : \mathbb{Z}_n \to \mathbb{C}\}.$

- (a) Porque podemos afirmar que $\mathcal{F}(\mathbb{Z}_n;\mathbb{C})$ é um espaço vetorial complexo? (0,5 pt)
- (b) Mostre que $\mathcal{F}(\mathbb{Z}_n;\mathbb{C}) \simeq \mathbb{C}^n$. (0,5 pt)
- (c) Mostre que \mathcal{T} representa uma transformação linear. (1 pt)
- 3. Considere a transformação linear $\varphi: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ dada por $\varphi(1+x) = 1+x$, $\varphi(x+x^2) = -4+2x^2$ e $\varphi(1+x^2) = 4x+2x^2$. Além disso, considere os conjuntos $\mathcal{B} = \{1+x, x+x^2, 1+x^2\}$ e $\mathcal{D} = \{-2+x^2, 1+x, x+x^2\} \subset \mathcal{P}_2(\mathbb{R})$.
 - (a) Mostre que \mathcal{B} e \mathcal{D} são bases de $\mathcal{P}_2(\mathbb{R})$. (0,5 pt)
 - (b) Escreve a expressão como se calcule $A_{\mathcal{D}}^{\mathcal{B}}$. Determine a matriz de φ com respeito a \mathcal{B} e \mathcal{D} . (1 pt)
 - (c) Utilize $A_{\mathcal{D}}^{\mathcal{B}}$ para determinar bases para $Im(\varphi)$ e $\mathcal{N}(\varphi)$ e as dimensões de $Im(\varphi)$ e $\mathcal{N}(\varphi)$. (1,5 pt)
 - (d) Determine $I_{\mathcal{B}}^{\mathcal{D}}$, quer dizer, a matriz da mudança de base de \mathcal{D} para \mathcal{B} . (1 pt)
 - (e) Utilize $I_{\mathcal{B}}^{\mathcal{D}}$ e $A_{\mathcal{D}}^{\mathcal{B}}$ para determinar $A_{\mathcal{B}}^{\mathcal{B}}$. Verifique o resultado utilizando a definição de $A_{\mathcal{B}}^{\mathcal{B}}$ (1 pt)
 - (f) Utilize $A_{\mathcal{B}}^{\mathcal{B}}$ para determinar os autovalores de φ e dim (E_{λ}) para cada autovalor λ . Porque podemos concluir que existe uma base de autovetores de φ para $\mathcal{P}_2(\mathbb{R})$? (1 pt)
 - (g) Utilize $A_{\mathcal{B}}^{\mathcal{B}}$ para determinar uma base de autovetores de φ para $\mathcal{P}_2(\mathbb{R})$. (1 pt)