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Subject of this Talk

Implicative fuzzy associative memories (IFAMs), can be used to
implement fuzzy rule-based systems. There are infinitely many IFAMs.

The problem:

Selecting the best IFAM for a given application.

Proposed solution:

We introduce a class of parameterized IFAMs and formulate an
optimization problem that yields the IFAM that best fits the given data.

We compare the performance of the resulting Yager IFAM with other
techniques in two problems in time series prediction.
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Organization of this talk

1 A Brief Introduction to Implicative Fuzzy Associative Memories

2 The Yager Class of Parameterized IFAMs

3 Applications of Yager IFAMs in Prediction

4 Concluding Remarks and Suggestions for Further Research
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Implicative Fuzzy Associative Memories (IFAMs) Fuzzy Associative Memories (FAMs)

Fuzzy Associative Memories (FAMs)

Fuzzy Associative Memories (FAMs):

Fuzzy systems that encode associations (x1, y1), . . . , (xp, yp),
where xξ and yξ are fuzzy sets.

Max-T FAMs:

Given an fuzzy input pattern x, the output is given by

y = W(x) = (W ◦ x) ∨ θ .

where W is the synaptic weight matrix and θ is the threshold vector.

Max-T Product:

C = A ◦ B ⇔ cij =
k
∨

ξ=1

T (aiξ, bξj) .
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Implicative Fuzzy Associative Memories (IFAMs) Implicative Fuzzy Learning

Implicative Fuzzy Associative Memories (IFAMs)

IFAMs = Max-T FAM + Implicative Fuzzy Learning

Implicative Fuzzy Learning (IFL):

Given associations (x1, y1), . . . , (xp, yp), define W and θ as the largest
synaptic weight matrix and threshold vector such that W(xξ) ≤ yξ:

[W ,θ] =
∨

{

[A,β] : (A ◦ xξ) ∨ β ≤ yξ, ∀ξ = 1, . . . , p
}

.

If T is a continuous t-norm, then W and θ can be easily computed as

wij =

p
∧

ξ=1

IT (x
ξ
j , y

ξ
i ) and θi =

p
∧

ξ=1

yξ
i ,

where IT is the R-implication associated with T .
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Implicative Fuzzy Associative Memories (IFAMs) Examples of IFAMs

Some Examples of IFAMs

Gödel IFAM:

TM(x , y) = x ∧ y and IM(x , y) =
{

1, x ≤ y ,
y , x > y .

Lukasiewicz IFAM:

TL(x , y) = 0 ∨ (x + y − 1) and IL(x , y) = 1 ∧ (y − x + 1) .

Remark:
The drastic t-norm

TD(x , y) =
{

x ∧ y , x ∨ y = 1 ,
0, otherwise.

is not left-continous. ID is the greatest R-implication.
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The Yager Class of Parameterized IFAMs Yager t-norms and R-implications

The classes of Yager t-norms and R-implications

Definition (Yager t-norm)

T d (x , y) = 1 −
{

1 ∧
[

(1 − x)d + (1 − y)d]
1
d

}

, d > 0 .

Definition (Yager R-implication)

Id(x , y) = 1 −
{

0 ∨
[

(1 − y)d − (1 − x)d]
}

1
d
, d > 0 .

Remark:

For d = 1, T d = TL (Lukasiewicz t-norm);

For d → 0, Td → TD (drastic t-norm);

For d → ∞, Td → TM (minimum).
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The Yager Class of Parameterized IFAMs Yager IFAMs

Yager IFAMs

Definition (Yager IFAM = IFAM based on T d and Id )

Consider a set of associations {(x1, y1), . . . , (xp, yp)}.
Given an input pattern x, the output is given by

y = Wd (x) = (W d ◦d x) ∨ θ ,

where the synaptic weight matrix and threshold vectors are

wd
ij =

p
∧

ξ=1

Id(xξ
j , y

ξ
i ) and θi =

p
∧

ξ=1

yξ
i .
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The Yager Class of Parameterized IFAMs Choosing the best Yager IFAM in Prediction Problems

Choosing the best Yager IFAM...

In the prediction problems that we will discuss, we have that

The input fuzzy set x is derived from a real-valued vector v;

The output fuzzy set y is defuzzified yielding a real-valued output

s = defuzz(y) .

Choosing the best Yager IFAM...

Given training patterns in the form (v1, s1), . . . , (vp, sp), derive fuzzy
sets xξ and yξ, and determine d > 0 that minimize the Euclidean
distance between sξ and

sd
ξ = defuzz

(

Wd(xξ)
)

,

produced by the Yager IFAM for ξ = 1, . . . , p.

Sussner, Miyasaki, and Valle () Parameterized IFAMs 2009 IFSA - 2009 EUSTLAT 9 / 24



The Yager Class of Parameterized IFAMs The Optimization Problem

The Optimization Problem...

Optimization problem:

Given training patterns in the form (v1, s1), . . . , (vp, sp), solve

{

minimize
∥

∥s − sd
∥

∥

2
subject to d > 0

where s = [s1, . . . , sp]
T and sd = [sd

1 , . . . , s
d
p ]

T .

Remark:

We used the routine FMINBND of MATLAB’s Optimization Toolbox to
determine a local minimum of the real-valued objective function

f (d) = ‖s − sd‖2 .
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Applications of Yager IFAMs in Prediction Prediction of Manpower Requirement in Steel Manufacturing

Prediction of Manpower Requirement

Problem (Choudhury et al., 2002):

Predict the manpower requirement in steel manufacturing industry in
the state of West Bengal, India.

We have linguistic values Ai , i = 1, . . . , 5, and fuzzy rules such as

If manpower of year n is Ai , then that of year n + 1 is Aj .

If W denotes a max-T FAM, the predicted manpower of year n + 1 is

sd
n+1 = defuzz

(

Wd(An)
)

,

where defuzz(·) is the “mean of maxima” (MOM) and An is obtained
fuzzifying the manpower requirement of year n.
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Applications of Yager IFAMs in Prediction Prediction of Manpower Requirement in Steel Manufacturing

Plot of the Objective Function for this Problem
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The distance
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∥s − sd
∥

∥

2 between the actual demand of manpower and
that predicted by the Yager IFAM as a function of d .
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Applications of Yager IFAMs in Prediction Prediction of Manpower Requirement in Steel Manufacturing

Comparison in Forecasting Manpower
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Applications of Yager IFAMs in Prediction Prediction of Manpower Requirement in Steel Manufacturing

Comparison of FAMs and Statistical Models

MSE MAE MPE
Method (×105) (m3/s) (%)

Yager IFAM (d ∈ (0, 1]): 1.92 32.75 2.29
Lukasiewicz IFAM: 1.92 32.75 2.29

Kosko’s FAM: 2.57 38.75 2.67
Lukasiewicz GFAM: 2.57 38.75 2.67

Gödel IFAM: 2.89 38.58 2.73
Max-min FAM/threshold: 2.89 38.58 2.73

Goguen IFAM: 3.14 42.75 2.99
ARIMA2 9.36 83.55 5.48
ARIMA1 23.26 145.25 9.79
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Applications of Yager IFAMs in Prediction Prediction of Manpower Requirement in Steel Manufacturing

Remarks:

This experiment indicates the utility of IFAMs for prediction problem
and the validity of our approach for determining the best Yager IFAM.

Disadvantage:

This prediction problem does not include any test data!

Details can be found in:
J.P. Choudhury, B. Sarkar, and S.K. Mukherjee. Forecasting of
Engineering Manpower Through Fuzzy Associative Memory Neural
Network with ARIMA: a Comparative Study, Neurocomputing,
47:241-257, 2002.
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Applications of Yager IFAMs in Prediction Prediction of Average Monthly Streamflow of a Hydroeletric Plant

Prediction of Streamflow of a Hydroeletric Plant

Problem (Magalhães et al., 2004):

Forecast the monthly streamflow of a large hydroelectric plant, called
Furnas.

The predictions are used for simulation, optimization, and
decision-making purposes of the energy system.

A time series prediction problem can be formulated as follows:

Given samples sµ for µ = 1, . . . , q − 1, obtain an estimate ŝq for the
actual sq based on a subset of the past values s1, . . . , sq−1.
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Applications of Yager IFAMs in Prediction Prediction of Average Monthly Streamflow of a Hydroeletric Plant

Description of the Approach

Our approach uses:

12 different models, one for each month of the year, due to the
seasonality of the streamflow;

a fixed number of three antecedents, e.g., the values of January,
February, and March to predict the streamflow of April.
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Applications of Yager IFAMs in Prediction Prediction of Average Monthly Streamflow of a Hydroeletric Plant

How to Predict a Time Series using a FAM Model

FAMs can used as follows to predict a time series:

1 Define fuzzy sets xξ and yξ that comprise some relevant
information concerning the past values of the time series.

2 Store the associations (xξ, yξ) in the memory;
3 Given an input xγ that takes into account some past values,

compute the output pattern yγ ;
4 A defuzzification of W(xγ) yields the estimation ŝγ .
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Applications of Yager IFAMs in Prediction Prediction of Average Monthly Streamflow of a Hydroeletric Plant

How to Predict a Time Series using a FAM Model

These fours steps were performed as follows:

1 We used the subtractive clustering method to determine fuzzy
sets xξ and yξ with Gaussian-type membership functions from
streamflow data from 1931 to 1990;

2 We stored the associations in a Yager IFAM Wd .
3 The input pattern xγ corresponds to a “crisp” set;
4 A defuzzification of Wd(xγ) using the centroid method yields ŝd

γ .
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Applications of Yager IFAMs in Prediction Prediction of Average Monthly Streamflow of a Hydroeletric Plant

How to Predict a Time Series using a FAM Model

These fours steps were performed as follows:

1 We used the subtractive clustering method to determine fuzzy
sets xξ and yξ with Gaussian-type membership functions from
streamflow data from 1931 to 1990;

2 We stored the associations in a Yager IFAM Wd .
3 The input pattern xγ corresponds to a “crisp” set;
4 A defuzzification of Wd(xγ) using the centroid method yields ŝd

γ .

Choosing the best Yager IFAM:

As before, we generated the vectors s and sd using the training from
1931-1990 to determine the best Yager IFAM for this problem.
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Applications of Yager IFAMs in Prediction Prediction of Average Monthly Streamflow of a Hydroeletric Plant

Plot of the Objective Function for this Problem
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Applications of Yager IFAMs in Prediction Prediction of Average Monthly Streamflow of a Hydroeletric Plant

The Streamflow Prediction
for the Furnas reservoir from 1991 to 1998.
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Applications of Yager IFAMs in Prediction Prediction of Average Monthly Streamflow of a Hydroeletric Plant

Comparison of Prediction Models

MSE MAE MPE
Method (×105) (m3/s) (%)

Predictive fuzzy clustering 1.20 200 18
Yager IFAM (d = 4.3568) 1.28 216 21

Lukasiewicz IFAM 1.27 229 24
PARMA 1.85 280 28

Multi-layer perceptron 1.82 271 30
Neuro-fuzzy network 1.73 234 20

PARMA - Periodic auto-regressive moving average model
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Applications of Yager IFAMs in Prediction Prediction of Average Monthly Streamflow of a Hydroeletric Plant

Remarks:

Some of the other methods were initialized by optimizing the number
of parameters for each monthly prediction.

The predictive fuzzy clustering method also takes advantages of
slopes information.

The Yager IFAM resulting from the minimization of MSE produced very
satisfactory predictions.

The Yager IFAM outperformed the Lukasiewicz IFAM in terms of MAE
and MPE but produced an slightly higher MSE.

This fact may be due to overfitting to the training data.

Sussner, Miyasaki, and Valle () Parameterized IFAMs 2009 IFSA - 2009 EUSTLAT 22 / 24



Concluding Remarks and Suggestions for Further Research Concluding Remarks

Concluding Remarks

This talk described:

First attempt of tackling the problem of selecting the best IFAM for a
given application;

Introduction of the the class of Yager parameterized IFAMs;

Formulation of optimization problem for determining the best IFAM;

Application of our approach to two prediction problems from the
literature.

Sussner, Miyasaki, and Valle () Parameterized IFAMs 2009 IFSA - 2009 EUSTLAT 23 / 24



Concluding Remarks and Suggestions for Further Research Suggestions for Further Research

Suggestions for Further Research

Incorporate additional parameters into the optimization process;

Use validation and/or regularization techniques to avoid overfitting;

Investigate other classes of parameterized IFAMs.

Thank You!
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