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32.1 Introduction

Fuzzy associative memori@SAMS) belong to the class dfizzy neural network@NNs). A FNN
is an artificial neural network(ANN) whose input patterns, output patterns, and/or cotioec
weights are fuzzy-valued [19, 11].

Research on FAM models originated in the early 1990’s with aldvent of Kosko’s FAM
[35, 37]. Like many other associative memory models, KaskéAM consists of a single-layer
feedforward FNN that stores the fuzzy rule is X theny is Y},,” using a fuzzy Hebbian learning
rule in terms of max-min or max-product compositions for siyathesis of its weight matrii/.

Despite successful applications of Kosko’s FAMs to proldesuch as backing up a truck and
trailer [35], target tracking [37], and voice cell controlATM networks [44], Kosko’s FAM suffers

from an extremely low storage capacity of one rule per FAMrimaftTherefore, Kosko’s overall



fuzzy system comprises several FAM matrices. Given a fuapyt, the FAM matrices generate
fuzzy outputs which are then combined to yield the final iestib overcome the original FAMs
severe limitations in storage capacity, several reseesdtae developed improved FAM versions
that are capable of storing multiple pairs of fuzzy patt¢dds 9, 14, 38, 12]. For example, Chung
and Lee generalized Kosko’s model by proposing a max-t caitipo for the synthesis of a FAM
matrix. Chung and Lee showed that all fuzzy rules can be giyfeecalled by means of a single
FAM matrix using max-t composition provided that the inpattprns satisfy certain orthogonal-
ity conditions [14]. Junbeet al. had previously presented an improved learning algorithm fo
Kosko’s max-min FAM model [29, 30]. Liu modified the JunboAM et al. by adding a threshold
activation function to each node of the network [38].

We recently establisheidhplicative fuzzy associative memori@gAMSs) [73, 71], a class of
associative memories that grew outmbrphological associative memori@dAMSs) [51, 70, 64].
One particular IFAM model can be viewed as an improved varsioLiu’'s FAM [71]. MAMs
belong to the class of morphological neural networks (MN[$), 54]. This class of artificial
neural networks is callethorphologicalbecause each node performs a morphological operation
[57, 58, 55, 28]. Theory and applications of binary and gsesle MAMs have been developed
since late 1990’s [51, 64, 65, 70]. For example, one can siermany patterns as desired in
an auto-associative MAM [51, 63, 65]. In particular, for &y patterns of length, the binary
auto-associative MAM exhibits an absolute storage capa€i2™ which either equals or slightly
exceeds the storage capacity of tgantum associative memooy Ventura and Martinez [74].
Applications of MAMs include face localization, robot wisi, hyper-spectral image analysis, and
some general classification problems [48, 22, 70, 67, 68].

This article demonstrates that the IFAM model as well as thkoFAM models that we men-
tioned above can be embedded into the general clasgpf morphological associative memories
(FMAMSs). Fuzzy logical bidirectional associative memori&.BAMSs), which were introduced

by Bélohlavek [7], can also be considered a subclass of FMAM#hodigh a general framework



for FMAMSs has yet to appear in the literature, we believe that class of FMAMs should be
firmly rooted in fuzzy mathematical morphology and thus eaatie of an FMAM should execute
a fuzzy morphological operation [17, 66, 69]. In generag, itiput, output, and synaptic weights of
FMAMs are fuzzy valued. Recall that fuzzy sets representiapeases of information granules.
Thus, FMAMs can be considered special casegrahular associative memoriea broad class of
AMs which has yet to be investigated.

The chapter is organized as follows. First, we present sawkdround information and mo-
tivation for our research. After providing some generalcapis of neural associative memories,
fuzzy set theory, and mathematical morphology, we dishess/pes of artificial neurons that occur
in FAM models. Section 32.5 provides an overview of Koskd@$/and its generalizations, includ-
ing the FAM model of Chung and Lee. In Section 32.6, we reviawations of Kosko’s max-min
FAM, in particular the models of Junkes al. and Liu in conjunction with their respective learning
strategies. In Section 32.7, we present the most imporeauntis on IFAMs and FLBAMSs. Section
32.8 compares the performances of different FAM models bgma@f an example concerning the
storage capacity and noise tolerance. Furthermore, amcapph to a problem of prediction is
presented. We conclude the article with some suggestiarfsifiner research concerning fuzzy

and granular MAM models.

32.2 Some Background Information and Motivation

32.2.1 Associative Memories

Associative memorig®Ms) allow for the storage of pattern associations and #teaval of the
desired output pattern upon presentation of a possiblyr@risracomplete version of an input pat-
tern. Mathematically speaking, the associative memorjgdgzroblem can be stated as follows:
Given a finite set of desired associatiop®, y*) : ¢ =1,...,k}, determine a mapping such

that G(x¢) = y* forall ¢ = 1,..., k. Furthermore, the mapping should be endowed with a
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certain tolerance with respect to noise, i@(x¢) should equajl® for noisy or incomplete ver-
sionsx¢ of x¢. In the context ofGranular Computing GC), the input and the output patterns are
information granules [6].

The set of associationgx®,y*) : £ = 1,...,k} is calledfundamental memory sahd each
associatiorfx®, y¢) in this set is called fundamental memoi25]. We speak of anutoassociative
memorywhen the fundamental memory set is of the fdrw¢, x¢) : € = 1,...,k}. The memory is
said to beneteroassociativi the outputy* is different from the inpuk¢. One of the most common
problem associated with the design of an AM is the creatiofalske or spurious memories. A
spurious memoris a memory association that does not belong to the fundai@eimory set, i.e.
it was unintentionally stored in the memory.

The process of determiningg is calledrecording phasand the mapping- is calledassociative
mapping We speak of aeural associative memowyhen the associative mappidgis described
by an artificial neural network. In particular, we haviiazy (neural) associative memdBAM) if
the associative mapping is given by a fuzzy neural network and the pattexfsindy?¢ are fuzzy

setsforeveryf =1,... k.

32.2.2 Morphological Neural Networks

In this paper, we are mainly concerned with fuzzy asso@atiemories. As we shall point out dur-
ing the course of this paper, many models of fuzzy assoeiati@mories can be classifiedfagzy
morphological associative memori@aMAMs) which in turn belong to the class oforphological
neural network§MNNSs) [50, 67]. The name "morphological neural networksisieoined because
MNNs perform operations of mathematical morphology at gvede.

Many models of morphological neural networks are implaitdoted in the mathematical struc-
ture (R, V, A, +,+') which represents bounded lattice ordered groufblog) [15, 16, 20, 50,
51, 64, 4, 3, 70]. The symbols/” and “A" represent the maximum and the minimum operation.

The operations+" and “+'” act like the usual sum operation and are identicalRon, with the
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following exceptions:

(—00) + (+00) = (+00) + (—¢) = =00 and (—o00) +' (+00) = (+00) +' (—00) = +00.
(32.1)

In practice, the inputs, outputs, and synaptic weights ofNiNVihave values ifR where the opera-
tions “+” and “+'" coincide.

In most cases, models of morphological neural network$,diieg MAMs, are defined in terms
of certain matrix products known as the max product and tmearaduct. Specifically, for am x p
matrix A and ap x n matrix B with entries fromR..,, the matrixC = AN B, also called the
max producof A and B, and the matrixD = AN B, also called thenin productof A and B, are
defined by ,

a2k+bk3 and di; = /\ (ai +' biy) (32.2)
k=1

I <rs

Let us consider an arbitrary neuron in a MNN defined on the ifog,., VV, A, +, +'). Suppose
that the inputs are given by a vector= (zy, ... ,7,)7 € R* and letw = (w1, ... ,w,)’ € R"
denote the vector of corresponding synaptic strengths.athemulative effect of the inputs and
the synaptic weights in a simple morphological neuron iegiby either one of the following

equations:

n n

T(x) =w/ X = \/ (w; +x;)  or 7(x)=w' NX= /\ (w; + ;) . (32.3)

i=1 i=1

Since the Equations in 32.3 are non-linear, researchetwiarea of MNNs generally refrain
from using a possibly non-linear activation function. lbshd be mentioned that Koch and Poggio
make a strong case for multiplying with synapses [33], beuf; - x; instead ofw; + x; or w; + x;
as written in the Equations in 32.3. However, multiplicatmpuld have been used just as well in
these equations because the blBg .., V, A, +, +') is isomorphic to the blog|0, oo], V, A, -, )

under the isomorphism(z) = e* (we use the conventions > = 0 ande™ = oc). Here, the



multiplications “” and “-”” generally behave as one would expect with the followingeptons:
0-co=00:-0=0 and 0 oco=00-"0=+c0. (32.4)
Note that in the multiplicative blog0, ], Vv, A, -, '), the Equations 32.3 become respectively

T(X):\/(wi~xi) and T(x):/\(wi L) (32.5)

Despite the facts that weights are generally considered pmbitive quantities and that morpho-
logical neural networks can also be developed in the mid&fiVe blog([0, o], v, A, -, '), compu-
tational reasons have generally led researchers to wohleiadditive blogR. ., V, A, +, +') [71].

In fact, it is sufficient to consider the bld@...., VV, A, +, +'). Moreover, the Equations in 32.3 are
closely linked to the operations of gray-scale dilation anasion in classical mathematical mor-
phology [61, 62]. These equations can also be interpretadmadinear operations (image-template
products) in the mathematical structure of image algel®ag3]. In fact, existing formulations of
traditional neural network models in image algebra indussgarchers such as Ritter, Davidson,
Gader, and Sussner to formulate models of morphologicabhaetworks [16, 20, 50, 51, 64, 70].

Thus, the motivation for establishing MNNs can be found irthmenatics instead of biology.
Nevertheless, recent research results by Yu, Giese, argidogve revealed that the maximum op-
eration that lies at the core of morphological neurons iset@ologically plausible [76]. In addition
to its potential involvement in a variety of cortical proses [21, 49, 23], the maximum operation
can be implemented by simple, neurophysiologically plalesircuits. Previously, prominent neu-
roscientists such as Gurney, Segev, and Shepherd hadyasiieaan that simple logical functions
can be modeled by local interactions in dendritic trees $&4 59].

For fuzzy inputsx € [0, 1|" and fuzzy weightsv € [0, 1]*, the identity on the left-hand side
of the first Equation in 32.5 describes a fuzzy morphologreiron because it corresponds to

an operation of dilation in fuzzy mathematical morpholodg$,[66]. Note that the operation of



multiplication represents a special case of fuzzy conjonctAt this point, we prefer not to go
into the details of fuzzy morphological neural networks particular FMAMs. We would only
like to point out that the lattice ordering of fuzzy sets hagt paramount to the development of
FMAMs. Thus, the lattice ordering of other information guéas may turn out to be useful for the

development of other granular associative memories.

32.2.3 Information Granulesand Their Inherent Lattice Ordering

Granular computing is based on the observation that we dyeabte to process the incoming flow
of information by means of a process of abstraction whicblves representing information in the
form of aggregates or information granules [77, 78, 46, §, Thus, granulation of information
occurs in everyday life whenever we form collections of #edithat are arranged together due to
their similarity, functional adjacency, indistinguishigly, coherency or alike.

These considerations indicate that set theory serves asablsuconceptual and algorithmic
framework for granular computing. Since a given class of seequipped with a partial ordering
given by set inclusion we believe that granular computingasely related to lattice theory. More
formally speaking, information granules include fuzzyssebugh sets, intervals, shadowed sets,
and probabilistic sets. Observe that all of these classesradtructs are endowed with an inherent
lattice ordering.

In this paper, we focus our attention on the class of fuzzy [set]X, i.e. the set of functions
from a universeX to [0, 1], because we are not aware of any significant research resakgrning
other classes of information granules in the context of@atiwe memories. However, we believe
that their inherent lattice structure will provide for theams to establish associative memories that
store associations of other types of information granules.

Thus, this paper is concerned with fuzzy associative mesaoiMore precisely, we describe a
relationship between fuzzy associative memories and mragtieal morphology that is ultimately

due to the complete lattice structure[of1]*.



32.3 Relevant Conceptsof Fuzzy Set Theory and Mathematical

M or phology

32.3.1 The Complete L attice Framework of Mathematical M or phology

In this article, we will establish a relationship betweenMi\and mathematical morphology that
is due to the fact that the neurons of most FAM models perfoorpimological operations.

Mathematical morphologgMM) is a theory which is concerned with the processing aralyan
sis of objects using operators and functions based on tgmallcand geometrical concepts [28, 61].
This theory was introduced by Matheron and Serra in the d&dg’s as a tool for the analysis of
binary images [42, 57]. During the last decades, it has aedua special status within the field of
image processing, pattern recognition, and computermnisipplications of MM include image
segmentation and reconstruction [32], feature detec66h pnd signal decomposition [10].

The most general mathematical framework in which MM can beloated is given by complete
lattices [55, 28]. Acomplete latticas defined as a partially ordered detn which every (finite
or infinite) subset has an infimum and a supremurh {8]. For anyY C L, the infimum ofY” is
denoted by the symbgl\ Y. Alternatively, we write/\,_; y; instead of A Y if Y = {y; : j € J}
for some index sef. Similar notations are used to denote the supremuin.cfhe intervall0, 1]
represents an example of a complete lattice. The clafgny setd), 1], i.e. the set of functions
from a univers&X to [0, 1], inherits the complete lattice structure of the unit in&fo, 1].

The two basic operators of MM aexosionanddilation [58, 28]. Anerosionis a mapping
from a complete lattic&. to a complete lattic®l that commutes with the infimum operation. In
other words, the operatarrepresents an erosion if and only if the following equalittds for

every subseY” C L:

e (/\ Y) = A=) (32.6)

yey

Similarly, an operatos : . — M that commutes with the supremum operation is callddadion.



In other words, the operatorrepresents a dilation if and only if the following equalitgltis for

every subseY” C L:

5 (\/ Y) = \/ 4y (32.7)

yey
Apart from erosions and dilations, we will also consider ¢éf@mentary operators anti-erosion
and anti-dilation that are defined as follows [5, 28]. An @perc is called an anti-erosion if and
only if the first Equality in 32.8 holds for every C L and an operataf is called an anti-dilation

if and only if the second Equality in 32.8 holds for every stids C L.

5(/\ Y) - \/e(y) and 5 (\/ Y) = A\ (). (32.8)

yey yey

Erosions, dilations, anti-erosions, and anti-dilatioxaneplify the concept of morphological oper-
ator. Unfortunately, a rigorous mathematical definitiomahorphological operator does not exist.
According to Heijmans, any attempt to find a formal definitedra morphological operator would
either be too restrictive or too general [28]. For the pugsosf our article, it is sufficient to know
that the four elementary operators erosion, dilation,-ardsion, and anti-dilation are generally
considered to be morphological ones [5].

If one of the four operators, 4, £, or § that we defined above is a mappijig1]* — [0, 1]¥
for some setX andY then we speak of fuzzy erosiopafuzzy dilation afuzzy anti-erosioyor a
fuzzy anti-dilationf43, 17, 66]. The operators of erosion and dilation are ofitgted in terms of
either one of the following relationships of duality: adgtion or negation.

LetL andM be complete lattices. Consider two arbitrary operaiark — M andes : Ml — L.

We say thate, §) is anadjunctionfrom L to M if we have
dr)<yer<ely) Veel,yeM. (32.9)

Adjunction constitutes a duality between erosions andidida since they form a bijection which



reverses the order relation in the complete lattice [28]radwer, if (<, §) is an adjunction, then
Is a dilation and is an erosion.
A second type of duality is based oegation We define anegationon a complete latticé as
an involutive bijection, : . — IL which reverses the partial ordering. In the special caseevhe
L = [0, 1], we speak of &uzzy negationExamples of fuzzy negations include the following unary

operators.
i
+ px

1
Ng(x)=1—2 and Np(z)= 1 for p > —1. (32.10)

Suppose thaiV is an arbitrary fuzzy negation and thatc [0, 1] andWW € [0, 1]™*". For
simplicity, N(x) denotes the component-wise fuzzy negation of the vectand N (1) denotes
the entry-wise fuzzy negation of the matfix.

Let ¥ be an operator mapping a complete latficento a complete lattic®l and letyy, andyy,

be negations of. andM, respectively. The operatdr” given by
U (z) =y (¥ (n(x))) Vzel, (32.11)

is called thenegationor thedual of ¥ with respect tay, andwy. The negation of an erosion is a
dilation, and vice versa [28]. The preceding observatidasfg that there is a unique erosion that
can be associated with a certain dilation and vice versamgef either negation or adjunction.

An erosion, a dilation respectively, is usually associat@t a structuring elementSE) which
is used to probe a given image [57, 61]. In the fuzzy setting,itnagea and the SEs are given
by fuzzy sets [43, 17, 66]. For a fixed SEa fuzzy dilationD(-, s) is usually defined in terms of a
supremum of fuzzy conjunctions, whereC' commutes with the supremum operator in the second
argument [17, 41, 66]. Similarly, a fuzzy erosiéi-,s) can be defined in terms of an infimum
of fuzzy disjunctionsD or an infimum of fuzzy implicationg, whereD or I commutes with the
infimum operator in the second argument.

If an ANN performs a (fuzzy) morphological operation at eaditde, we speak of uzzy)
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morphological neural networkThe neurons of an ANN of this type are callédzzy) morpho-
logical neurons In particular, (fuzzy) neurons that perform dilationsp®ons, anti-dilations, or
anti-erosions are (fuzzy) morphological neurons. An AMt thelongs to the class of fuzzy mor-

phological neural networks is calledazy morphological associative mem@iyAM).

32.3.2 Some Basic Operatorsof Fuzzy Logic

This article will show that - in their most general form - theunons of FAMs are given in terms of
a fuzzy conjunction, a fuzzy disjunction, or a fuzzy imptioca.

We define duzzy conjunctiomas an increasing mappirdg: [0, 1] x [0, 1] — [0, 1] that satisfies
C(0,0) = C(0,1) = C(1,0) = 0 andC(1,1) = 1. The minimum operator and the product
obviously yield simple examples. In particular, a commiueaand associative fuzzy conjunction
T :10,1] x [0,1] — [0, 1] that satisfied’(z, 1) = z for everyz € [0, 1] is calledtriangular norm

or simplyt-norm[47]. The fuzzy conjunction€’y;, Cp, andC', below are examples of t-norms.

Cu(z,y) = =AMy, (32.12)
Cp(x,y) = x-y, (32.13)
Cr(z,y) = 0OV(z+y—1). (32.14)

A fuzzy disjunctiofis an increasing mapping : [0, 1] x [0, 1] — [0, 1] that satisfied(0,0) =
0 and D(0,1) = D(1,0) = D(1,1) = 1. In particular, a commutative and associative fuzzy
disjunctionS : [0,1] x [0,1] — [0, 1] that satisfiesS(1,x) = z for everyz € [0, 1] is called

triangular co-norm for shorts-norm The following operators represent s-norms:

D]\/[(«T,y) = .T\/y, (3215)
Dp(z,y) = z+y—z-y, (32.16)
Dp(xz,y) = 1A(x+y). (32.17)

11



We would like to point out that in the literature of fuzzy logione often does not work with
the overall class of fuzzy conjunctions and fuzzy disjumttbut rather with the restricted class of
t-norms and s-norms [47]. In particular, the FAM models presd in the next sections are based
on t-norms and s-norms except for the FLBAM and the generaAMsl

An operator] : [0, 1] x [0,1] — [0, 1] that is decreasing in the first argument and that is increas-
ing in the second argument is calleduazy implicationf I extends the usual crisp implication on
{0,1} x {0,1},i.e.1(0,0) = 1(0,1) = I(1,1) = 1 and/(1,0) = 0. Some particular fuzzy impli-

cations, that were introduced by Gédel, Goguen, and Lukéstecan be found below [47, 17].

I, z<y
Yy, >y
I, =<y
y/z, >y
In(z,y) = 1AN(y—x+1). (32.20)

A fuzzy conjunctionC' can be associated with a fuzzy disjunctiBror with a fuzzy implication
I by means of a relationship of duality which can be either tiegar adjunction. Specifically, we
say that a fuzzy conjunctiofi and a fuzzy disjunctio® aredual operators with respect to a fuzzy

negationN if and only if the following equation holds for eveny y € [0, 1]:

C(z,y) = N (D(N(x),N(y)) . (32.21)

In other words, we have that(x,-) = DN(N(x),-) for all x € [0, 1] or, equivalentlyC(-,y) =
DN(-,N(y)) forally € [0, 1].

The following implication holds for fuzzy operato€sand D that are dual with respect 9: If
C'is a dilation for every: € [0, 1] thenD is an erosion for every € [0, 1] and vice versa [28]. For

example, note that the paif€'y,, D), (Cp, Dp), and(Cy, D) are dual operators with respect to
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the standard fuzzy negatid¥y. The dual operator of a (continuous) t-norm with respecYias a
(continuous) s-norm [47].

In this article, we will also consider the duality relatitiys of adjunction between a fuzzy
conjunctionC' and a fuzzy implication. We simply say tha€' and ! form an adjunction if and
only if C(x,-) and(z, -) form an adjunction for every € [0, 1]. In this case, we also call and/
adjointoperators and we have th@atz, -) is a dilation and/(z, -) is an erosion for every € [0, 1]
[17]. Examples of adjunctions are given by the pars,, I,/), (Cp, Ip), and(Cy, I1.).

The fuzzy operation§’, D, andl can be combined with the maximum or the minimum oper-
ation to yield the following matrix products. Fet € [0, 1]™*? and B € [0, 1]"*", we define the

max-C' productC' = A o B as follows:

Clag,byy) Yi=1,... . m j=1,....n. (32.22)

I
bl
<=
I\

Similarly, the minD productD = A e B and the minf productE = A ® B are given by the

following equations:

>“@

dl] = alkubk] Vizl,...,m,jzl,...,n, (32.23)

p
e; = /\ (brjyai) Vi=1,...,m,j=1,... ,n. (32.24)

Subscripts of the product symbealse, or ® indicate the type of fuzzy operators used in Equations
32.22, 32.23, or 32.24. For example, the symbglstands for the max- product where the fuzzy

conjunctionC' in Equation 32.22 is given b/, .
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32.4 Typesof NeuronsUsed in Fuzzy AssociativeMemory M od-
els

This section describes the most important types of fuzzyarethat occur in FAM models. These
models of artificial neurons can be formulated in terms ofrttex-C', min-D, and min{ matrix
products that we introduced in Section 32.3.2.

Let us consider an arbitrary model of an artificial neuron.e Bymbolx = [z;,...,z,]"
denotes the fuzzy input vector agddenotes the fuzzy output. The weights € [0, 1] of the
neuron form a vectow = [wy, ..., w,|T. We usef to denote the bias. A model without bias is
obtained by setting = 0 in Equations 32.26 and 32.27 or by settthg: 1 in Equations 32.28 and
32.29.

32.4.1 TheMax-C and the Min-I Neuron

One of the most general classes of fuzzy neurons was inteadoy Pedrycz [45] in the early 90’s.
The neurons of this class are callegigregative logic neuronsince they realize an aggregation of
the inputs and synaptic weights. We are particularly irsiee in theOR-neurordescribed by the

following equation, wher&' is a s-norm and’ is a t-norm.
y= 8 T(w,z,) . (32.25)

Let us adapt Pedrycz’s original definition by introducingastterm and by substituting the t-norm
with a more general operation of fuzzy conjunction. We abtaigeneralized OR-neuron 8«
neuron

y = {SIC(wj,xj)] s (32.26)

We refrained from replacing the s-norm by a fuzzy disjuntsince associativity and commuta-

tivity are required in a neural model. H equals the maximum operation, we obtain thax-C
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neuronthat is given by the following equation whewe' represents the transposevof
Yy = L\/ C (wjy, xj)] Vi=(wlox)Ve. (32.27)
=1

Particular choices of fuzzy conjunctions yield particutaax-C' neurons. Given a particular max-
C' neuron, we will indicate the underlying type of fuzzy congtion by means of a subscript. For
example, maxc’,; will denote the neuron that is based on the minimum fuzzy wactjon. A
similar notation will be applied to describe the mimeuron and the mid) that will be introduced

in Section 32.4.2. We define timein-/ neuronby means of the following equation:

y = V\ I (:cj,wj)] NG =(wh@x)Ab. (32.28)

1

We are particularly interested in mif3- neurons wheré; denotes a fuzzy implication that forms
an adjunction together with a t-norfm This type of neuron occurs in the FLBAM model [7].

To our knowledge, the ma&- neuron represents the most widely used model of fuzzy neuron
in FAMs. The FLBAM of Bélohlavek, which consists of mihheurons, represents an exception to
this rule. For example, Kosko's FAM employs mé%; or maxCp neurons. Junbo’s FAM and the
FAM model of Liu are also equipped with maX;; neurons. The generalized FAM of Chung and
Lee as well as the IFAM models employ m@&xaeurons, wheré’ is a t-norm.

Note that we may speak ofraax<C' morphological neurorif and only if C(z, -) is a dilation
for everyz € [0, 1] [17]. Examples of maxG' morphological neurons include maXy;, max-Cp,

and max€’';, neurons.
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32.4.2 TheMin-D Neuron: A Dual Moddl of the Max-C' Neuron

Consider the neural model that is described in terms of thateap below.
Y= L/\ D (wy, xj)] ANO = (wl ex)AD. (32.29)
j=1

We refer to neurons of this type asn-D neurons For example, dual IFAMs are equipped with
min-D neurons [71].

Suppose that’ and D are dual operators with respecto In this case, the mag-neuron and
the min-D neuron aredual with respect taV in the following sense. Le¥V denote the function
computed by the mag* neuron, i.e.W(x) = (w’ ox) v 6 for all x € [0,1]". If m; denotes

N(w;) andv denotesV (¢) then we obtain the negation ¥Y with respect taV as follows.

NW(Nx) = N (l C’(wj,N(xj))] \/9) (32.30)

- l N(C(wj,N(xj))] AN() = L/\ D(mj,xj)] A9, (32.31)

i1

Note that the dual of a ma&-morphological neuron with respect to a fuzzy negaflois a min-D

morphological neuron that performs an erosion.

32.5 Kosko'sFuzzy Associative Memory and Generalizations

Kosko’s FAMs constitute one of the earliest attempts to tigwveeural AM models based on fuzzy
set theory. These models were introduced in the early 1@8@isare usually referred asax-min
FAM and max-product FAM37]. Later, Chung and Lee introduced generalizations ofk¢s
models that are known ageneralized fuzzy associative memoii€$AMs) [14]. The models
of Kosko and Chungi Lee share the same network topology and Hebbian learnirg mith

the Linear Associative Memory [2, 26, 34]. Thus, these FAMdels exhibit a large amount of
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crosstalk if the inputs do not satisfy a certain orthonortyabndition.

32.5.1 TheMax-Min and the Max-Product Fuzzy Associative M emories

The max-min and the max-product FAM are both single layedffesvard ANNs. The max-min
FAM is equipped with maxG, fuzzy neurons while the max-product FAM is equipped with max
Cp fuzzy neurons. Thus, both models belong to the class of fuaayphological associative
memories. Kosko’s original definitions do not include biasris. Consequently, i € [0, 1]™*"

is the synaptic weight matrix of a max-min FAM andxife [0, 1]" is the input pattern, then the

output patterry € [0, 1™ is computed as follows (cf. Equation 32.22).

y=Woyx. (32.32)

Similarly, the max-product FAM produces the output= W op x. Note that both versions of
Kosko’s FAM perform dilations at each node (and overall).ughKosko’s models belong to the
class FMAMs.

Consider a set of fundamental memor{gs®,y®) : ¢ = 1,...,k}. The learning rule used to
store the fundamental memory set in a max-min FAM is catiedelation-minimum encodingn

this learning rule, the synaptic weight matrix is given bg fbllowing equation

W=YoyXT, (32.33)

whereX = [x!,...,x*] € [0,1]"* andY = [y!,...,y*] € [0,1]™**. In a similar fashion, the
weight matrix of the max-product FAM is synthesized by setfil’ = Y op X7. We speak of
correlation-product encodingn this case.

Both the correlation-minimum and the correlation-prodelstoding are based on the Hebb’s

postulate which states that the synaptic weight changendispen the input as well as the output
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activation [27]. Unfortunately, Hebbian learning entails extremely low storage capacity of one
input-output pair per FAM matrix in Kosko’s models. More pisely, Kosko only succeeded in
showing the following proposition concerning the recallpaftterns by a max-min and a max-

product FAM [37].

Proposition 1. Suppose that a single fundamental memory fwiry') was stored in a max-min
FAM by means of the correlation-minimum encoding schenes 1h o,; x! = y! if and only if
Vi zj < Vi, y;. Moreover, we havél” oy, x < y' for everyx € [0, 1]".

Similarly, if a single fundamental memory pdit!, y') was stored in a max-product FAM by
means of the correlation-product encoding scheme thesy x' = y' if and only if\/"_, 2} = 1.

Furthermore, we hav@l’ op x < y! for everyx € [0, 1]"™.

In Section 32.5.2, we will provide conditions for perfeataét using a max-min or max-product
FAM that stores several input-output pairs (cf. Proposi2). Kosko himself proposed to utilize
a FAM systemin order to overcome the storage limitation of the max-mirMFand max-product
FAM. Generally speaking, a FAM system consists of a bank 6AM matriceslV¢ such that each
FAM matrix stores a single fundamental memdsy, y¢), where¢ = 1,...,k. Given an input
patternx, a combination of the outputs of each FAM matrix in terms of @ighted sum vyields
the output of the system. Kosko argues that the separategst@f FAM associations consumes
memory space but provides an “audit trail” of the FAM infererprocedure and avoids crosstalk
[37]. According to Chung and Lee, the implementation of a Féydtem is limited to applications
with a small amount of associations [14]. As to computatieffart, the FAM system requires at

least the synthesis & FAM matrices.

32.5.2 Generalized Fuzzy Associative Memoriesof Chung and Lee

Chung and Lee generalized Kosko’s FAMs by substituting tla-min or the max-product by

a more general max-t product in Equations 32.32 and 32.3 [IHe resulting model, called
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generalized FAMGFAM), can be described in terms of the following relatibipsbetween an
input patternx € [0, 1]” and the corresponding output pattgrne [0, 1]™. Here, the symbobr

denotes the max- product (cf. Equation 32.22) whe¢gis a t-norm.
y=Worx where W =Y op X7, (32.34)

We refer to the learning rule that is used to genefite- Y o X7 ascorrelation-t encodingNote
that a GFAM performs a dilation at each node (and overallpd anly if the t-norm represents a
dilation in [0, 1].

We could generalize the GFAM even further by substituting ttmorm with a more general
fuzzy conjunction. However, the resulting model does ndisBaProposition 2 below since it
requires the associativity and the boundary condifion, 1) = = of a t-norm.

In the theory of linear associative memories trained by reed&a learning rule based on Hebb’s
postulate, perfect recall of the stored patterns is passildhe patternsc!,. .., x* constitute an
orthonormal set [25, 26]. Chung and Lee noted that a simitaesent, which can be found below,
is true for GFAM models.

A straightforward fuzzification of the orthogonality andtwnormality concepts leads to the
following definitions. Fuzzy patterns, y € [0, 1]" are saidnax-t orthogonaif and only if x* oz
y =0,i.e.T(z;,y;) =0forall j =1,...,n. Consequently, we speak ofizax-t orthonormaset
{x!,...,x*} if and only if the patterns® andx” are max-t orthogonal for evety+# n andx® is a
normal fuzzy set for every = 1, ..., k. Recall that a fuzzy set € [0, 1]" is normal if and only if
\/;L:1 z;j=1,ie.xTopx=1.

Based on the max-t orthonormality definition, Chung and Lsmseded in showing the fol-

lowing proposition concerning the recall of patterns by sAGH14].

Proposition 2. Suppose that the fundamental memoties y¢), for ¢ = 1,..., k, are stored in a

GFAM by means of the correlation-t encoding scheme. If thése. . ., x*} is max-t orthonormal
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thenW oy x¢ = y* foreveryé =1, ..., k.

In particular, Chung and Lee noted that the Lukasiewicz GFA®! the GFAM based on the
Lukasiewicz fuzzy conjunction, will perfectly recall théosed patterns if thex®’s are such that
0V (x§+x;7 —1) = 0for everyé # nandj = 1,...,n. In other words, we havg® = W o x¢ for
every(é =1,...,kif x§ +xj < 1forevery{ # nandj = 1,...,n. These inequalities hold true

in particular for patterns®’s that satisfy the usual conditioE’g:1 x§ = 1forevery; =1,...,n.

32.6 Variationsof Max-Min Fuzzy Associative Memory

In this section, we will discuss two variations of Kosko’s xrrain FAM: the models of Junbo
and Liu. Junbeet al. generate the weight matrix of their model according to thel&dmplica-
tive learning scheme that we will introduce in Equation 32.3.iu modified Junbo’s model by

incorporating a threshold at the input and output layer.

32.6.1 Junbo’'sFuzzy Associative Memory M odel

Junbo’s FAM and Kosko’s max-min FAM share the same topolagythe same type of morpho-
logical neurons, namely maXy, neurons [30]. Consequently, Junbo’s FAM computes the dutpu
patterny = I o), x upon presentation of an input pattetre [0, 1]™.

The difference between the max-min FAM and the Junbo’s FA#diin the learning rule. Junbo
et al. chose to introduce a new learning rule for FAM which allowstfe storage of multiple fuzzy

fundamental memories. The synaptic weight matrix is comgbass follows:
W=Y®,X". (32.35)

Here, the symbak,, denotes the mir;,; product of Equation 32.24. We will refer to this learning

rule asGodel implicative learningince it employs Godel's fuzzy implicatiaiy, [73, 71].
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The following proposition shows the optimality (in termstbe perfect recall of the original
patterns) of the Godel implicative learning scheme for max-FAMs [18, 30]. In particular,
Proposition 3 reveals that the Junbo’s FAM can store at laashany patterns as the max-min

FAM of Kosko.

Proposition 3. Let X = [x!,...,x"] € [0,1]"** andY = [y!,...,y"] € [0, 1]™** be the matrices
whose columns are the fundamental memories. If there éxisf0, 1]™*" such thatd o, x¢ = y*

forall ¢ =1,...,k, thenWW =Y @®,; X7 issuchthai¥ o), xt =y forall ¢ =1,..., k.

32.6.2 TheMax-Min Fuzzy Associative Memory with Threshold of Liu

Proposition 3 shows that Godel implicative learning gutgas the best possible storage capacity
for a max-min FAM. Therefore, improvements in storage capaan only be achieved by consid-
ering neural associative memories with a different archites and/or different types of neurons.
Since adding hidden layers to the max-min FAM also fails wease the storage capacity, Liu

proposes the following model whose recall phase is desthlgehe following equation [38]:
y=Woy(xVec))Vvd. (32.36)

The weight matriXV € [0, 1]™*" is given in terms of Gddel implicative learning and the thieds

d € [0,1]™ andc = [cy, ..., c,]" € [0,1]™ are of the following form:

é‘ -
. yr D #£0,
y* and ¢; = P, Neerr, (32.37)

1 0 |fDJ:(Z),

d=

k
&=

whereLE;; = {¢: 2% < y5}andD; = {i: LE; # 0}.
Liu’'s model is also known as thmax-min FAM with threshold\Note that Equation 32.36 boils

down to adding bias terms to the single-layer max-min FAMe Tdillowing proposition concerns
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the recall of patterns using the max-min FAM with threshold.

Proposition 4. Suppose the symbdlg, ¢, andd denote the weight matrix and the thresholds of a
max-min FAM with threshold that stores the fundamental mi&s(x¢, y¢), where¢ = 1,. .., k. If
there existsd € [0, 1]™ " such thatdoy, x* = y¢ forall ¢ = 1,...,k, theny® = (Wo(x*Vc))vd

forall £ =1,... k.

Thus, the max-min FAM with threshold can store at least asynpatterns as the FAM of
Junbo and the max-min FAM of Kosko. In the next section, wd imiroduce a FAM model
whose storage capacity is at least as high as that of Liu’seiremtd which does not require the

cumbersome computation of the thresheld [0, 1]™.

32.7 Other Subclassesof Fuzzy M or phological Associative M em-
ories

In this section, we discuss the IFAM , the dual IFAM, and FLBAMdels. The IFAMs and the
dual IFAMs can be viewed as extensions of morphological@atee memories (MAMS) to the
fuzzy domain [73, 71, 70]. Thus, these models maintain tia¢ufes of the MAM models. In
particular, an IFAM model computes a dilation whereas a thraM performs an erosion whereas

the FLBAM model computes an anti-dilation at every node [7].

32.7.1 Implicative Fuzzy Associative Memories

Implicative fuzzy associative memori@gBAMs) bear some resemblance with the GFAM model
of Chung and Lee. Specifically, an IFAM model is given by a Engyer feedforward ANN
endowed with maxF neurons wheré& is a continuous t-norm. In contrast to the GFAM, the IFAM

model includes a bias terth= [0, 1]” and employs a learning rule that we dalimplicative fuzzy
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learning Note that a continuous t-norm represents a dilatioo,ifh]. Therefore, the neurons of an
IFAM are dilative and thus IFAMs belong to the class of FMAMSs.

Consider a fundamental memory k¢, y¢) : ¢ = 1,...,k} and an IFAM model that is
equipped with maxt neurons. Let/; be the fuzzy implication such thdi and the given con-
tinuous t-norm7" are adjoint and let the symbad; denote the min- product (cf. Equation
32.24). Given an input pattesn € [0, 1]", the IFAM model produces the following output pattern

y € [0, 1]™:

k
y=(Worx)ve, where W =Y @ X" and 6= /\ y*. (32.38)
£=1

The fuzzy implication/; is uniquely determined by the following equation.
Ir(z,y) = \/{z €[0,1] : T(z,2) <y} Yo,y € [0,1]. (32.39)

We refer tol; as theR-implication associated with the t-noriy hence the name R-implicative
fuzzy learning. Particular choices @f, I respectively, lead to particular IFAM models. The
name of a particular IFAM model indicates the choicdadnd /. For example, the Gddel IFAM
corresponds to the IFAM model given by the equaios (W oy, x) V @ whereW =Y ®,; X7T
andd = A\¢_, y*.

Note that the learning rule used in the Godel IFAM model coies with the Godel implicative
learning rule that is used in the FAM models of Junbo and Liecd that Liu's max-min FAM
with threshold can be viewed as an improved version of JunBaM. Although the Godel IFAM
disposes of only one threshold tefimits storage capacity is at least as high as the one of Liu’s
FAM [71]. In fact, the IFAM model can be considered a genegdlon of Liu’s max-min FAM
with threshold. The following proposition concerns thealeof patterns using an arbitrary IFAM

model [71].
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Proposition 5. Consider the fundamental memory $éx¢,y¢) : ¢ = 1,...,k}. If there exist a
synaptic weight matrixi € [0, 1]™*" and a bias vectoB € [0, 1]™ such thaty® = (A4 oy x%) V 3,
foreveryé¢ =1,... k,ithenA<W =Y @, X7,3<0 = /\’§:1y5, andy¢ = (W orp x%) v 0 for
alé=1,... k.

In the autoassociative case, we speak ofai®associative fuzzy implicative memOiFIM).
The synaptic weight matrix and bias vector of an AFIM model given bylV = X ®, X' and
0 = /\?:1 x¢, respectively. We can convert the AFIM into a dynamic modeldeding the output
(W or x) V 0 back into the memory. We refer to the pattesns [0, 1|* that remain fixed under
an application of¥ = X ®; X7 as the fixed points dfi’. In sharp contrast to the GFAM models,
one can store as many patterns as desired in an AFIM [73]. tticpkar, the storage capacity
of the AFIM is at least as high as the storage capacity of tlequnm associative memory if the
stored patterns are binary [74]. Furthermore, we succedgidowing the following proposition
concerning the recall of patterns by an AFIM model and thedfpreints of iV’ = X ®p X”. The
following proposition characterizes the fixed points of aRIM as well as the output patterns in

terms of the fixed points [71].

Proposition 6. Consider a fundamental memory dat',...,x*}. f W = X @y X7 and@ =
/\’gzlx5 then for every input pattersc € [0, 1]", the output(IV or x) V @ of the AFIM is the
supremunof x in the set of fixed points & greater tharg, i.e (W oy x) V 6 is the smallest fixed
pointy of W such thaty > x andy > 6.

Moreover, a patterny € [0,1]" is a fixed point ofif’ if y = c for some constant vector

c = lce,...,cf € [0,1]" orif y is of the following form for somé&;, C {1,...,k} and some
k € N.
k
y=\ N\ . (32.40)
l=1¢eL;

This proposition reveals that AFIM models exhibit a verygnumber of fixed points which

include the original patterns®, where¢ = 1, ... , k, and many spurious states. Moreover, the
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basin of attraction of an original pattex only consists of patterns such thai < x¢. In the near
future, we intend to generalize Proposition 6 to includettbieroassociative case.

IFAM models have been successfully applied to several problin prediction where they
have outperformed other models such as statistical moddlgha FAM models that we mentioned
above [71, 67]. The Lukasiewicz IFAM which exhibited the fqgsrformance in these simulations
is closely related to the gray-scale morphological assweiamemory (MAM) [51, 70]. Both the

MAM model as well as the general IFAM model are equipped wittual model.

32.7.2 Dual Implicative Fuzzy Associative Memories

Recall that the IFAM model has dilative m&xneurons wheré is a continuous t-norm. A dual
IFAM model can be constructed by taking the dual neurons repect to a certain fuzzy negation.
We chose to consider only the standard fuzzy negation

Let us derive the dual model of a given IFAM. Suppose that wetwa@store the associations
(x¢,y%), where¢ = 1,... .k, in a dual IFAM. Let us synthesize the weight matrixand the bias
vector@ of the IFAM using the fundamental memorig¥s(x¢), Ng(y¢)), where¢ = 1,... k. If

M denotesNg (W) and if ¥ denotesNg(0) then an application of Equations 32.30 and 32.31 to
Equation 32.38 yields the recall phase of the dual IFAM mddk] 73]:

y = Ns [(Wor Ns(x)) VO] = (Megx) A9, (32.41)

Here, the symboés stands for the mirt product of Equation 32.23 based on the continuous s-
norm S that is the dual operator @f with respect taVs. We conclude that the dual IFAM model
performs an erosion at each node.

In view of Equations 32.11 and 32.41, every statement coimogithe IFAM model yields a
corresponding dual statement concerning the dual IFAM mao8pecifically, we obtain the cor-

responding dual statement from the statement about the IfFfdel by replacing minimum with

25



maximum, t-norm with s-norm, the produgt with eg, and vice versa [71].

32.7.3 Fuzzy Logical Bidirectional Associative Memory

The fuzzy logical bidirectional associative memdiLBAM) [7] constitutes a recurrent model
whose network topology coincides with the one of Kosko'sreictional associative memory (BAM)
[36]. In contrast to Kosko’s BAM, the neurons of the FLBAM calate min{; products where the
fuzzy implication/ is adjoint to some continuous t-nori Using a Hebbian style correlation-
t encoding scheme, @ohlavek constructs the weight matfiX for the forward direction of the
FLBAM as follows:

W=YoprXT. (32.42)

The weight matrix for the backward direction simply corresgs toWW?. Thus, given an in-

put patternx, € [0, 1], the FLBAM generates the following sequene®, yo), (x1,¥o), (X1, ¥1),

(X27 yl)v e
Y = W ®7 x;, and X411 = WT T Vi for k= 0,1,2,.... (3243)
The following proposition shows that a FLBAM reaches a stadihte after one step in the

forward direction and one step in the backward direction [7]

Proposition 7. For an arbitrary input patternx, € [0, 1], the pair(x;,yo) is a stable state of the

FLBAM.

The following observations demonstrate that the FLBAM nisdelong to the FMAM class
[72]. Specifically, we will show that the neurons of a FLBAMnapute anti-dilations. Recall that
the FLBAM has minf; neurons, wherdy is adjoint to some continuous t-norfn The fact that

Iy andT form an adjunction implies thdt: can be expressed in the form given by Equation 32.39.
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Therefore, the following equations hold true for eveéfyC [0, 1] andy € [0, 1]:

Ir (\/ X, y) -V {z cl0,1: T <\/X z) < y} (32.44)
= \/ {z €[0,1]: \/ T (x,2) < y} (32.45)

zeX

= /\[\/{zE[O,l]:sz <y}] /\ITxy (32.46)

zeX zeX

Consequently/r (-, y) represents an anti-dilation for eveyyc [0, 1] and therefore the nodes of an

FLBAM also calculate anti-dilations.

32.8 Experimental Results

32.8.1 Storage Capacity and Noise Tolerance Example

Consider the 12 patterns shown in Figure 32.1. These aresgalg images® € [0, 1]°5%46, ¢ =
1,...,12, from the faces database of AT&T Laboratories Cambridge THis database contains
files in PGM format. The size of each image is 92x112 pixelsh\266 gray levels per pixel.
We downsized the original images using neighbor interpmtafThen, we obtained fuzzy patterns
(vectors)x!, ..., x'? € [0, 1]*7 using the standard row-scan method.

We stored the patterns, ..., x" in the Lukasiewicz, Godel, and Goguen AFIMs and we ver-
ified that they represent fixed points of these models, i.e ARIMs succeeded in storing the
fundamental memory set. In order to verify the tolerancehef AFIM model with respect to
corrupted or incomplete patterns, we presented as inpytatiernse!, . . ., r® displayed in Figure
32.2. The first three patterns, r?, andr?, of Figure 32.2 were generated introducing pepper noise
in x! with probabilities25%, 50%, and75%, respectively. The other three patterris,r®, andr®,
were obtained excluding respectivel§%, 50%, and75% of the original image. The respective

recalled patterns are shown in Figure 32.3. Note that thasiekvicz AFIM succeeded in recalling
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Figure 32.1: Fundamental memories §et, . .., x'?} used in Example 32.8.1.

the original pattern almost perfectly.

We also conducted the same experiment using the FAM modekepted previously. We
observed that the max-min and max-product FAMs, as well ad ttkasiewicz GFAM and the
FLBAMs based on the implication of Lukasiewicz and Gdodeilethto demonstrate an adequate
performance on this task due to a high amount of crosstalidset the stored patterns. Moreover,
we noted that the FAM of Junbo and the max-min FAM with thrégdlppoduced the same outputs
of the Godel AFIM. Thus, although the threshélaf the Godel AFIM captures the effects of the
thresholds: andd of the max-min FAM with threshold of Liu, in this example, iddhot improve
the tolerance with respect to noise of the Godel AFIM withpexg to Junbo’s FAM. The dual
AFIMs succeeded in storing the fundamental memory set liletiféo recallx* when the patterns
of Figure 32.2 where present as input. In fact, concerninga AFIM model, we can show that
the basin of attraction of an original pattexh consists of patterns such thatc < x¢, i.e. the
dual AFIM exhibit tolerance with respect to corrupted patssk® only if x¢ > x¢ [71]. Table 32.1
presents the normalized error produced by the FAM modelsiieincomplete or corrupted pat-

terns of Figure 32.2 are presented as input. For instaneeydimalized erro& (r") of the AFIM
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Figure 32.2: Patterns', ..., r% representing corrupted or incomplete versions of pattérased
as input of the FMAM models.

Figure 32.3: Patterns recalled by Lukasiewicz (first rondd@él (second row), and Goguen (third
row) when the patterns', . . ., r® of Figure 32.2 are presented as input.
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Associative Memory E(rY) EX?) E) EX'Y) EX®) FE°

Lukasiewicz IFAM 0.0248 0.0388 0.0587 0.0842 0.1051 0.1499
Godel IFAM 0.1132 0.1690 0.2440 0.1878 0.2419 0.3355
Goguen IFAM 0.0459 0.0682 0.1079 0.1241 0.1498 0.2356

max-min FAM of Kosko | 0.8331 0.8309 0.8332 0.8257 0.8066 0.7555
max-prod FAM of Kosko | 0.4730 0.4723 0.4706 0.4729 0.4736 0.4565
Lukasiewicz GFAM 0.5298 0.4944 0.4932 0.5061 0.6200 0.7013
FAM of Junbo 0.1132 0.1690 0.2440 0.1878 0.2419 0.3355
max-min FAM with threshold 0.1132 0.1690 0.2440 0.1878 0.2419 0.3355
Lukasiewicz FLBAM 0.3512 0.3667 0.3827 0.3932 0.4254 0.4574
Godel FLBAM 0.2954 0.3156 0.3277 0.2994 0.3111 0.4982

Table 32.1: Normalized error produced by the FAM models wherpatterns', . . ., r® of Figure
32.2 are presented as input.

models are computed as follows fpe= 1,. . ., 6:

! = [(Worrm) v ol

x|

E(r7) = (32.47)

32.8.2 Application of the Lukasiewicz IFAM in Prediction

Fuzzy associative memories can be used to implement mappinfyizzy rules. In this case, a
set of rules in the form of human-like IF-THEN conditionahtgments are stored. In this subsec-
tion, we present an application of a certain FMAM model to @pem of forecasting time-series.
Specifically, we applied the Lukasiewicz IFAM to the problefrforecasting the average monthly
streamflow of a large hydroelectric plant called Furnag, igkbcated in southeastern Brazil. This
problem was previously discussed in [39, 40, 72].

First, the seasonality of the monthly streamflow suggestsisie of 12 different predictor mod-
els, one for each month of the year. lseffor £ = 1,..., ¢, be samples of a seasonal streamflow

time series. The goal is to estimate the value,drom a subsequence 0f;, s, ... ,s,_1). Here,
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we employ subsequences that correspond to a vector of tme for

P’ = (Sy_hy--35,1)", (32.48)

whereh € {1,2,...,v — 1}. In this experiment, our IFAM based model only uses a fixed loem
of three antecedents. For example, the values of Janudmu&g, and March were taken into
account to predict the streamflow of April.

The uncertainty that is inherent in hydrological data ssggthe use of fuzzy sets to model the
streamflow samples. Fgr< ~, a fuzzification ofp¢ ands¢ using Gaussian membership functions
yields fuzzy sets* : i/ — [0,1] andy*® : V — [0, 1], respectively, wher&/ and) represent finite
universes of discourse. A subsebf the resulting input-output paifgx®, y*), £ < ¢} is implicitly
stored in the Lukasiewicz IFAM (we only construct the paftthe weight matrix that are actually
used in the recall phase) [72]. We employedshbtractive clustering methdd determine the set
S [13]. Feeding the patterr” into the IFAM model, we retrieve the corresponding outputgra
y?. For computational reasons) is modeled as a singleton én A defuzzification ofy” using
the mean of maximum yields, [72].

Figure 32.4 shows the forecasted streamflows estimatedebgrédiction model based on the
Lukasiewicz IFAM for the Furnas reservoir from 1991 to 19%8ble 32.2 compares the errors that
were generated by the IFAM model and several other models3@J0 In contrast to the IFAM-
based model, the MLP, NFN, and FPM-PRP models were inisidlizy optimizing the number
of the parameters for each monthly prediction. For exantpke,MLP considersl antecedents
to predict the streamflow of January aBdantecedents to predict the streamflow for February.
Moreover, the FPM-PRP model also takes into account slofeeniation which requires some
additional “fine tuning”. We experimentally determined aigble number of parameters (including

slopes) for the IFAM model such that MSE)=88 x 10°, MAE = 157, and MPE =15.
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Figure 32.4: The streamflow prediction for the Furnas resefrom 1991 to 1998. The continuous
line corresponds to the actual values and the dashed linespamds to the predicted values.

32.9 Conclusion and Suggestions for Further Research: Fuzzy
and Granular Morphological Associative Memories

This article describes the most widely known models of fuaggociative memory from the per-
spective of mathematical morphology. We showed that mo# Rfodels compute an elementary
operation of mathematical morphology at each node. Thexetbese models belong to the class
of fuzzy morphological associative memories. Although aegal theory of FMAMSs has yet to
be developed, a number of useful theoretical results hawady been proven for a large subclass
of FMAMSs called implicative fuzzy associative memories].7lh addition, certain FMAM mod-
els such as the Lukasiewicz IFAM have outperformed other FAdlels in applications as fuzzy

rule-based systems [67].

The mathematical basis for fuzzy (morphological) assa@ahemories can be found in fuzzy
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MSE | MAE | MPE
Methods (x10%) | (m3/s) | (%)
Lukasiewicz IFAM| 1.42 226 22

PARMA 1.85 280 28
MLP 1.82 271 30
NEN 1.73 234 20

FPM-PRP 1.20 200 18

Table 32.2: Mean square, mean absolute, and mean relativerpage errors produced by the
prediction models.

mathematical morphology which relies on the fact that the(se|* represents a complete lattice
for any universeX [55, 43]. Recall that a fuzzy set represents a special cas@ afformation
granule, a concept that also encompasses intervals, retgpsobability distributions, and fuzzy
interval numbers [78, 31]. Information granules have besadun a variety of applications [6] but
- to our knowledge - granular associative memories haveoyie¢ formulated and investigated. We
believe that the complete lattice framework of mathematicaphology may prove to be useful for
developing a general theory and applications of FMAMs armhglar (morphological) associative

memories.
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