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32.1 Introduction

Fuzzy associative memories(FAMs) belong to the class offuzzy neural networks(FNNs). A FNN

is an artificial neural network(ANN) whose input patterns, output patterns, and/or connection

weights are fuzzy-valued [19, 11].

Research on FAM models originated in the early 1990’s with the advent of Kosko’s FAM

[35, 37]. Like many other associative memory models, Kosko’s FAM consists of a single-layer

feedforward FNN that stores the fuzzy rule “Ifx is Xk theny is Yk” using a fuzzy Hebbian learning

rule in terms of max-min or max-product compositions for thesynthesis of its weight matrixW .

Despite successful applications of Kosko’s FAMs to problems such as backing up a truck and

trailer [35], target tracking [37], and voice cell control in ATM networks [44], Kosko’s FAM suffers

from an extremely low storage capacity of one rule per FAM matrix. Therefore, Kosko’s overall
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fuzzy system comprises several FAM matrices. Given a fuzzy input, the FAM matrices generate

fuzzy outputs which are then combined to yield the final result. To overcome the original FAMs

severe limitations in storage capacity, several researchers have developed improved FAM versions

that are capable of storing multiple pairs of fuzzy patterns[30, 9, 14, 38, 12]. For example, Chung

and Lee generalized Kosko’s model by proposing a max-t composition for the synthesis of a FAM

matrix. Chung and Lee showed that all fuzzy rules can be perfectly recalled by means of a single

FAM matrix using max-t composition provided that the input patterns satisfy certain orthogonal-

ity conditions [14]. Junboet al. had previously presented an improved learning algorithm for

Kosko’s max-min FAM model [29, 30]. Liu modified the Junbo’s FAM et al. by adding a threshold

activation function to each node of the network [38].

We recently establishedimplicative fuzzy associative memories(IFAMs) [73, 71], a class of

associative memories that grew out ofmorphological associative memories(MAMs) [51, 70, 64].

One particular IFAM model can be viewed as an improved version of Liu’s FAM [71]. MAMs

belong to the class of morphological neural networks (MNNs)[50, 54]. This class of artificial

neural networks is calledmorphologicalbecause each node performs a morphological operation

[57, 58, 55, 28]. Theory and applications of binary and gray-scale MAMs have been developed

since late 1990’s [51, 64, 65, 70]. For example, one can storeas many patterns as desired in

an auto-associative MAM [51, 63, 65]. In particular, for binary patterns of lengthn, the binary

auto-associative MAM exhibits an absolute storage capacity of 2n which either equals or slightly

exceeds the storage capacity of thequantum associative memoryof Ventura and Martinez [74].

Applications of MAMs include face localization, robot vision, hyper-spectral image analysis, and

some general classification problems [48, 22, 70, 67, 68].

This article demonstrates that the IFAM model as well as all other FAM models that we men-

tioned above can be embedded into the general class offuzzy morphological associative memories

(FMAMs). Fuzzy logical bidirectional associative memories(FLBAMs), which were introduced

by Bělohlávek [7], can also be considered a subclass of FMAMs. Although a general framework

2



for FMAMs has yet to appear in the literature, we believe thatthe class of FMAMs should be

firmly rooted in fuzzy mathematical morphology and thus eachnode of an FMAM should execute

a fuzzy morphological operation [17, 66, 69]. In general, the input, output, and synaptic weights of

FMAMs are fuzzy valued. Recall that fuzzy sets represent special cases of information granules.

Thus, FMAMs can be considered special cases ofgranular associative memories, a broad class of

AMs which has yet to be investigated.

The chapter is organized as follows. First, we present some background information and mo-

tivation for our research. After providing some general concepts of neural associative memories,

fuzzy set theory, and mathematical morphology, we discuss the types of artificial neurons that occur

in FAM models. Section 32.5 provides an overview of Kosko’s FAM and its generalizations, includ-

ing the FAM model of Chung and Lee. In Section 32.6, we review variations of Kosko’s max-min

FAM, in particular the models of Junboet al. and Liu in conjunction with their respective learning

strategies. In Section 32.7, we present the most important results on IFAMs and FLBAMs. Section

32.8 compares the performances of different FAM models by means of an example concerning the

storage capacity and noise tolerance. Furthermore, an application to a problem of prediction is

presented. We conclude the article with some suggestions for further research concerning fuzzy

and granular MAM models.

32.2 Some Background Information and Motivation

32.2.1 Associative Memories

Associative memories(AMs) allow for the storage of pattern associations and the retrieval of the

desired output pattern upon presentation of a possibly noisy or incomplete version of an input pat-

tern. Mathematically speaking, the associative memory design problem can be stated as follows:

Given a finite set of desired associations
{(

xξ,yξ
)

: ξ = 1, . . . , k
}

, determine a mappingG such

that G(xξ) = yξ for all ξ = 1, . . . , k. Furthermore, the mappingG should be endowed with a
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certain tolerance with respect to noise, i.e.G(x̃ξ) should equalyξ for noisy or incomplete ver-

sionsx̃ξ of xξ. In the context ofGranular Computing(GC), the input and the output patterns are

information granules [6].

The set of associations{(xξ,yξ) : ξ = 1, . . . , k} is calledfundamental memory setand each

association(xξ,yξ) in this set is called afundamental memory[25]. We speak of anautoassociative

memorywhen the fundamental memory set is of the form{(xξ,xξ) : ξ = 1, . . . , k}. The memory is

said to beheteroassociativeif the outputyξ is different from the inputxξ. One of the most common

problem associated with the design of an AM is the creation offalse or spurious memories. A

spurious memoryis a memory association that does not belong to the fundamental memory set, i.e.

it was unintentionally stored in the memory.

The process of determiningG is calledrecording phaseand the mappingG is calledassociative

mapping. We speak of aneural associative memorywhen the associative mappingG is described

by an artificial neural network. In particular, we have afuzzy (neural) associative memory(FAM) if

the associative mappingG is given by a fuzzy neural network and the patternsxξ andyξ are fuzzy

sets for everyξ = 1, . . . , k.

32.2.2 Morphological Neural Networks

In this paper, we are mainly concerned with fuzzy associative memories. As we shall point out dur-

ing the course of this paper, many models of fuzzy associative memories can be classified asfuzzy

morphological associative memories(FMAMs) which in turn belong to the class ofmorphological

neural networks(MNNs) [50, 67]. The name "morphological neural networks" was coined because

MNNs perform operations of mathematical morphology at every node.

Many models of morphological neural networks are implicitly rooted in the mathematical struc-

ture (R±∞,∨,∧, +, +′) which represents abounded lattice ordered group(blog) [15, 16, 20, 50,

51, 64, 4, 3, 70]. The symbols “∨” and “∧" represent the maximum and the minimum operation.

The operations “+” and “+′” act like the usual sum operation and are identical onR±∞ with the
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following exceptions:

(−∞) + (+∞) = (+∞) + (−∞) = −∞ and (−∞) +′ (+∞) = (+∞) +′ (−∞) = +∞ .

(32.1)

In practice, the inputs, outputs, and synaptic weights of a MNN have values inR where the opera-

tions “+” and “+′” coincide.

In most cases, models of morphological neural networks, including MAMs, are defined in terms

of certain matrix products known as the max product and the min product. Specifically, for anm×p

matrix A and ap × n matrix B with entries fromR±∞, the matrixC = A ∨� B, also called the

max productof A andB, and the matrixD = A ∧� B, also called themin productof A andB, are

defined by

cij =

p
∨

k=1

(aik + bkj) and dij =

p
∧

k=1

(aik +′ bkj) . (32.2)

Let us consider an arbitrary neuron in a MNN defined on the blog(R±∞,∨,∧, +, +′). Suppose

that the inputs are given by a vectorx = (x1, . . . , xn)T ∈ R
n and letw = (w1, . . . , wn)

T ∈ R
n

denote the vector of corresponding synaptic strengths. Theaccumulative effect of the inputs and

the synaptic weights in a simple morphological neuron is given by either one of the following

equations:

τ(x) = wT ∨� x =
n
∨

i=1

(wi + xi) or τ(x) = wT ∧� x =
n
∧

i=1

(wi +′ xi) . (32.3)

Since the Equations in 32.3 are non-linear, researchers in the area of MNNs generally refrain

from using a possibly non-linear activation function. It should be mentioned that Koch and Poggio

make a strong case for multiplying with synapses [33], i.e. for wi · xi instead ofwi + xi or wi +′ xi

as written in the Equations in 32.3. However, multiplication could have been used just as well in

these equations because the blog(R±∞,∨,∧, +, +′) is isomorphic to the blog([0,∞],∨,∧, ·, ·′)

under the isomorphismφ(x) = ex (we use the conventionse−∞ = 0 ande∞ = ∞). Here, the
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multiplications “·” and “·′” generally behave as one would expect with the following exceptions:

0 · ∞ = ∞ · 0 = 0 and 0 ·′ ∞ = ∞ ·′ 0 = +∞ . (32.4)

Note that in the multiplicative blog([0,∞],∨,∧, ·, ·′), the Equations 32.3 become respectively

τ(x) =

n
∨

i=1

(wi · xi) and τ(x) =

n
∧

i=1

(wi ·
′ xi) . (32.5)

Despite the facts that weights are generally considered to be positive quantities and that morpho-

logical neural networks can also be developed in the multiplicative blog([0,∞],∨,∧, ·, ·′), compu-

tational reasons have generally led researchers to work in the additive blog(R±∞,∨,∧, +, +′) [71].

In fact, it is sufficient to consider the blog(Z±∞,∨,∧, +, +′). Moreover, the Equations in 32.3 are

closely linked to the operations of gray-scale dilation anderosion in classical mathematical mor-

phology [61, 62]. These equations can also be interpreted asnon-linear operations (image-template

products) in the mathematical structure of image algebra [52, 53]. In fact, existing formulations of

traditional neural network models in image algebra inducedresearchers such as Ritter, Davidson,

Gader, and Sussner to formulate models of morphological neural networks [16, 20, 50, 51, 64, 70].

Thus, the motivation for establishing MNNs can be found in mathematics instead of biology.

Nevertheless, recent research results by Yu, Giese, and Poggio have revealed that the maximum op-

eration that lies at the core of morphological neurons is neurobiologically plausible [76]. In addition

to its potential involvement in a variety of cortical processes [21, 49, 23], the maximum operation

can be implemented by simple, neurophysiologically plausible circuits. Previously, prominent neu-

roscientists such as Gurney, Segev, and Shepherd had already shown that simple logical functions

can be modeled by local interactions in dendritic trees [24,56, 59].

For fuzzy inputsx ∈ [0, 1]n and fuzzy weightsw ∈ [0, 1]n, the identity on the left-hand side

of the first Equation in 32.5 describes a fuzzy morphologicalneuron because it corresponds to

an operation of dilation in fuzzy mathematical morphology [43, 66]. Note that the operation of
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multiplication represents a special case of fuzzy conjunction. At this point, we prefer not to go

into the details of fuzzy morphological neural networks, inparticular FMAMs. We would only

like to point out that the lattice ordering of fuzzy sets has been paramount to the development of

FMAMs. Thus, the lattice ordering of other information granules may turn out to be useful for the

development of other granular associative memories.

32.2.3 Information Granules and Their Inherent Lattice Ordering

Granular computing is based on the observation that we are only able to process the incoming flow

of information by means of a process of abstraction which involves representing information in the

form of aggregates or information granules [77, 78, 46, 6, 75]. Thus, granulation of information

occurs in everyday life whenever we form collections of entities that are arranged together due to

their similarity, functional adjacency, indistinguishability, coherency or alike.

These considerations indicate that set theory serves as a suitable conceptual and algorithmic

framework for granular computing. Since a given class of sets is equipped with a partial ordering

given by set inclusion we believe that granular computing isclosely related to lattice theory. More

formally speaking, information granules include fuzzy sets, rough sets, intervals, shadowed sets,

and probabilistic sets. Observe that all of these classes ofconstructs are endowed with an inherent

lattice ordering.

In this paper, we focus our attention on the class of fuzzy sets [0, 1]X, i.e. the set of functions

from a universeX to [0, 1], because we are not aware of any significant research resultsconcerning

other classes of information granules in the context of associative memories. However, we believe

that their inherent lattice structure will provide for the means to establish associative memories that

store associations of other types of information granules.

Thus, this paper is concerned with fuzzy associative memories. More precisely, we describe a

relationship between fuzzy associative memories and mathematical morphology that is ultimately

due to the complete lattice structure of[0, 1]X.
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32.3 Relevant Concepts of Fuzzy Set Theory and Mathematical

Morphology

32.3.1 The Complete Lattice Framework of Mathematical Morphology

In this article, we will establish a relationship between FAMs and mathematical morphology that

is due to the fact that the neurons of most FAM models perform morphological operations.

Mathematical morphology(MM) is a theory which is concerned with the processing and analy-

sis of objects using operators and functions based on topological and geometrical concepts [28, 61].

This theory was introduced by Matheron and Serra in the early1960’s as a tool for the analysis of

binary images [42, 57]. During the last decades, it has acquired a special status within the field of

image processing, pattern recognition, and computer vision. Applications of MM include image

segmentation and reconstruction [32], feature detection [60], and signal decomposition [10].

The most general mathematical framework in which MM can be conducted is given by complete

lattices [55, 28]. Acomplete latticeis defined as a partially ordered setL in which every (finite

or infinite) subset has an infimum and a supremum inL [8]. For anyY ⊆ L, the infimum ofY is

denoted by the symbol
∧

Y . Alternatively, we write
∧

j∈J yj instead of
∧

Y if Y = {yj : j ∈ J}

for some index setJ . Similar notations are used to denote the supremum ofY . The interval[0, 1]

represents an example of a complete lattice. The class offuzzy sets[0, 1]X, i.e. the set of functions

from a universeX to [0, 1], inherits the complete lattice structure of the unit interval [0, 1].

The two basic operators of MM areerosionanddilation [58, 28]. Anerosionis a mappingε

from a complete latticeL to a complete latticeM that commutes with the infimum operation. In

other words, the operatorε represents an erosion if and only if the following equality holds for

every subsetY ⊆ L:

ε
(

∧

Y
)

=
∧

y∈Y

ε(y) . (32.6)

Similarly, an operatorδ : L → M that commutes with the supremum operation is called adilation.
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In other words, the operatorδ represents a dilation if and only if the following equality holds for

every subsetY ⊆ L:

δ
(

∨

Y
)

=
∨

y∈Y

δ(y) . (32.7)

Apart from erosions and dilations, we will also consider theelementary operators anti-erosion

and anti-dilation that are defined as follows [5, 28]. An operator ε̄ is called an anti-erosion if and

only if the first Equality in 32.8 holds for everyY ⊆ L and an operator̄δ is called an anti-dilation

if and only if the second Equality in 32.8 holds for every subsetY ⊆ L.

ε̄
(

∧

Y
)

=
∨

y∈Y

ε̄(y) and δ̄
(

∨

Y
)

=
∧

y∈Y

δ̄(y) . (32.8)

Erosions, dilations, anti-erosions, and anti-dilations exemplify the concept of morphological oper-

ator. Unfortunately, a rigorous mathematical definition ofa morphological operator does not exist.

According to Heijmans, any attempt to find a formal definitionof a morphological operator would

either be too restrictive or too general [28]. For the purposes of our article, it is sufficient to know

that the four elementary operators erosion, dilation, anti-erosion, and anti-dilation are generally

considered to be morphological ones [5].

If one of the four operatorsε, δ, ε̄, or δ̄ that we defined above is a mapping[0, 1]X → [0, 1]Y

for some setsX andY then we speak of afuzzy erosion, a fuzzy dilation, a fuzzy anti-erosion, or a

fuzzy anti-dilation[43, 17, 66]. The operators of erosion and dilation are oftenlinked in terms of

either one of the following relationships of duality: adjunction or negation.

Let L andM be complete lattices. Consider two arbitrary operatorsδ : L → M andε : M → L.

We say that(ε, δ) is anadjunctionfrom L to M if we have

δ(x) ≤ y ⇔ x ≤ ε(y) ∀x ∈ L , y ∈ M . (32.9)

Adjunction constitutes a duality between erosions and dilations since they form a bijection which
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reverses the order relation in the complete lattice [28]. Moreover, if(ε, δ) is an adjunction, thenδ

is a dilation andε is an erosion.

A second type of duality is based onnegation. We define anegationon a complete latticeL as

an involutive bijectionνL : L → L which reverses the partial ordering. In the special case where

L = [0, 1], we speak of afuzzy negation. Examples of fuzzy negations include the following unary

operators.

NS(x) = 1 − x and ND(x) =
1 − x

1 + px
for p > −1 . (32.10)

Suppose thatN is an arbitrary fuzzy negation and thatx ∈ [0, 1]n andW ∈ [0, 1]m×n. For

simplicity, N(x) denotes the component-wise fuzzy negation of the vectorx andN(W ) denotes

the entry-wise fuzzy negation of the matrixW .

Let Ψ be an operator mapping a complete latticeL into a complete latticeM and letνL andνM

be negations onL andM, respectively. The operatorΨν given by

Ψν(x) = νM (Ψ (νL(x))) ∀x ∈ L, (32.11)

is called thenegationor thedual of Ψ with respect toνL andνM. The negation of an erosion is a

dilation, and vice versa [28]. The preceding observations clarify that there is a unique erosion that

can be associated with a certain dilation and vice versa in terms of either negation or adjunction.

An erosion, a dilation respectively, is usually associatedwith astructuring element(SE) which

is used to probe a given image [57, 61]. In the fuzzy setting, the imagea and the SEs are given

by fuzzy sets [43, 17, 66]. For a fixed SEs, a fuzzy dilationD(·, s) is usually defined in terms of a

supremum of fuzzy conjunctionsC, whereC commutes with the supremum operator in the second

argument [17, 41, 66]. Similarly, a fuzzy erosionE(·, s) can be defined in terms of an infimum

of fuzzy disjunctionsD or an infimum of fuzzy implicationsI, whereD or I commutes with the

infimum operator in the second argument.

If an ANN performs a (fuzzy) morphological operation at eachnode, we speak of a(fuzzy)
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morphological neural network. The neurons of an ANN of this type are called(fuzzy) morpho-

logical neurons. In particular, (fuzzy) neurons that perform dilations, erosions, anti-dilations, or

anti-erosions are (fuzzy) morphological neurons. An AM that belongs to the class of fuzzy mor-

phological neural networks is called afuzzy morphological associative memory(FMAM).

32.3.2 Some Basic Operators of Fuzzy Logic

This article will show that - in their most general form - the neurons of FAMs are given in terms of

a fuzzy conjunction, a fuzzy disjunction, or a fuzzy implication.

We define afuzzy conjunctionas an increasing mappingC : [0, 1]× [0, 1] → [0, 1] that satisfies

C(0, 0) = C(0, 1) = C(1, 0) = 0 andC(1, 1) = 1. The minimum operator and the product

obviously yield simple examples. In particular, a commutative and associative fuzzy conjunction

T : [0, 1] × [0, 1] → [0, 1] that satisfiesT (x, 1) = x for everyx ∈ [0, 1] is calledtriangular norm

or simplyt-norm[47]. The fuzzy conjunctionsCM , CP , andCL below are examples of t-norms.

CM(x, y) = x ∧ y , (32.12)

CP (x, y) = x · y , (32.13)

CL(x, y) = 0 ∨ (x + y − 1) . (32.14)

A fuzzy disjunctionis an increasing mappingD : [0, 1]× [0, 1] → [0, 1] that satisfiesD(0, 0) =

0 andD(0, 1) = D(1, 0) = D(1, 1) = 1. In particular, a commutative and associative fuzzy

disjunctionS : [0, 1] × [0, 1] → [0, 1] that satisfiesS(1, x) = x for everyx ∈ [0, 1] is called

triangular co-norm, for shorts-norm. The following operators represent s-norms:

DM(x, y) = x ∨ y , (32.15)

DP (x, y) = x + y − x · y , (32.16)

DL(x, y) = 1 ∧ (x + y) . (32.17)
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We would like to point out that in the literature of fuzzy logic, one often does not work with

the overall class of fuzzy conjunctions and fuzzy disjunction but rather with the restricted class of

t-norms and s-norms [47]. In particular, the FAM models presented in the next sections are based

on t-norms and s-norms except for the FLBAM and the general FMAMs.

An operatorI : [0, 1]× [0, 1] → [0, 1] that is decreasing in the first argument and that is increas-

ing in the second argument is called afuzzy implicationif I extends the usual crisp implication on

{0, 1} × {0, 1}, i.e. I(0, 0) = I(0, 1) = I(1, 1) = 1 andI(1, 0) = 0. Some particular fuzzy impli-

cations, that were introduced by Gödel, Goguen, and Lukasiewicz can be found below [47, 17].

IM(x, y) =











1, x ≤ y

y, x > y
, (32.18)

IP (x, y) =











1, x ≤ y

y/x, x > y
, (32.19)

IL(x, y) = 1 ∧ (y − x + 1) . (32.20)

A fuzzy conjunctionC can be associated with a fuzzy disjunctionD or with a fuzzy implication

I by means of a relationship of duality which can be either negation or adjunction. Specifically, we

say that a fuzzy conjunctionC and a fuzzy disjunctionD aredual operators with respect to a fuzzy

negationN if and only if the following equation holds for everyx, y ∈ [0, 1]:

C(x, y) = N (D(N(x), N(y)) . (32.21)

In other words, we have thatC(x, ·) = DN(N(x), ·) for all x ∈ [0, 1] or, equivalently,C(·, y) =

DN(·, N(y)) for all y ∈ [0, 1].

The following implication holds for fuzzy operatorsC andD that are dual with respect toN : If

C is a dilation for everyx ∈ [0, 1] thenD is an erosion for everyx ∈ [0, 1] and vice versa [28]. For

example, note that the pairs(CM , DM), (CP , DP ), and(CL, DL) are dual operators with respect to
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the standard fuzzy negationNS. The dual operator of a (continuous) t-norm with respect toNS is a

(continuous) s-norm [47].

In this article, we will also consider the duality relationship of adjunction between a fuzzy

conjunctionC and a fuzzy implicationI. We simply say thatC andI form an adjunction if and

only if C(x, ·) andI(x, ·) form an adjunction for everyx ∈ [0, 1]. In this case, we also callC andI

adjointoperators and we have thatC(z, ·) is a dilation andI(z, ·) is an erosion for everyz ∈ [0, 1]

[17]. Examples of adjunctions are given by the pairs(CM , IM), (CP , IP ), and(CL, IL).

The fuzzy operationsC, D, andI can be combined with the maximum or the minimum oper-

ation to yield the following matrix products. ForA ∈ [0, 1]m×p andB ∈ [0, 1]p×n, we define the

max-C productC = A ◦ B as follows:

cij =

p
∨

k=1

C(aik, bkj) ∀ i = 1, . . . , m, j = 1, . . . , n . (32.22)

Similarly, the min-D productD = A • B and the min-I productE = A ⊛ B are given by the

following equations:

dij =

p
∧

k=1

D(aik, bkj) ∀ i = 1, . . . , m, j = 1, . . . , n , (32.23)

eij =

p
∧

k=1

I(bkj , aik) ∀ i = 1, . . . , m, j = 1, . . . , n . (32.24)

Subscripts of the product symbols◦, •, or ⊛ indicate the type of fuzzy operators used in Equations

32.22, 32.23, or 32.24. For example, the symbol◦M stands for the max-C product where the fuzzy

conjunctionC in Equation 32.22 is given byCM .
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32.4 Types of Neurons Used in Fuzzy Associative Memory Mod-

els

This section describes the most important types of fuzzy neurons that occur in FAM models. These

models of artificial neurons can be formulated in terms of themax-C, min-D, and min-I matrix

products that we introduced in Section 32.3.2.

Let us consider an arbitrary model of an artificial neuron. The symbolx = [x1, . . . , xn]T

denotes the fuzzy input vector andy denotes the fuzzy output. The weightswi ∈ [0, 1] of the

neuron form a vectorw = [w1, . . . , wn]
T . We useθ to denote the bias. A model without bias is

obtained by settingθ = 0 in Equations 32.26 and 32.27 or by settingθ = 1 in Equations 32.28 and

32.29.

32.4.1 The Max-C and the Min-I Neuron

One of the most general classes of fuzzy neurons was introduced by Pedrycz [45] in the early 90’s.

The neurons of this class are calledaggregative logic neuronssince they realize an aggregation of

the inputs and synaptic weights. We are particularly interested in theOR-neurondescribed by the

following equation, whereS is a s-norm andT is a t-norm.

y =
n

S
j=1

T (wj , xj) . (32.25)

Let us adapt Pedrycz’s original definition by introducing a bias term and by substituting the t-norm

with a more general operation of fuzzy conjunction. We obtain a generalized OR-neuron orS-C

neuron.

y =

[

n

S
j=1

C (wj , xj)

]

s θ . (32.26)

We refrained from replacing the s-norm by a fuzzy disjunction since associativity and commuta-

tivity are required in a neural model. IfS equals the maximum operation, we obtain themax-C
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neuronthat is given by the following equation wherewT represents the transpose ofw.

y =

[

n
∨

j=1

C (wj, xj)

]

∨ θ = (wT ◦ x) ∨ θ . (32.27)

Particular choices of fuzzy conjunctions yield particularmax-C neurons. Given a particular max-

C neuron, we will indicate the underlying type of fuzzy conjunction by means of a subscript. For

example, max-CM will denote the neuron that is based on the minimum fuzzy conjunction. A

similar notation will be applied to describe the min-I neuron and the min-D that will be introduced

in Section 32.4.2. We define themin-I neuronby means of the following equation:

y =

[

n
∧

j=1

I (xj , wj)

]

∧ θ =
(

wT
⊛ x

)

∧ θ . (32.28)

We are particularly interested in min-IT neurons whereIT denotes a fuzzy implication that forms

an adjunction together with a t-normT . This type of neuron occurs in the FLBAM model [7].

To our knowledge, the max-C neuron represents the most widely used model of fuzzy neuron

in FAMs. The FLBAM of Bělohlávek, which consists of min-I neurons, represents an exception to

this rule. For example, Kosko’s FAM employs max-CM or max-CP neurons. Junbo’s FAM and the

FAM model of Liu are also equipped with max-CM neurons. The generalized FAM of Chung and

Lee as well as the IFAM models employ max-T neurons, whereT is a t-norm.

Note that we may speak of amax-C morphological neuronif and only if C(x, ·) is a dilation

for everyx ∈ [0, 1] [17]. Examples of max-C morphological neurons include max-CM , max-CP ,

and max-CL neurons.
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32.4.2 The Min-D Neuron: A Dual Model of the Max-C Neuron

Consider the neural model that is described in terms of the equation below.

y =

[

n
∧

j=1

D (wj , xj)

]

∧ θ = (wT • x) ∧ θ . (32.29)

We refer to neurons of this type asmin-D neurons. For example, dual IFAMs are equipped with

min-D neurons [71].

Suppose thatC andD are dual operators with respect toN . In this case, the max-C neuron and

the min-D neuron aredual with respect toN in the following sense. LetW denote the function

computed by the max-C neuron, i.e.W(x) =
(

wT ◦ x
)

∨ θ for all x ∈ [0, 1]n. If mj denotes

N(wj) andϑ denotesN(θ) then we obtain the negation ofW with respect toN as follows.

N(W(N(x))) = N

([

n
∨

j=1

C(wj, N(xj))

]

∨ θ

)

(32.30)

=

[

n
∧

j=1

N(C(wj, N(xj))

]

∧ N(θ) =

[

n
∧

j=1

D(mj, xj)

]

∧ ϑ . (32.31)

Note that the dual of a max-C morphological neuron with respect to a fuzzy negationN is a min-D

morphological neuron that performs an erosion.

32.5 Kosko’s Fuzzy Associative Memory and Generalizations

Kosko’s FAMs constitute one of the earliest attempts to develop neural AM models based on fuzzy

set theory. These models were introduced in the early 1990’sand are usually referred asmax-min

FAM andmax-product FAM[37]. Later, Chung and Lee introduced generalizations of Kosko’s

models that are known asgeneralized fuzzy associative memories(GFAMs) [14]. The models

of Kosko and Chung& Lee share the same network topology and Hebbian learning rules with

the Linear Associative Memory [2, 26, 34]. Thus, these FAM models exhibit a large amount of
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crosstalk if the inputs do not satisfy a certain orthonormality condition.

32.5.1 The Max-Min and the Max-Product Fuzzy Associative Memories

The max-min and the max-product FAM are both single layer feedforward ANNs. The max-min

FAM is equipped with max-CM fuzzy neurons while the max-product FAM is equipped with max-

CP fuzzy neurons. Thus, both models belong to the class of fuzzymorphological associative

memories. Kosko’s original definitions do not include bias terms. Consequently, ifW ∈ [0, 1]m×n

is the synaptic weight matrix of a max-min FAM and ifx ∈ [0, 1]n is the input pattern, then the

output patterny ∈ [0, 1]m is computed as follows (cf. Equation 32.22).

y = W ◦M x . (32.32)

Similarly, the max-product FAM produces the outputy = W ◦P x. Note that both versions of

Kosko’s FAM perform dilations at each node (and overall). Thus, Kosko’s models belong to the

class FMAMs.

Consider a set of fundamental memories{(xξ,yξ) : ξ = 1, . . . , k}. The learning rule used to

store the fundamental memory set in a max-min FAM is calledcorrelation-minimum encoding. In

this learning rule, the synaptic weight matrix is given by the following equation

W = Y ◦M XT , (32.33)

whereX = [x1, . . . ,xk] ∈ [0, 1]n×k andY = [y1, . . . ,yk] ∈ [0, 1]m×k. In a similar fashion, the

weight matrix of the max-product FAM is synthesized by setting W = Y ◦P XT . We speak of

correlation-product encodingin this case.

Both the correlation-minimum and the correlation-productencoding are based on the Hebb’s

postulate which states that the synaptic weight change depends on the input as well as the output
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activation [27]. Unfortunately, Hebbian learning entailsan extremely low storage capacity of one

input-output pair per FAM matrix in Kosko’s models. More precisely, Kosko only succeeded in

showing the following proposition concerning the recall ofpatterns by a max-min and a max-

product FAM [37].

Proposition 1. Suppose that a single fundamental memory pair(x1,y1) was stored in a max-min

FAM by means of the correlation-minimum encoding scheme, thenW ◦M x1 = y1 if and only if
∨n

j=1
x1

j ≤
∨m

i=1
y1

i . Moreover, we haveW ◦M x ≤ y1 for everyx ∈ [0, 1]n.

Similarly, if a single fundamental memory pair(x1,y1) was stored in a max-product FAM by

means of the correlation-product encoding scheme thenW ◦P x1 = y1 if and only if
∨n

j=1
x1

j = 1.

Furthermore, we haveW ◦P x ≤ y1 for everyx ∈ [0, 1]n.

In Section 32.5.2, we will provide conditions for perfect recall using a max-min or max-product

FAM that stores several input-output pairs (cf. Proposition 2). Kosko himself proposed to utilize

a FAM systemin order to overcome the storage limitation of the max-min FAM and max-product

FAM. Generally speaking, a FAM system consists of a bank ofk FAM matricesW ξ such that each

FAM matrix stores a single fundamental memory(xξ,yξ), whereξ = 1, . . . , k. Given an input

patternx, a combination of the outputs of each FAM matrix in terms of a weighted sum yields

the output of the system. Kosko argues that the separate storage of FAM associations consumes

memory space but provides an “audit trail” of the FAM inference procedure and avoids crosstalk

[37]. According to Chung and Lee, the implementation of a FAMsystem is limited to applications

with a small amount of associations [14]. As to computational effort, the FAM system requires at

least the synthesis ofk FAM matrices.

32.5.2 Generalized Fuzzy Associative Memories of Chung and Lee

Chung and Lee generalized Kosko’s FAMs by substituting the max-min or the max-product by

a more general max-t product in Equations 32.32 and 32.33 [14]. The resulting model, called
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generalized FAM(GFAM), can be described in terms of the following relationship between an

input patternx ∈ [0, 1]n and the corresponding output patterny ∈ [0, 1]m. Here, the symbol◦T

denotes the max-C product (cf. Equation 32.22) whereC is a t-norm.

y = W ◦T x where W = Y ◦T XT . (32.34)

We refer to the learning rule that is used to generateW = Y ◦T XT ascorrelation-t encoding. Note

that a GFAM performs a dilation at each node (and overall) if and only if the t-norm represents a

dilation in [0, 1].

We could generalize the GFAM even further by substituting the t-norm with a more general

fuzzy conjunction. However, the resulting model does not satisfy Proposition 2 below since it

requires the associativity and the boundary conditionT (x, 1) = x of a t-norm.

In the theory of linear associative memories trained by means of a learning rule based on Hebb’s

postulate, perfect recall of the stored patterns is possible if the patternsx1, . . . ,xk constitute an

orthonormal set [25, 26]. Chung and Lee noted that a similar statement, which can be found below,

is true for GFAM models.

A straightforward fuzzification of the orthogonality and orthonormality concepts leads to the

following definitions. Fuzzy patternsx,y ∈ [0, 1]n are saidmax-t orthogonalif and only if xT ◦T

y = 0, i.e. T (xj, yj) = 0 for all j = 1, . . . , n. Consequently, we speak of amax-t orthonormalset

{x1, . . . ,xk} if and only if the patternsxξ andxη are max-t orthogonal for everyξ 6= η andxξ is a

normal fuzzy set for everyξ = 1, . . . , k. Recall that a fuzzy setx ∈ [0, 1]n is normal if and only if
∨n

j=1
xj = 1, i.e.xT ◦T x = 1.

Based on the max-t orthonormality definition, Chung and Lee succeeded in showing the fol-

lowing proposition concerning the recall of patterns by a GFAM [14].

Proposition 2. Suppose that the fundamental memories(xξ,yξ), for ξ = 1, . . . , k, are stored in a

GFAM by means of the correlation-t encoding scheme. If the set {x1, . . . ,xk} is max-t orthonormal
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thenW ◦T xξ = yξ for everyξ = 1, . . . , k.

In particular, Chung and Lee noted that the Lukasiewicz GFAM, i.e. the GFAM based on the

Lukasiewicz fuzzy conjunction, will perfectly recall the stored patterns if thexξ ’s are such that

0∨ (xξ
j +x

η
j −1) = 0 for everyξ 6= η andj = 1, . . . , n. In other words, we haveyξ = W ◦L xξ for

everyξ = 1, . . . , k if x
ξ
j + x

η
j ≤ 1 for everyξ 6= η andj = 1, . . . , n. These inequalities hold true

in particular for patternsxξ ’s that satisfy the usual condition
∑k

ξ=1
xξ

j = 1 for everyj = 1, . . . , n.

32.6 Variations of Max-Min Fuzzy Associative Memory

In this section, we will discuss two variations of Kosko’s max-min FAM: the models of Junbo

and Liu. Junboet al. generate the weight matrix of their model according to the Gödel implica-

tive learning scheme that we will introduce in Equation 32.35. Liu modified Junbo’s model by

incorporating a threshold at the input and output layer.

32.6.1 Junbo’s Fuzzy Associative Memory Model

Junbo’s FAM and Kosko’s max-min FAM share the same topology and the same type of morpho-

logical neurons, namely max-CM neurons [30]. Consequently, Junbo’s FAM computes the output

patterny = W ◦M x upon presentation of an input patternx ∈ [0, 1]n.

The difference between the max-min FAM and the Junbo’s FAM lies in the learning rule. Junbo

et al. chose to introduce a new learning rule for FAM which allows for the storage of multiple fuzzy

fundamental memories. The synaptic weight matrix is computed as follows:

W = Y ⊛M XT . (32.35)

Here, the symbol⊛M denotes the min-IM product of Equation 32.24. We will refer to this learning

rule asGödel implicative learningsince it employs Gödel’s fuzzy implicationIM [73, 71].
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The following proposition shows the optimality (in terms ofthe perfect recall of the original

patterns) of the Gödel implicative learning scheme for max-min FAMs [18, 30]. In particular,

Proposition 3 reveals that the Junbo’s FAM can store at leastas many patterns as the max-min

FAM of Kosko.

Proposition 3. LetX = [x1, . . . ,xk] ∈ [0, 1]n×k andY = [y1, . . . ,yk] ∈ [0, 1]m×k be the matrices

whose columns are the fundamental memories. If there existA ∈ [0, 1]m×n such thatA◦M xξ = yξ

for all ξ = 1, . . . , k, thenW = Y ⊛M XT is such thatW ◦M xξ = yξ for all ξ = 1, . . . , k.

32.6.2 The Max-Min Fuzzy Associative Memory with Threshold of Liu

Proposition 3 shows that Gödel implicative learning guarantees the best possible storage capacity

for a max-min FAM. Therefore, improvements in storage capacity can only be achieved by consid-

ering neural associative memories with a different architecture and/or different types of neurons.

Since adding hidden layers to the max-min FAM also fails to increase the storage capacity, Liu

proposes the following model whose recall phase is described by the following equation [38]:

y = (W ◦M (x ∨ c)) ∨ d . (32.36)

The weight matrixW ∈ [0, 1]m×n is given in terms of Gödel implicative learning and the thresholds

d ∈ [0, 1]m andc = [c1, . . . , cn]
T ∈ [0, 1]n are of the following form:

d =

k
∧

ξ=1

yξ and cj =











∧

i∈Dj

∧

ξ∈LEij
yξ

i if Di 6= ∅ ,

0 if Dj = ∅ ,
(32.37)

whereLEij = {ξ : xξ
j ≤ yξ

i } andDj = {i : LEij 6= ∅}.

Liu’s model is also known as themax-min FAM with threshold. Note that Equation 32.36 boils

down to adding bias terms to the single-layer max-min FAM. The following proposition concerns
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the recall of patterns using the max-min FAM with threshold.

Proposition 4. Suppose the symbolsW , c, andd denote the weight matrix and the thresholds of a

max-min FAM with threshold that stores the fundamental memories(xξ,yξ), whereξ = 1, . . . , k. If

there existsA ∈ [0, 1]m×n such thatA◦M xξ = yξ for all ξ = 1, . . . , k, thenyξ = (W ◦(xξ∨c))∨d

for all ξ = 1, . . . , k.

Thus, the max-min FAM with threshold can store at least as many patterns as the FAM of

Junbo and the max-min FAM of Kosko. In the next section, we will introduce a FAM model

whose storage capacity is at least as high as that of Liu’s model and which does not require the

cumbersome computation of the thresholdc ∈ [0, 1]n.

32.7 Other Subclasses of Fuzzy Morphological Associative Mem-

ories

In this section, we discuss the IFAM , the dual IFAM, and FLBAMmodels. The IFAMs and the

dual IFAMs can be viewed as extensions of morphological associative memories (MAMs) to the

fuzzy domain [73, 71, 70]. Thus, these models maintain the features of the MAM models. In

particular, an IFAM model computes a dilation whereas a dualIFAM performs an erosion whereas

the FLBAM model computes an anti-dilation at every node [7].

32.7.1 Implicative Fuzzy Associative Memories

Implicative fuzzy associative memories(IFAMs) bear some resemblance with the GFAM model

of Chung and Lee. Specifically, an IFAM model is given by a single layer feedforward ANN

endowed with max-T neurons whereT is a continuous t-norm. In contrast to the GFAM, the IFAM

model includes a bias termθ = [0, 1]n and employs a learning rule that we callR-implicative fuzzy
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learning. Note that a continuous t-norm represents a dilation in[0, 1]. Therefore, the neurons of an

IFAM are dilative and thus IFAMs belong to the class of FMAMs.

Consider a fundamental memory set{(xξ,yξ) : ξ = 1, . . . , k} and an IFAM model that is

equipped with max-T neurons. LetIT be the fuzzy implication such thatIT and the given con-

tinuous t-normT are adjoint and let the symbol⊛T denote the min-IT product (cf. Equation

32.24). Given an input patternx ∈ [0, 1]n, the IFAM model produces the following output pattern

y ∈ [0, 1]m:

y = (W ◦T x) ∨ θ , where W = Y ⊛T XT and θ =
k
∧

ξ=1

yξ . (32.38)

The fuzzy implicationIT is uniquely determined by the following equation.

IT (x, y) =
∨

{z ∈ [0, 1] : T (x, z) ≤ y} ∀x, y ∈ [0, 1] . (32.39)

We refer toIT as theR-implication associated with the t-normT , hence the name R-implicative

fuzzy learning. Particular choices ofT , IT respectively, lead to particular IFAM models. The

name of a particular IFAM model indicates the choice ofT andIT . For example, the Gödel IFAM

corresponds to the IFAM model given by the equationy = (W ◦M x) ∨ θ whereW = Y ⊛M XT

andθ =
∧k

ξ=1
yξ.

Note that the learning rule used in the Gödel IFAM model coincides with the Gödel implicative

learning rule that is used in the FAM models of Junbo and Liu. Recall that Liu’s max-min FAM

with threshold can be viewed as an improved version of Junbo’s FAM. Although the Gödel IFAM

disposes of only one threshold termθ, its storage capacity is at least as high as the one of Liu’s

FAM [71]. In fact, the IFAM model can be considered a generalization of Liu’s max-min FAM

with threshold. The following proposition concerns the recall of patterns using an arbitrary IFAM

model [71].
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Proposition 5. Consider the fundamental memory set{(xξ,yξ) : ξ = 1, . . . , k}. If there exist a

synaptic weight matrixA ∈ [0, 1]m×n and a bias vectorβ ∈ [0, 1]m such thatyξ = (A ◦T xξ) ∨ β,

for everyξ = 1, . . . , k, thenA ≤ W = Y ⊛T XT , β ≤ θ =
∧k

ξ=1
yξ, andyξ = (W ◦T xξ) ∨ θ for

all ξ = 1, . . . , k.

In the autoassociative case, we speak of theautoassociative fuzzy implicative memory(AFIM).

The synaptic weight matrix and bias vector of an AFIM model are given byW = X ⊛T XT and

θ =
∧k

ξ=1
xξ, respectively. We can convert the AFIM into a dynamic model by feeding the output

(W ◦T x) ∨ θ back into the memory. We refer to the patternsx ∈ [0, 1]n that remain fixed under

an application ofW = X ⊛T XT as the fixed points ofW . In sharp contrast to the GFAM models,

one can store as many patterns as desired in an AFIM [73]. In particular, the storage capacity

of the AFIM is at least as high as the storage capacity of the quantum associative memory if the

stored patterns are binary [74]. Furthermore, we succeededin showing the following proposition

concerning the recall of patterns by an AFIM model and the fixed points ofW = X ⊛T XT . The

following proposition characterizes the fixed points of an AFIM as well as the output patterns in

terms of the fixed points [71].

Proposition 6. Consider a fundamental memory set{x1, . . . ,xk}. If W = X ⊛T XT and θ =
∧k

ξ=1
xξ then for every input patternx ∈ [0, 1]n, the output(W ◦T x) ∨ θ of the AFIM is the

supremumof x in the set of fixed points ofW greater thanθ, i.e (W ◦T x) ∨ θ is the smallest fixed

pointy of W such thaty ≥ x andy ≥ θ.

Moreover, a patterny ∈ [0, 1]n is a fixed point ofW if y = c for some constant vector

c = [c, c, . . . , c]T ∈ [0, 1]n or if y is of the following form for someLl ⊆ {1, . . . , k} and some

k ∈ N.

y =
k
∨

l=1

∧

ξ∈Ll

xξ . (32.40)

This proposition reveals that AFIM models exhibit a very large number of fixed points which

include the original patternsxξ, whereξ = 1, . . . , k, and many spurious states. Moreover, the
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basin of attraction of an original patternxξ only consists of patternsx such thatx ≤ xξ. In the near

future, we intend to generalize Proposition 6 to include theheteroassociative case.

IFAM models have been successfully applied to several problems in prediction where they

have outperformed other models such as statistical models and the FAM models that we mentioned

above [71, 67]. The Lukasiewicz IFAM which exhibited the best performance in these simulations

is closely related to the gray-scale morphological associative memory (MAM) [51, 70]. Both the

MAM model as well as the general IFAM model are equipped with adual model.

32.7.2 Dual Implicative Fuzzy Associative Memories

Recall that the IFAM model has dilative max-T neurons whereT is a continuous t-norm. A dual

IFAM model can be constructed by taking the dual neurons withrespect to a certain fuzzy negation.

We chose to consider only the standard fuzzy negationNS.

Let us derive the dual model of a given IFAM. Suppose that we want to store the associations

(xξ,yξ), whereξ = 1, . . . , k, in a dual IFAM. Let us synthesize the weight matrix̄W and the bias

vectorθ̄ of the IFAM using the fundamental memories(NS(xξ), NS(yξ)), whereξ = 1, . . . , k. If

M denotesNS(W̄ ) and if ϑ denotesNS(θ̄) then an application of Equations 32.30 and 32.31 to

Equation 32.38 yields the recall phase of the dual IFAM model[71, 73]:

y = NS

[(

W̄ ◦T NS(x)
)

∨ θ̄
]

= (M •S x) ∧ ϑ , (32.41)

Here, the symbol•S stands for the min-S product of Equation 32.23 based on the continuous s-

normS that is the dual operator ofT with respect toNS. We conclude that the dual IFAM model

performs an erosion at each node.

In view of Equations 32.11 and 32.41, every statement concerning the IFAM model yields a

corresponding dual statement concerning the dual IFAM model. Specifically, we obtain the cor-

responding dual statement from the statement about the IFAMmodel by replacing minimum with
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maximum, t-norm with s-norm, the product◦T with •S, and vice versa [71].

32.7.3 Fuzzy Logical Bidirectional Associative Memory

The fuzzy logical bidirectional associative memory(FLBAM) [7] constitutes a recurrent model

whose network topology coincides with the one of Kosko’s bidirectional associative memory (BAM)

[36]. In contrast to Kosko’s BAM, the neurons of the FLBAM calculate min-IT products where the

fuzzy implicationIT is adjoint to some continuous t-normT . Using a Hebbian style correlation-

t encoding scheme, B̌elohlávek constructs the weight matrixW for the forward direction of the

FLBAM as follows:

W = Y ◦T XT . (32.42)

The weight matrix for the backward direction simply corresponds toW T . Thus, given an in-

put patternx0 ∈ [0, 1]n, the FLBAM generates the following sequence(x0,y0), (x1,y0), (x1,y1),

(x2,y1), . . .:

yk = W ⊛T xk and xk+1 = W T
⊛T yk for k = 0, 1, 2, . . . . (32.43)

The following proposition shows that a FLBAM reaches a stable state after one step in the

forward direction and one step in the backward direction [7].

Proposition 7. For an arbitrary input patternx0 ∈ [0, 1]n, the pair(x1,y0) is a stable state of the

FLBAM.

The following observations demonstrate that the FLBAM models belong to the FMAM class

[72]. Specifically, we will show that the neurons of a FLBAM compute anti-dilations. Recall that

the FLBAM has min-IT neurons, whereIT is adjoint to some continuous t-normT . The fact that

IT andT form an adjunction implies thatIT can be expressed in the form given by Equation 32.39.
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Therefore, the following equations hold true for everyX ⊆ [0, 1] andy ∈ [0, 1]:

IT

(

∨

X, y
)

=
∨

{

z ∈ [0, 1] : T
(

∨

X, z
)

≤ y
}

(32.44)

=
∨

{

z ∈ [0, 1] :
∨

x∈X

T (x, z) ≤ y

}

(32.45)

=
∧

x∈X

[

∨

{z ∈ [0, 1] : T (x, z) ≤ y}
]

=
∧

x∈X

IT (x, y) . (32.46)

Consequently,IT (·, y) represents an anti-dilation for everyy ∈ [0, 1] and therefore the nodes of an

FLBAM also calculate anti-dilations.

32.8 Experimental Results

32.8.1 Storage Capacity and Noise Tolerance Example

Consider the 12 patterns shown in Figure 32.1. These are gray-scale imagesxξ ∈ [0, 1]56×46, ξ =

1, . . . , 12, from the faces database of AT&T Laboratories Cambridge [1]. This database contains

files in PGM format. The size of each image is 92x112 pixels, with 256 gray levels per pixel.

We downsized the original images using neighbor interpolation. Then, we obtained fuzzy patterns

(vectors)x1, . . . ,x12 ∈ [0, 1]2576 using the standard row-scan method.

We stored the patternsx1, . . . ,xk in the Lukasiewicz, Gödel, and Goguen AFIMs and we ver-

ified that they represent fixed points of these models, i.e. the AFIMs succeeded in storing the

fundamental memory set. In order to verify the tolerance of the AFIM model with respect to

corrupted or incomplete patterns, we presented as input thepatternsr1, . . . , r6 displayed in Figure

32.2. The first three patterns,r1, r2, andr3, of Figure 32.2 were generated introducing pepper noise

in x1 with probabilities25%, 50%, and75%, respectively. The other three patterns,r4, r5, andr6,

were obtained excluding respectively25%, 50%, and75% of the original image. The respective

recalled patterns are shown in Figure 32.3. Note that the Lukasiewicz AFIM succeeded in recalling
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Figure 32.1: Fundamental memories set{x1, . . . ,x12} used in Example 32.8.1.

the original pattern almost perfectly.

We also conducted the same experiment using the FAM models presented previously. We

observed that the max-min and max-product FAMs, as well as the Lukasiewicz GFAM and the

FLBAMs based on the implication of Lukasiewicz and Gödel, failed to demonstrate an adequate

performance on this task due to a high amount of crosstalk between the stored patterns. Moreover,

we noted that the FAM of Junbo and the max-min FAM with threshold produced the same outputs

of the Gödel AFIM. Thus, although the thresholdθ of the Gödel AFIM captures the effects of the

thresholdsc andd of the max-min FAM with threshold of Liu, in this example, it did not improve

the tolerance with respect to noise of the Gödel AFIM with respect to Junbo’s FAM. The dual

AFIMs succeeded in storing the fundamental memory set but failed to recallx1 when the patterns

of Figure 32.2 where present as input. In fact, concerning a dual AFIM model, we can show that

the basin of attraction of an original patternxξ consists of patternsx such thatx ≤ xξ, i.e. the

dual AFIM exhibit tolerance with respect to corrupted patternsx̃ξ only if x̃ξ ≥ xξ [71]. Table 32.1

presents the normalized error produced by the FAM models when the incomplete or corrupted pat-

terns of Figure 32.2 are presented as input. For instance, the normalized errorE(rη) of the AFIM
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Figure 32.2: Patternsr1, . . . , r6 representing corrupted or incomplete versions of patternx1 used
as input of the FMAM models.

Figure 32.3: Patterns recalled by Lukasiewicz (first row), Gödel (second row), and Goguen (third
row) when the patternsr1, . . . , r6 of Figure 32.2 are presented as input.
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Associative Memory E(r1) E(r2) E(r3) E(r4) E(r5) E(r6)
Lukasiewicz IFAM 0.0248 0.0388 0.0587 0.0842 0.1051 0.1499

Gödel IFAM 0.1132 0.1690 0.2440 0.1878 0.2419 0.3355
Goguen IFAM 0.0459 0.0682 0.1079 0.1241 0.1498 0.2356

max-min FAM of Kosko 0.8331 0.8309 0.8332 0.8257 0.8066 0.7555
max-prod FAM of Kosko 0.4730 0.4723 0.4706 0.4729 0.4736 0.4565

Lukasiewicz GFAM 0.5298 0.4944 0.4932 0.5061 0.6200 0.7013
FAM of Junbo 0.1132 0.1690 0.2440 0.1878 0.2419 0.3355

max-min FAM with threshold 0.1132 0.1690 0.2440 0.1878 0.2419 0.3355
Lukasiewicz FLBAM 0.3512 0.3667 0.3827 0.3932 0.4254 0.4574

Gödel FLBAM 0.2954 0.3156 0.3277 0.2994 0.3111 0.4982

Table 32.1: Normalized error produced by the FAM models whenthe patternsr1, . . . , r6 of Figure
32.2 are presented as input.

models are computed as follows forη = 1, . . . , 6:

E(rη) =
‖x1 − [(W ◦T rη) ∨ θ] ‖

‖x1‖
. (32.47)

32.8.2 Application of the Lukasiewicz IFAM in Prediction

Fuzzy associative memories can be used to implement mappings of fuzzy rules. In this case, a

set of rules in the form of human-like IF-THEN conditional statements are stored. In this subsec-

tion, we present an application of a certain FMAM model to a problem of forecasting time-series.

Specifically, we applied the Lukasiewicz IFAM to the problemof forecasting the average monthly

streamflow of a large hydroelectric plant called Furnas, that is located in southeastern Brazil. This

problem was previously discussed in [39, 40, 72].

First, the seasonality of the monthly streamflow suggests the use of 12 different predictor mod-

els, one for each month of the year. Letsξ, for ξ = 1, . . . , q, be samples of a seasonal streamflow

time series. The goal is to estimate the value ofsγ from a subsequence of(s1, s2, . . . , sγ−1). Here,
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we employ subsequences that correspond to a vector of the form

pγ = (sγ−h, . . . , sγ−1)
T , (32.48)

whereh ∈ {1, 2, . . . , γ − 1}. In this experiment, our IFAM based model only uses a fixed number

of three antecedents. For example, the values of January, February, and March were taken into

account to predict the streamflow of April.

The uncertainty that is inherent in hydrological data suggests the use of fuzzy sets to model the

streamflow samples. Forξ < γ, a fuzzification ofpξ andsξ using Gaussian membership functions

yields fuzzy setsxξ : U → [0, 1] andyξ : V → [0, 1], respectively, whereU andV represent finite

universes of discourse. A subsetS of the resulting input-output pairs{(xξ,yξ), ξ < q} is implicitly

stored in the Lukasiewicz IFAM (we only construct the parts of the weight matrix that are actually

used in the recall phase) [72]. We employed thesubtractive clustering methodto determine the set

S [13]. Feeding the patternxγ into the IFAM model, we retrieve the corresponding output pattern

yγ. For computational reasons,xγ is modeled as a singleton onU . A defuzzification ofyγ using

the mean of maximum yieldssγ [72].

Figure 32.4 shows the forecasted streamflows estimated by the prediction model based on the

Lukasiewicz IFAM for the Furnas reservoir from 1991 to 1998.Table 32.2 compares the errors that

were generated by the IFAM model and several other models [40, 39]. In contrast to the IFAM-

based model, the MLP, NFN, and FPM-PRP models were initialized by optimizing the number

of the parameters for each monthly prediction. For example,the MLP considers4 antecedents

to predict the streamflow of January and3 antecedents to predict the streamflow for February.

Moreover, the FPM-PRP model also takes into account slope information which requires some

additional “fine tuning”. We experimentally determined a variable number of parameters (including

slopes) for the IFAM model such that MSE =0.88 × 105, MAE = 157, and MPE =15.
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Figure 32.4: The streamflow prediction for the Furnas reservoir from 1991 to 1998. The continuous
line corresponds to the actual values and the dashed line corresponds to the predicted values.

32.9 Conclusion and Suggestions for Further Research: Fuzzy

and Granular Morphological Associative Memories

This article describes the most widely known models of fuzzyassociative memory from the per-

spective of mathematical morphology. We showed that most FAM models compute an elementary

operation of mathematical morphology at each node. Therefore, these models belong to the class

of fuzzy morphological associative memories. Although a general theory of FMAMs has yet to

be developed, a number of useful theoretical results have already been proven for a large subclass

of FMAMs called implicative fuzzy associative memories [71]. In addition, certain FMAM mod-

els such as the Lukasiewicz IFAM have outperformed other FAMmodels in applications as fuzzy

rule-based systems [67].

The mathematical basis for fuzzy (morphological) associative memories can be found in fuzzy
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MSE MAE MPE
Methods (×105) (m3/s) (%)

Lukasiewicz IFAM 1.42 226 22
PARMA 1.85 280 28

MLP 1.82 271 30
NFN 1.73 234 20

FPM-PRP 1.20 200 18

Table 32.2: Mean square, mean absolute, and mean relative percentage errors produced by the
prediction models.

mathematical morphology which relies on the fact that the set [0, 1]X represents a complete lattice

for any universeX [55, 43]. Recall that a fuzzy set represents a special case ofan information

granule, a concept that also encompasses intervals, rough sets, probability distributions, and fuzzy

interval numbers [78, 31]. Information granules have been used in a variety of applications [6] but

- to our knowledge - granular associative memories have yet to be formulated and investigated. We

believe that the complete lattice framework of mathematical morphology may prove to be useful for

developing a general theory and applications of FMAMs and granular (morphological) associative

memories.
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