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Better performance possible by exploiting structure
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— Implicitly
U-Lagrangian

VU-decomposition 4 digging tools

partly smooth functions
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Explicit Structure:
Opening the Black Box




A convex partly nonsmooth function

For x € IR™, given matrices A = 0, B > 0,
f(x) = VxTAx+x'Bx

has a unique minimizer at O.
On .4 (A) the function is not differentiable, and

the first term vanishes: f| 4 (4 looks smooth.
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This function has several interesting structures
Sum structure

Fx) = F1(x) & o (x) with 4 10T VXIAX
\ fr(x) =x'Bx

This defines a sum black box:
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This function has several interesting structures

Composite structure
)

c(x) = (x,x"Bx) € R™"!
€)=/ Ci ACIn+ Cap

for C smooth and h positively homogeneous

f(x) = (hoc)(x) with <

This defines a composite black box:

" Jacobian Dc(x) and

G(C) € oh(C)



This function has several interesting structures
Missing information structure

Suppose not all of A /B is known/accessible,

so that only are available for f



This function has several interesting structures
Missing information structure

Suppose not all of A /B is known/accessible,

so that only are available for f
This defines a noisy black box:




How to use explicit structure in an algorithm?

Black box information defines pieces that put
together create a of the function f.

The model 1s used to define iterates not too far
away from a “good” past iterate, X. At iteration i,
i+ 1

X minimizes (p(x)—Fz |X—7A<|2
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‘“pieces” chosen to make minimization simple (Qp)

for example, “piece”’=linearization:

- :1‘1 = f(x')

_ A giT(x—xi
4 — g1 — @(x) max{ +g'' (x x)}



: ]
X = argmin @ (x) + zp|x —3RJ?
X

for example, “piece”=linearization:
! =f(x")
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| J(x*, ', g") is the bundle %
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If x'*! gives sufficient decrease for f, it becomes the next R

Otherwise, it 1s declared a null point
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: ]
X = argmin @ (x) + 5 x — R
X

for example, “piece”=linearization:

i ft = f(x')

i — Xi)
different boxes

Some jargon

X is a serious point

(x',f', g') is the bundle 2
g

— @ (x) = max; {fi—i— giT(x—xi)}

|
different models

If x'*! gives sufficient decrease for f, it becomes the next R

Otherwise, it 1s declared a null point



Structured models for f

No structure{ ¢lx) = max; {fi " giT(X_Xi)}

= max; { (1} + 1) + (g} +g

©(x) =max; { ft +g¢ " (x —x')
Sum structure é et .




Structured models for f

No structure{ ©(x) = max; {fi i giT(X_Xi)}

— max; {(f% +f5)+ (g5 +g5) " (x—xY)

Sum structure

@ (x) = max; {f} +9%T(x—xi)} Larger
—I—maxi{

i+g5T—x ) OO
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Inexact models for

Missing structureﬂ< @(x) = max; {fi +g T (x—xY) }




Inexact models for

Missing structureﬂ< @ (x) = max; {fi +g T (x—xY) }

excessive noise is attenuated via



Stochastic Programming Applications

Mid-term planning for power generation
2
lce x 83 -
="
60

Scenario tree with 50,000 nodes
Nuclear LPs with 100,000 variables and 300,000 constraints

Primal

min fi{x)
r e R

Dual

j'"unit subproblem



Stochastic Programming Applications

Mid-term planning for power generation

b8 8
4 and gy
~

{ min fix)

r e R

Dual

i'"unit subproblem

60

Skips Nuclear LPs (alternating) = noisy black box

25% less CPU time than exact bundle, same accuracy

Primal



Stochastic Programming Applications

2-stage stochastic linear programs

1hL—h'-ELﬁ>
o)
gle) & e x)

L-shaped decomposition into N scenarios

minc' r+Q{x)

re X

Primal

Q1(x)

Qa(x)

)
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i'" secenario subproblem

Znd-stage



Stochastic Programming Applications

2-stage stochastic linear programs

XX

th—hLilH> Qa(x)
@X and gy XX

Skips 80% LPs solution = noisy black box

mine¢' 4+ Q(x)

re X

Primal

©
=)
3

4 times faster than L-shaped, same accuracy

i'" scenario subproblem

Znd-stage



Combinatorial Optimization Applications

Exponential number of hard constraints

price x >

Jlx) and g(z)

0-1

Dual

Lagrangian Relaxation

Lagrangian subprob.

Primal



Combinatorial Optimization Applications

Exponential number of hard constraints

Dynamic Bundle
price x >

::fx and 9% | constraint
Management

(maximum violation)

i
fomank

Lagrangian
Primal

‘

Dual

Like “Relax-and-cut”

with increased stability



Extracting
Implicit Structure




VU Algorithm
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VU Algorithm

Recall that f| 44 is nice:

bundle QP Newton-move

\% 77 U

il Bundle QP identifies the “ridge” of nonsmoothness

Solve a 2nd QP to create a model of V using 0@




VU Algorithm: superlinear “serious” subsequence

Accuracy

Y
= 1
m

-10
10

-15
10

VU bundle
Comp bundle
BB bundle

BFGS

| |
100 150 200 2450 200
number of black box calls



Across borders
Constrained problems

minf(x) s.t. c(x) <0

¢ models the Improvement Function

m)?x{f(x) —f(R), [c(x)]}

(changes with each serious point X)



Across borders

Nonconvex problems

¢ models the Local Convexification

1
f(x)+z x —R[?

(changes with each serious point X)



Across borders

Combinations:

VU

Constrained

Structured

Noisyl/lnexact Nonconvex
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