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NSO Algorithms
For a convex nonsmooth function, solving

minf(x)

with a black box method
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g(x) ∈ ∂f(x)
is doomed to slow convergence speed.
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g(x) ∈ ∂f(x)
is doomed to slow convergence speed.
Better performance possible by exploiting structure
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as a composition
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– Implicitly

U-Lagrangian

VU-decomposition

partly smooth functions

 digging tools



Explicit Structure:

Opening the Black Box



A convex partly nonsmooth function

For x ∈ IRn, given matrices A� 0, B� 0,
f(x) =

√
x>Ax+x>Bx

has a unique minimizer at 0.
On N (A) the function is not differentiable, and
the first term vanishes: f|N (A) looks smooth.

R(A) N (A)



This function has several interesting structures
If no structure at all
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This function has several interesting structures
Sum structure
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This function has several interesting structures
Sum structure

f(x) = f1(x)+ f2(x) with

 f1(x) =
√
x>Ax

f2(x) = x
>Bx

This defines a sum black box:

x

f1(x), f2(x)

gj(x) ∈ ∂fj(x)j=1,2



This function has several interesting structures
Composite structure

f(x)= (h◦c)(x) with

 c(x) =
(
x,x>Bx

)
∈ IRn+1

h(C) =
√
C>1:nAC1:n+Cn+1

for C smooth and h positively homogeneous

This defines a composite black box: aeriou



This function has several interesting structures
Composite structure

f(x)= (h◦c)(x) with

 c(x) =
(
x,x>Bx

)
∈ IRn+1

h(C) =
√
C>1:nAC1:n+Cn+1

for C smooth and h positively homogeneous

This defines a composite black box:

x

C := c(x) and h(C)

Jacobian Dc(x) and

G(C) ∈ ∂h(C)



This function has several interesting structures
Missing information structure

Suppose not all of A/B is known/accessible,

so that only estimates are available for f



This function has several interesting structures
Missing information structure

Suppose not all of A/B is known/accessible,

so that only estimates are available for f

This defines a noisy black box:

x

fx ≈ f(x)

gx ≈ g(x) ∈ ∂f(x)



How to use explicit structure in an algorithm?

Black box information defines pieces that put
together create a model ϕ of the function f.

The model is used to define iterates not too far
away from a “good” past iterate, x̂. At iteration i,

xi+1 minimizes ϕ(x)+
1

2
µ|x− x̂|2

“pieces” chosen to make minimization simple (QP)

aeriou
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If xi+1 gives sufficient decrease for f, it becomes the next x̂

Otherwise, it is declared a null point
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xi+1 = argmin
x
ϕ(x)+

1

2
µ|x− x̂|2

for example, “piece”=linearization:

xi
fi = f(xi)

gi = g(xi)
=⇒ϕ(x) = maxi

{
fi+gi>(x−xi)

}
xdifferent boxes

Some jargon different models
x̂ is a serious point⋃
i

(xi, fi,gi) is the bundle B

If xi+1 gives sufficient decrease for f, it becomes the next x̂

Otherwise, it is declared a null point



Structured models for f

No structure
ϕ(x) = maxi

{
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{
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Sum structure
ϕ(x) = maxi

{
fi1+g

i
1
>(x−xi)

}
+maxi

{
fi2+g

i
2
>(x−xi)

} Larger

QP



Structured models for f

Composite structure ϕ(x) = maxi
{
Gi>

(
c(x̂)+Dc(x̂)(x− x̂)

)}
≈h(c(x̂)+Dc(x̂)(x− x̂))



Structured models for f

Composite structure ϕ(x) = maxi
{
Gi>

(
c(x̂)+Dc(x̂)(x− x̂)

)}
≈h(c(x̂)+Dc(x̂)(x− x̂))

Good

near x̂



Inexact models for f

Missing structure ϕ(x) = maxi
{
fi+gi>(x−xi)

}



Inexact models for f

Missing structure ϕ(x) = maxi
{
fi+gi>(x−xi)

}

ϕ may

cut f

excessive noise is attenuated via µ



Stochastic Programming Applications

Mid-term planning for power generation

Scenario tree with 50,000 nodes

Nuclear LPs with 100,000 variables and 300,000 constraints



Stochastic Programming Applications

Mid-term planning for power generation

Incremental Bundle

fx and gx

Skips Nuclear LPs (alternating) ≡ noisy black box

25% less CPU time than exact bundle, same accuracy



Stochastic Programming Applications

2-stage stochastic linear programs

L-shaped decomposition into N scenarios



Stochastic Programming Applications

2-stage stochastic linear programs

Inexact Bundle

Qx and gx

Skips 80% LPs solution ≡ noisy black box

4 times faster than L-shaped, same accuracy



Combinatorial Optimization Applications

Exponential number of hard constraints

Lagrangian Relaxation



Combinatorial Optimization Applications

Exponential number of hard constraints

Dynamic Bundle

fx and gx

Like “Relax-and-cut”

with increased stability



Extracting

Implicit Structure



VU Algorithm
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VU Algorithm

Recall that f|N (A) is nice:

R(A) N (A)

bundle QP Newton-move

V ?? U

Answer: Bundle QP identifies the “ridge” of nonsmoothness

Solve a 2nd QP to create a model of V using ∂ϕ



VU Algorithm: superlinear “serious” subsequence



Across borders

Constrained problems

minf(x) s.t. c(x)≤ 0

ϕ models the Improvement Function

max
x

{f(x)− f(x̂), [c(x)]+}

(changes with each serious point x̂)



Across borders

Nonconvex problems

ϕ models the Local Convexification

f(x)+
1

2
η|x− x̂|2

(changes with each serious point x̂)



Across borders

Combinations:
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