Nonsmooth Optimization:

Thinking Outside of THE BLACK BOX

Claudia Sagastizábal
- Eletrobas
Cepel
\title{ mailto:sagastiz@impa.br, http://www.impa.br/~sagastiz

SIAM Conference on Optimization, Darmstadt, May 18th 2011 }

With thanks to:
AFOSR Grant FA9550-08-1-0370, NSF Grant DMS 0707205, and CNPq \& Faperj from Brazil

NSO Algorithms

For a convex nonsmooth function, solving

$\min f(x)$

with a black box method

is doomed to slow convergence speed.

NSO Algorithms

For a convex nonsmooth function, solving

$\min f(x)$

with a black box method

is doomed to slow convergence speed.
Better performance possible by exploiting structure

How does structure appear?

- Explicitly
- Implicitly

How does structure appear?

- Explicitly
as a sum
as a composition
- Implicitly

How does structure appear?

- Explicitly
as a sum
as a composition $\} \neq$ black boxes
- Implicitly

How does structure appear?

- Explicitly
as a sum
as a composition $\} \neq$ black boxes
- Implicitly

U-Lagrangian
VU-decomposition
digging tools partly smooth functions

Explicit Structure: Opening the Black Box

A convex partly nonsmooth function

For $x \in \mathbb{R}^{n}$, given matrices $A \succeq 0, B \succ 0$,

$$
f(x)=\sqrt{x^{\top} A x}+x^{\top} B x
$$

has a unique minimizer at 0 .
On $\mathscr{N}(\mathcal{A})$ the function is not differentiable, and the first term vanishes: $\left.f\right|_{\mathscr{N}(A)}$ looks smooth.

This function has several interesting structures If no structure at all

$$
f(x)=\sqrt{x^{\top} A x}+x^{\top} B x
$$

This function has several interesting structures If no structure at all

$$
f(x)=\sqrt{x^{\top} A x}+x^{\top} B x
$$

This defines the black box:

This function has several interesting structures Sum structure

$$
f(x)=f_{1}(x)+f_{2}(x) \text { with }\left\{\begin{array}{l}
f_{1}(x)=\sqrt{x^{\top} A x} \\
f_{2}(x)=x^{\top} B x
\end{array}\right.
$$

This function has several interesting structures Sum structure

$$
f(x)=f_{1}(x)+f_{2}(x) \text { with }\left\{\begin{array}{l}
f_{1}(x)=\sqrt{x^{\top} A x} \\
f_{2}(x)=x^{\top} B x
\end{array}\right.
$$

This defines a sum black box:

This function has several interesting structures

 Composite structure$f(x)=(h \circ c)(x)$ with $\left\{\begin{array}{l}c(x)=\left(x, x^{\top} B x\right) \in \mathbb{R}^{n+1} \\ h(C)=\sqrt{C_{1: n}^{\top} A C_{1: n}}+C_{n+1}\end{array}\right.$
for C smooth and h positively homogeneous

This function has several interesting structures

 Composite structure$f(x)=(h \circ c)(x)$ with $\left\{\begin{array}{l}c(x)=\left(x, x^{\top} B x\right) \in \mathbb{R}^{n+1} \\ h(C)=\sqrt{C_{1: n}^{\top} A C_{1: n}}+C_{n+1}\end{array}\right.$
for C smooth and h positively homogeneous
This defines a composite black box:

$$
G(C) \in \partial h(C)
$$

This function has several interesting structures Missing information structure

Suppose not all of A / B is known/accessible,
so that only estimates are available for f

This function has several interesting structures Missing information structure

Suppose not all of A / B is known/accessible,
so that only estimates are available for f
This defines a noisy black box:

How to use explicit structure in an algorithm?
Black box information defines pieces that put together create a model φ of the function f.

The model is used to define iterates not too far away from a "good" past iterate, $\hat{\chi}$. At iteration i,
x^{i+1} minimizes $\varphi(x)+\frac{1}{2} \mu|x-\hat{x}|^{2}$

How to use explicit structure in an algorithm?

Black box information defines pieces that put together create a model φ of the function f.

The model is used to define iterates not too far away from a "good" past iterate, $\widehat{\chi}$. At iteration i,

$$
x^{i+1} \text { minimizes } \varphi(x)+\frac{1}{2} \mu|x-\hat{x}|^{2}
$$

"pieces" chosen to make minimization simple (QP)
for example, "piece"=linearization:

$$
x^{i} \longrightarrow \underset{g^{i}=g\left(x^{i}\right)}{f^{i}=f\left(x^{i}\right)} \quad \Longrightarrow \quad f^{f^{i}+g^{i \top}\left(x-x^{i}\right)}
$$

How to use explicit structure in an algorithm?

Black box information defines pieces that put together create a model φ of the function f.

The model is used to define iterates not too far away from a "good" past iterate, $\hat{\chi}$. At iteration i,

$$
x^{i+1} \text { minimizes } \varphi(x)+\frac{1}{2} \mu|x-\hat{x}|^{2}
$$

"pieces" chosen to make minimization simple (QP)
for example, "piece"=linearization:

$$
x^{i} \longrightarrow f^{f^{i}}=f\left(x^{i}\right) \quad \Longrightarrow \varphi(x)=\max _{i}\left\{f^{i}+g^{i \top}\left(x-x^{i}\right)\right\}
$$

$$
x^{i+1}=\arg \min _{x} \varphi(x)+\frac{1}{2} \mu|x-\hat{x}|^{2}
$$

for example, "piece"=linearization:

$$
x^{i} \longrightarrow<\begin{aligned}
& f^{i}=f\left(x^{i}\right) \\
& g^{i}=g\left(x^{i}\right)
\end{aligned} \Longrightarrow \varphi(x)=\max _{i}\left\{f^{i}+g^{i \top}\left(x-x^{i}\right)\right\}
$$

Some jargon

\hat{x} is a serious point
$\bigcup\left(x^{i}, f^{i}, g^{i}\right)$ is the bundle \mathscr{B}
i
If $\chi^{\mathfrak{i}+1}$ gives sufficient decrease for f , it becomes the next $\hat{\chi}$
Otherwise, it is declared a null point

$$
x^{i+1}=\arg \min _{x} \varphi(x)+\frac{1}{2} \mu|x-\hat{x}|^{2}
$$

for example, "piece"=linearization:

$$
x^{i} \longrightarrow<\begin{aligned}
& f^{i}=f\left(x^{i}\right) \\
& g^{i}=g\left(x^{i}\right)
\end{aligned} \Longrightarrow \varphi(x)=\max _{i}\left\{f^{i}+g^{i \top}\left(x-x^{i}\right)\right\}
$$

Some jargon

\hat{x} is a serious point
$\bigcup\left(x^{i}, f^{i}, g^{i}\right)$ is the bundle \mathscr{B}
i
If x^{i+1} gives sufficient decrease for f, it becomes the next $\hat{\chi}$
Otherwise, it is declared a null point

$$
x^{i+1}=\arg \min _{x} \varphi(x)+\frac{1}{2} \mu|x-\hat{x}|^{2}
$$

for example, "piece"=linearization:

$$
\begin{aligned}
& \left.x^{i} \longrightarrow<\begin{array}{l}
f^{i}=f\left(x^{i}\right) \\
g^{i}=g\left(x^{i}\right)
\end{array}\right] \Longrightarrow \varphi(x)=\max _{i}\left\{f^{i}+g^{i \top}\left(x-x^{i}\right)\right\} \\
& \text { different boxes }
\end{aligned}
$$

\hat{x} is a serious point
$\bigcup_{i}\left(x^{i}, f^{i}, g^{i}\right)$ is the bundle \mathscr{B}
If χ^{i+1} gives sufficient decrease for f , it becomes the next $\hat{\chi}$
Otherwise, it is declared a null point

Structured models for f

No structure $\longrightarrow \varphi(x)=\max _{i}\left\{f^{i}+g^{i \top}\left(x-x^{i}\right)\right\}$ $=\max _{i}\left\{\left(f_{1}^{i}+f_{2}^{i}\right)+\left(g_{1}^{i}+g_{2}^{i}\right)^{\top}\left(x-x^{i}\right)\right\}$
Sum structure $\longrightarrow+<\varphi(x)=\max _{i}\left\{f_{1}^{i}+g_{1}^{i \top}\left(x-x^{i}\right)\right\}$

$$
+\max _{i}\left\{f_{2}^{i}+g_{2}^{i}\left(x-x^{i}\right)\right\}
$$

Structured models for f

No structure $\longrightarrow \varphi(x)=\max _{i}\left\{f^{i}+g^{i \top}\left(x-x^{i}\right)\right\}$ $=\max _{i}\left\{\left(f_{1}^{i}+f_{2}^{i}\right)+\left(g_{1}^{i}+g_{2}^{i}\right)^{\top}\left(x-x^{i}\right)\right\}$
Sum structure $\longrightarrow+<_{2} \varphi(x)=\max _{i}\left\{f_{1}^{i}+g_{1}^{i \top}\left(x-x^{i}\right)\right\} \quad$ Larger

$$
+\max _{i}\left\{f_{2}^{i}+g_{2}^{i}{ }^{\top}\left(x-x^{i}\right)\right\} \quad \text { QP }
$$

Structured models for f

Composite structure $\rightarrow 0<\varphi(x)=\max _{i}\left\{G^{i \top}(\mathfrak{c}(\hat{x})+\operatorname{Dc}(\hat{x})(x-\hat{x}))\right\}$

Structured models for f

Composite structure $\longrightarrow 0<\varphi(x)=\max _{i}\left\{G^{i \top}(\mathcal{c}(\hat{x})+\operatorname{Dc}(\hat{x})(x-\hat{x}))\right\}$

Inexact models for f

Missing structure $\longrightarrow<\varphi(x)=\max _{i}\left\{f^{i}+g^{i \top}\left(x-x^{i}\right)\right\}$

Inexact models for f

Missing structure \longrightarrow Q $\varphi(x)=\max _{i}\left\{f^{i}+g^{i \top}\left(x-x^{i}\right)\right\}$

excessive noise is attenuated via μ

Stochastic Programming Applications

Mid-term planning for power generation

Scenario tree with 50,000 nodes
Nuclear LPs with 100,000 variables and 300,000 constraints

Stochastic Programming Applications

Mid-term planning for power generation

Incremental Bundle

Skips Nuclear LPs (alternating) \equiv noisy black box
25% less CPU time than exact bundle, same accuracy

Stochastic Programming Applications

2-stage stochastic linear programs

Stochastic Programming Applications

2-stage stochastic linear programs

Inexact Bundle

Skips 80% LPs solution \equiv noisy black box
4 times faster than L-shaped, same accuracy

Combinatorial Optimization Applications

Exponential number of hard constraints

Combinatorial Optimization Applications

Exponential number of hard constraints
Dynamic Bundle

Like "Relax-and-cut"
with increased stability

Extracting

Implicit Structure

VU Algorithm

Recall that $\left.f\right|_{\mathscr{N}(A)}$ is nice:

v

\mathbf{U}

VU Algorithm

Recall that $\left.f\right|_{\mathscr{N}(A)}$ is nice:

bundle QP

Newton-move

VU Algorithm

Recall that $\left.f\right|_{\mathscr{N}(A)}$ is nice:

bundle QP
V ??

Newton-move
U

VU Algorithm

Recall that $\left.f\right|_{\mathscr{N}(A)}$ is nice:

bundle QP

Newton-move
??

U

Solve a 2nd QP to create a model of V using $\partial \varphi$

VU Algorithm: superlinear "serious" subsequence

Across borders

Constrained problems

$$
\min f(x) \quad \text { s.t. } c(x) \leq 0
$$

φ models the Improvement Function

$$
\max _{x}\left\{f(x)-f(\hat{x}),[c(x)]^{+}\right\}
$$

(changes with each serious point $\widehat{\chi}$)

Across borders

Nonconvex problems
φ models the Local Convexification

$$
f(x)+\frac{1}{2} \eta|x-\hat{x}|^{2}
$$

(changes with each serious point $\widehat{\chi}$)

Across borders
Combinations:

Closing credits: co-authors

- Robert Mifflin
- Alexandre Belloni
- Aris Daniilidis
- Grégory Emiel
- Warren Hare
- Elizabeth Karas (with A. Ribeiro)
- Claude Lemaréchal (with F. Oustry)
- Welington Oliveira (with S. Scheimberg)
- Mikhail Solodov
- Wim Van Ackooij (with R. Henrion and R. Zorgati)

