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Specific context: energy problems

Optimization helps in decision making:

Generation and dispatch problems: how to operate -daily,

weekly, or yearly- a mix of power plants or an individual plant, taking

into account specific technological characteristics

Transmission problems: how to deliver power through the electric

network in a reliable manner

Expansion problems: how to decide which plants are to be built in a

five, ten, or thirty years future, as well as their location and network

connections.

Competitive market problems: how to understand competitive

interaction between several agents (GenCo, DisCo, etc) seeking to

maximize profit



Why bother in decomposing?

All the models exhibit some intrinsic separable structure:

– different technologies define feasible sets with different
features

– operating costs are often given by sums

– a large system has different geographical regions

– some decisions can be taken along time steps

– uncertainty is often represented by sequential stochastic
processes (time series)
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All the models exhibit some intrinsic separable structure:

– different technologies define feasible sets with different
features

– operating costs are often given by sums
– a large system has different geographical regions
– some decisions can be taken along time steps
– uncertainty is often represented by sequential stochastic

processes (time series)

and, without decomposing, the problem cannot be solved
in the desired time frame, or with the desired accuracy

Algorithms need to be fast and good
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Specific features of energy systems

For a given power system, perform the optimal management of the
resources, given that

– Power can be generated by different technologies

– There is a network, to be operated in a reliable manner

– Energy cannot be stored, but water can

– Uncertain hydro- and wind power

Network and system can be large



Network can have continental dimensions



Huge hydrothermal system
Hydro dominated: 83%

102 hydro, 36 thermal (> 200 total)

Multiple owners p/basin

Water travel times

Management of an asset

with unknown value,

the water

Output with high socio-economic impact: electricity prices



DIVIDING TO CONQUER:

Lagrange, Benders,

Bundle,

and friends

(a few representative examples of the power of decomposition)
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Energy problems have intrinsic structure, made explicit by
some decomposition method

by Lagrangian relaxation

by Benders decomposition

 6= oracles

Principle: if a problem is difficult to solve directly,
solve instead a sequence of easier subproblems.

Separate subproblems
allow for fast oracle calculations:
f/g defined as the sum of N terms



Let’s start with Lagrange: energy management
– pj= (pj1, . . . ,p

j
T ) j-th power plant generation

– pj ∈P j operational constraints
– Cj(pj) generation/operation cost
–
∑
jp
j = d= (d1, . . . ,dT ) demand satisfaction

GOAL:

(primal)
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(primal)



min
∑
j

Cj(pj)

p ∈P∑
j

gj(pj) = d ← x

exhibits separable structure after dualization

Key observation: minp and
∑
j can be exchanged

(dual) max
x ( −〈x,d〉 −

∑
j

fj(x))
−fj(x) :=

{
min Cj(pj)−

〈
x,gj(pj)

〉
pj ∈Pj



Energy management problems
Typically, evaluating

−fj(x) :=

 min Cj(pj)−
〈
x,gj(pj)
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pj ∈P j

corresponds to

local subproblems, related to one power plant, requiring
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Energy management problems
Typically, evaluating

−fj(x) :=

 min Cj(pj)−
〈
x,gj(pj)

〉
pj ∈P j

corresponds to

local subproblems, related to one power plant, requiring
sometimes heavy calculations

One subgradient for free: gj(pj(x))once a solution pj(x) is available



Often, most of the CPU time is spent in the oracle
calculations. For mid-term power generation planning:
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Scenario tree with 50,000 nodes

Nuclear subproblems are LPs with 100,000 variables
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Can we skip/solve approximately

nuclear subproblems,

consuming LESS running time without losing accuracy?
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Benders decomposition example

Useful for decomposing expansion problems modelled as 2 stage
programs:

p
j
t ∈Pj ⇐⇒ p

j
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p
j
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]
for xjt ∈ [0,1]

Constraint active only if the j-th power plant is built at time t.
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Benders decomposition example
Useful for decomposing expansion problems modelled as 2 stage
programs:

p
j
t ∈Pj ⇐⇒ p

j
t ∈
[
p
j
minx

j
t,p

j
maxx

j
t

]
for xjt ∈ {0,1}

Constraint active only if the j-th power plant is built at time t.

+ uncertainty, for example represented by a tree with N scenarios

SP2

min
(x,p)

c>x+C(p)

x ∈X ,p ∈P
Tx+Wp= h

 ≡



min
x
c>x+E[Q(x;ξ)]

x ∈X

for Q(x;ξ) =


min
p∈P

C(p)

Wp= h−Tx

Once again, one subgradient for free for f(x) = c>x+Q(x)

where Q(x) = E[Q(x;ξ)] is computed as the sum of N terms



Again, most of the CPU time is spent in the oracle
calculations.
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Can we skip/solve approximately

some ξi = (qi,Ti,hi) instances,

consuming LESS running time without losing accuracy?
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with a NSO method capable of handling
oracles with on-demand accuracy
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Can we adapt the oracle response to the solver needs? YES!
with a NSO method capable of handling
oracles with on-demand accuracy created over
noisy black-boxes

x
fx ≈ f(x)

gx ≈ g(x) ∈ ∂f(x)
when we have the ability of computing fx/gx with
more or less accuracy



Oracle with on-demand accuracy

This is a noisy black box that gets additional input:

an error bound ε and a descent target γ such that

fx = f(x)−η(x)

gx ∈ ∂η(x)f(x)

 for all x, with η(x)≥ 0

η(x)≤ ε if x gave enough descent: fx ≤ γ
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Oracle with on-demand accuracy: versatility

fx = f(x)−η(x)

gx ∈ ∂η(x)f(x)

 for all x, with η(x)≥ 0

η(x)≤ ε if x gave enough descent: fx ≤ γ

We control both ε and γ, which can vary with x:
εx = 0 and γx =+∞: an exact oracle
εx→ 0 and γx =+∞: an asymptotically exact oracle
[ZakPhilpRyan01, Fabian00,EmielSagastiz10]

εx = 0 with finite γx: the partly inexact oracle [Kiw09]

εx > 0 unknown, but bounded, with γx =+∞: the
inexact oracle [Hint01,Sol03,Kiw06,OlivSagastizScheim11]

NEW varepsilonto 0 and gammax<+infty: a partly
asymptotically exact oracle [OlivSagastiz12]
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fx = f(x)−η(x)

gx ∈ ∂η(x)f(x)

 for all x, with η(x)≥ 0

η(x)≤ ε if x gave enough descent: fx ≤ γ

We control both ε and γ, which can vary with x:
εx = 0 and γx =+∞: an exact oracle
εx→ 0 and γx =+∞: an asymptotically exact oracle
[ZakPhilpRyan01, Fabian00,EmielSagastiz10]

εx = 0 with finite γx: the partly inexact oracle [Kiw09]

εx > 0 unknown, but bounded, with γx =+∞: the
inexact oracle [Hint01,Sol03,Kiw06,OlivSagastizScheim11]

NEW εx→ 0 and γx <+∞: a partly asymptotically exact
oracle [OlivSagastiz12]
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What does this mean

for the NSO problem?

Oracle information defines pieces
f(x)+g(x)>(·−x)

that put together create a model ϕ of f, used to define iterates.

now linearizations may be inexact:

εj

xj

γj

fj = fxj

gj = gxj
=⇒ϕi(x) = maxj≤i

{
fj+gj>(x−xj)

}

eee eee eeeee eeeeee eeeee eee

If too wrong:
noise needs to be attenuated

by exploiting the on-demand accuracy
feature of the oracle (joint work with W. Oliveira)



A glimpse of numerical results: Lagrange
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for mid-term power planning problems (French mix)
25% less CPU time, same accuracy in the dual variable



A glimpse of numerical results: Benders
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For a large battery of 2 SLP’s
versatility pays off:

Solver % CPU time reduction

exact- cutting-Planes (L-shaped) 0

exact-` [LNN95,Kiw95] 30

`-Asymp. exact [Fab00] 53

`-Partly asymp. exact 72

asymptotically exact

oracle calculations

at serious steps only

reduce substantially

the computational effort



DIVIDING TO CONQUER:
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Bundle,

and friends:
the market

(a few representative examples of the power of decomposition)



Context

Until the 90’s: a regulated monopoly

Rationale: 1 big firm brings economies of scale

Criticism: lack of incentive to innovate and to keep total

capital/operations cost at its minimum

Note: Large transmission network connecting multiple G owners makes
competition possible



Context

Restructuration: G competitive +TD regulated monopoly
Rationale: fierce competition of G provides higher incentive to
minimize costs and, arguably, innovation
Criticism: it is not clear how fierce competition is· · ·

This makes important to understand competitive interaction between
several G firms seeking to maximize profit, taking into account unique
aspects of electricity: not storable, yet supply needs to meet demand,
energy needs to be transmitted from G plants to consumers, etc



A game-theoretical model
– pj= (pj1, . . . ,p

j
T ) j-th power plant generation

– pj ∈Pj operational constraints

– Cj(pj) generation/operation cost

revenue maximization

demand satisfaction

demand satisfaction

GOAL:

– G’s take unilateral decisions, behave competitively, and want to recover
fixed costs in the long term (including capital remuneration).

– A representative of the consumers, the ISO, focuses on the benefits of
consumption, seeking a price that matches supply and demand,
“keeping prices low”.
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A game-theoretical model
– pj= (pj1, . . . ,p

j
T ) j-th power plant generation

– pj ∈P j operational constraints

– Cj(pj) generation/operation cost

– revenue maximization: Rj(π,pj) = π>pj−Cj(pj)
for equilibrium price π= π(p).

– market clearing/demand satisfaction h(p) = h(pj,p−j)≤ 0

GOAL:

– G’s take unilateral decisions, behave competitively, and want to recover
fixed costs in the long term (including capital remuneration).

– A representative of the consumers, the ISO, focuses on the benefits of
consumption, seeking a price that matches supply and demand,
“keeping prices low”.



A Nash Game with a shared constraint as a VI

To have solutions of

find p̄ ∈P : h(p̄)≤ 0 and max
pj∈Pj

Rj(π(p̄), p̄j) for all j,

look for variational equilibria, solving instead the VI:

find p̄ ∈P ∩ {h(p)≤ 0} :
〈
F(p̄),(p− p̄)

〉
≥ 0 for all feasible p
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VI Decomposition

Finding
〈
F(p̄),(p− p̄)

〉
≥ 0 for p ∈P ∩ {h(p)≤ 0} for

F(p) = (∂pjRj(π(pj,p−j),pj))Nj=1 OKXX

P =
∏
jP j OK!

p feasible =⇒ h(pj,p−j)≤ 0 OKXX

means finding a primal-dual sequence (pk,xk) s.t.〈
F(pk)+h ′(pk)>xk,p−pk

〉
≥ 0 for all p ∈P (SOLkP )

0≤−h(pk)⊥ xk+1 ≥ 0 (FEASkh)

à la Dantzig-Wolfea

ainitiated by [ChFull03]
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VI Decomposition has not “conquered” much!
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SOL VI operator is not separable:

F(p)+h ′(p)>x= (∂pjR
j(π(pj,p−j),pj))+h ′(π(pj,p−j))>x



Separability induced, via inexact (Jacobi) oracle

FEAS VI, over
h∩ conv{pi}
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SOL VI operator is not separable, approximated by
F(p)+h ′(p)>x≈(∂pjRj(π(pj, p̄−j),pj))+h ′(π(pj, p̄−j))>x

for p̄ the current iterate



Separability induced, via inexact (Jacobi) oracle

FEAS VI, over
h∩ conv{pi}
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Good numerical results, extending the applicability of solvers
like PATH

(joint work with J.P. Luna and M. Solodov)



Final remarks
– Energy problems are naturally challenging, some of them often need to

be solved fast, but with high precision

– Decomposition methods are good in such a context, provided accurate
solvers are employed for dealing with the “master” program

– Bundle methods able to handle on-demand accuracy oracles are
promising in this respect. However:

– Oracles with variable accuracy have an impact on primal variables,
in a manner that is not yet well understood

– Same for dual variables (progress is being done)

– Research needs to be done regarding sound parameter updating rules
(proximal/level) when the oracle is noisy.

– Can we expect a bundle method to identify VU subspaces for
asymptotically exact oracles?

– Can DW decomposition for VI’s be stabilized, à la bundle?


