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Abstract. Real-life optimization problems often depend on data subject to unknown
variations that can be due to imprecise measurements or to the stochastic nature of the
data itself. When decisions need to be taken with high precision, it is important to
employ methods that are reliable when subject to data variability. For complex problems
such as those arising in the energy sector, advanced nonsmooth optimization techniques
combined with Lagrangian decomposition provide a satisfactory answer to such concerns.
We review recent approaches, including those referred to as having on-demand accuracy,
for different Lagrangian functions. Throughout, the main concepts are illustrated by a
simple example on optimal power management.
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1. A Motivating Example

Consider the problem faced by a company owing two power plants, one thermal
and one hydraulic, when the manager needs to decide the generation plan for the
next day. To supply the requested demand of energy, decisions must be taken
every half hour in a manner that optimally combines the technological limitations
of each plant.

To assist the manager, an optimizer builds a model, successively addressing
several issues, listed below.

- Identification of a goal to be achieved, such as to “minimize the generation
cost”, or “maximize the revenue”, or “minimize the risk of having a deficit
of energy”; this involves optimization of a so-called objective function. No
matter what the chosen goal is, generation costs always enter into play and,
hence, have a strong impact in the decisions. Here arises a first difficulty
for the manager. For thermal plants, generation costs are easy to determine,
as they are related to burning some fuel (fossil, nuclear). But for hydro-
plants, assigning a cost to generation is less straightforward, because ‘fuel”
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is the stored water, which costs nothing. The manager employs a substitute
pricing the future lack of water as the cost of the thermal energy that would
be needed in the future if the reservoir happened to be depleted. Sound
mechanisms to give a meaning to the price of water require solving complex
stochastic optimization problems; see [19] and [22].

- Representation of the plants capacity and of physical laws describing how
each technology (thermal, nuclear, hydraulic) generates electricity; these are
examples requiring definitions of constraint functions.

- Satisfaction of demand constraint: every time we enter a dark room and
switch on the light, we expect electricity to be “waiting” there and the room
to be lit. This extremely crucial constraint is difficult to deal with, not only
because at planning time the exact amount of (future) demand is unknown,
but also because electricity cannot be stored (except for limited amounts),
so any extra production is just lost.

To write down a simplified mathematical formulation for this problem, consider
that the electricity demand d ∈ < is known, given as data. For thermal (hydraulic)
generation variables pT (pH) with respective generation costs and technological
constraint sets denoted by CT and PT (CH and PH), the manager solves the
optimization problem below:

v(d) :=

 min CT (pT ) + CH(pH)
s.t. pT ∈ PT , pH ∈ PH

pT + pH = d ,
(1)

where we denoted the optimal value v(d) to emphasize the dependence of the
output on the given demand. Since this data is an estimate, determining the
impact of demand variations is often a concern for the company. To quantify such
an impact, the manager can use Lagrangian relaxation. Specifically, associating a
multiplier x ∈ < to the demand constraint gives the Lagrangian

L(pT , pH , x) := CT (pT ) + CH(pH) + x(d− pT + pH) .

If (1) is a convex problem, by duality arguments,

min
pT ∈ PT

pH ∈ PH

max
x ∈ <

L(pT , pH , x) = max
x ∈ <

min
pT ∈ PT

pH ∈ PH

L(pT , pH , x)

(without convexity, the equality is replaced by “≥”.) The optimal value of the
rightmost problem, called dual to (1), equals v(d) and has the form

v(d) = max
x∈<

{
xd+

( min CT (pT )− xpT
s.t. pT ∈ PT

)
+
( min CH(pH)− xpH

s.t. pT ∈ PH

)}
. (2)

When seen as a function of d, and for each fixed dual variable x, the argument in
the maximum is the sum of a linear term (with slope x), and a constant term (the
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two minima over pT and pH). As a result, the function v(d) is convex piecewise
affine, and, by Danskin’s theorem [10, Ch.VI.4.4], any x̄ solving (2) satisfies

v(d′) ≥ v(d) + x̄(d′ − d) for all d′ ∈ < .

Since v(d) is the cost for the company to satisfy the given demand, this inequality
tells the manager that if demand was underestimated in, say, 1%, for the plants to
produce more than the scheduled amounts p̄T and p̄H , the company would have
to spend at least additional .01x̄d. Also, if the manager was to set the unit selling
price below x̄, the company would lose money.

Solving the dual problem (2) gives the manager the marginal cost x̄, which can
be used as a guide when setting the company selling prices. The interpretation of
Lagrange multipliers as marginal costs (or shadow prices in the parlance of Linear
Programming) has plenty of useful applications. Suppose now the company has
three power plants (2 thermal, one hydraulic) and needs to keep carbon emissions
below a threshold max, imposed by the government. This incorporates in (1) an
“environmental” constraint of the form

Pow2CO2(pT,1 + pT,2) ≤ max ,

where pT,i is the thermal generation of plant i = 1, 2 and Pow2CO2 is a scalar
converting thermal power into carbon emissions. In this case, the corresponding
optimal Lagrange multiplier gives an indication of the value of green certificates,
delivered by the government to the company as a compensation for respecting the
pollution limitations.

Our simple example (1) illustrates the importance of computing with high accu-
racy optimal dual variables: changing electricity prices in the cents has a tremen-
dous socio-economical impact. For simple problems, x̄ can be obtained directly
from solving (1). For more realistic problems, the direct method is not possible
and the dual approach (2), separating the optimization problem over PT from the
one over PH , is the only one applicable. The reason is that for realistic prob-
lems the sets PT and PH describe very different technologies, and no optimization
package can solve the problem directly (typically, PT uses 0-1 variables and PH is
described by nonconvex constraints). In (2), by contrast, the optimization problem
in variable pT is decoupled from the one in variable pH , and separate off-the-shelf
solvers can be employed for their respective solution. Of course, the price to pay
is that now there is one more optimization layer, the maximization over the dual
variable x.

The remainder of this work is organized as follows. In Section 2 we describe
typical problems arising in Energy Optimization. Section 3 presents the main
ingredients of nonsmooth optimization methods that can be used to maximize
the dual function in (2), including bundle methods [2]. Section 4 discusses when
the dual solution provides primal minimizers for Lagrangians different from the
classical one, used to derive (2). In Section 5, various approximations for those
Lagrangians are examined under the light of a recent variant of bundle methods,
able to deal with inexact oracle information.



4 C. Sagastizábal

Our notation is fairly standard. Throughout we use the Euclidean inner product
〈x, p〉 = x>p for two column vectors x and p, and denote the induced Euclidean
norm by ‖ · ‖. For a set S, its cardinality and convex hull are respectively denoted
by |S| and convS.

2. Some Energy Models

In a real-life setting, the optimal power management problem (1) involves several
power plants (thermal with fossil fuel, nuclear, aeolian, a set of hydro-plants along a
river, etc), with very different technological sets. Moreover, the joint management
of the power mix is done along certain time horizon, discretized in many time
steps. Because of interconnections between different electrical networks (of cities
in a country, or more generally, of countries in a region), electricity can be brought
from far away if there is need, or, reciprocally, excessive generation can be sent
somewhere else through the network. This flexibility makes it possible to combine
efficiently units having strict generation rules but low costs with more expensive
units that are able to produce electricity “as soon as required”. In a manner
similar, generation costs can be reduced by exchanging energy between regions
with different weather conditions or with shifted load peaks.

To fix the notation and setting we recall below the main features of Example 3.1
from [22]. Suppose the time horizon is composed of periods {1, . . . , T} and there
is a total of I units in the mix. If pti denotes the energy produced by the i-th unit
during the period t, and pi = (p1i , p

2
i , ..., p

T
i ) s the vector with the generation of

unit i for the whole horizon of time, the decision vector is p = (p1, . . . , pi, . . . , pI).
The generation cost is usually separable by units

C(p) =

I∑
i=1

Ci(pi)

for some individual convex cost functions Ci, which may be further separable by
time steps: Ci(pi) =

∑T
t=1 C

t
i (p

t
i).

As for the constraints, they typically are of dynamic or of static nature. The
set of dynamic constraints D includes all the operating rules for each unit, and
often couples variables of the same unit along time steps:

D =

I∏
i=1

Pi with pi ∈ Pi for i = 1 , . . . , , I .

Describing the dynamic feasible sets Pi is often a complex matter, that may involve
nonlinear relations and 0-1 variables, to represent the technological constraints of
thermal, aeolian, nuclear, hydro units.

Static constraints refer to relations like satisfaction of demand or pollution
limits, that couple the generation of all the plants at each time step:

S =

T∏
t=1

St with (pt1, p
t
2, . . . , p

t
I) ∈ St for t = 1 , . . . , , T .
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These are usually affine relations, such as

I∑
i=1

pti = dt , for t = 1, . . . , T ,

where dt is the demand at time t. For some models, demand is uncertain and
depends on some random variable, and in this case both the static feasible sets
and generation variables vary with uncertainty.

Similar affine static constraints can be written to include shortages and energy
interchanges between subsystems of the mix. Transmission constraints (bounding
the capacity of each arc in the network), and security constraints (demand is
satisfied even after the outage of one line) are also static constraints. With a
DC power flow model, such constraints are affine, but also numerous, because the
network has several hundreds of nodes. When setting security constraints, there
will be several hundred thousand linear constraints at each time step.

Reserve constraints, which are natural inequalities, are often written as equali-
ties by introducing slack variables; these variables can be interpreted as the genera-
tion of a fictitious unit, possibly with nonzero operating cost. To ensure feasibility,
demand constraints can also incorporate slack variables representing unsupplied
energy, usually penalized with a high deficit cost.

A generic formulation for the optimal power management problem is:{
min
p

C(p)

s.t. p ∈ S ∩D .
(3)

Lagrangian relaxation is a convenient tool for this type of problems. Suppose only
demand satisfaction defines the static set. Then, the multiplier

x = (x1, . . . , xt, . . . , xT ) ∈ <T

gives a Lagrangian

L(p, x) =

I∑
i=1

Ci(pi) +

〈
x, d−

I∑
i=1

pi

〉
that is separable along units:

L(p, x) =

I∑
i=1

Li(pi, x) + 〈x, d〉 for Li(pi, x) = Ci(pi)− 〈x, pi〉 . (4)

The corresponding dual function θ(x) = maxp∈P L(p, x) inherits separability

θ(x) =

I∑
i=1

θi(x) + 〈x, d〉

where

θi(x) = min
pi∈Pi

Li(pi, x) =

{
min Ci(pi)− 〈x, pi〉
s.t. pi ∈ Pi .

(5)
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A nice interpretation of the dual approach follows from the role played by x is a
price. The negative of each θi(x) is an optimization problem in which the ith plant
maximizes its benefit, given that the generated power is remunerated at unit price
x (as in (8) below).
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Figure 1. Price Decomposition

Figure 1 represents such price decomposition scheme, in which the manager
solves a generalization of problem (2) (that is maxx∈<T θ(x)), by applying an
iterative process. Specifically,

– as illustrated by the top arrow in Figure 1, the manager proposes to pay the
power plants a unit price x for their production.

– Knowing the remuneration, the ith power plant determines the production
maximizing its benefit, i.e.,

finds pi(x) ∈ Pi such that θi(x) = Li(pi(x), x). (6)

The solution pi(x) is one component of the bottom arrow in Figure 1, with
the information submitted to the manager: if you pay me x, I’m willing to
generate pi(x) power.

– Once the output of all the power plants is available, the manager checks if
the total generation is enough to satisfy the demand. If not, a new price x
is proposed to the power plants, and the process is repeated.

In this mechanism, the manager needs to maximize the nonsmooth dual func-
tion θ. We now explain the basic ingredients needed to put in place efficient
algorithms to solve the manager problem with high accuracy.

3. A Primer on Nonsmooth Optimization

Since optimization algorithms are usually designed for solving minimization prob-
lems, from now on we shall work with the negative of the functions from (5).
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Instead of solving (3) directly, our manager applies a decomposition method to
solve the convex dual problem

min
x∈<T

f(x) for f(x) = −θ(x) . (7)

The left block in Figure 1 representes the calculations needed for one iteration to
solve (7). We now review some notions and methods for solving this problem, for
full details we refer the reader to [2, Part II].

3.1. The oracle. At each iteration of the decomposition process, to decide
which price to send to the plants the manager uses available information, provided
by an oracle or black-box. In Figure 1, this wording refers to the output of each
individual plant i = 1, . . . , I (the right squares in the figure). The mathematical
formulation of the i-th oracle amounts to evaluating the convex subfunction

fi(x) := max
pi∈Pi

−Li(pi, x) =

{
max 〈x, pi〉 − Ci(pi)
s.t. pi ∈ Pi

(8)

at the given price x, sent by the manager. This revenue maximization problem
is solved by finding one pi(x) attaining the maximum. When more than one
maximizer pi(x) exists, the subfunction is nonsmooth.

The graphical representation of a typical function fi in Figure 2 shows with
dotted lines several of the affine functions −Li(pi, ·), for different pi ∈ Pi. In
particular, the lines for p1i and p2i illustrate a common phenomenon of nonsmooth
optimization: fi fails to be differentiable on a set with null measure, but the
minimum is precisely in this set. In the figure, fi(x̄) = −Li(p

1
i , x̄) = −Li(p

2
i , x̄),

and, hence, either p1i or p2i could be taken as pi(x̄) in (6), or in its equivalent
formulation using (8).

−Li(p
2
i , x)

−Li(p1
i , x)

fi(x̄) = min fi

fi

Figure 2. Piecewise affine functions are often minimized at a kink

The Convex Analysis subdifferential of the function fi at x is given by the
maximizers in (8), see [10, Ch.VI]:

∂fi(x) = conv
{
pi(x) : for pi(x) ∈ Pi such that fi(x) = −Li(pi(x), x)

}
.
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Since the manager problem has the form

min
x∈<T

f(x) for f(x) =

I∑
i=1

fi(x)− 〈x, d〉 ,

it follows that evaluating each subfunction fi at a given x provides for free one
subgradient. Namely, having pi(x) for i = 1, . . . , I yields both f(x) and

g(x) =

I∑
i=1

pi(x)− d ∈ ∂f(x) . (9)

We now describe different methods of employing the oracle information to define
a sequence {xk}, the successive prices sent by the manager to the power plants.

3.2. Subgradient Algorithms. By convexity, the minimizers of f in prob-
lem (7) are fully characterized by the Fermat optimality condition

0 ∈ ∂f(x̄) = conv
{
p(x̄)

}
− d .

To detect convergence, an algorithm checks approximate satisfaction of this con-
dition. For instance, the method stops if, for an approximate subgradient ĝk ∈ <T

and an error εk ≥ 0 built along iterations, it holds that

ĝk ∈ ∂εkf(x̂k) with ‖ĝk‖ and εk sufficiently small, (10)

where ∂εf is the ε-subdifferential in Convex Analysis, see [10, Ch.XI].
Endowing an algorithm with a stopping criterion is of fundamental importance.

However, the first nonsmooth optimization method considered here, the subgradient
algorithm [23], overlooks this crucial issue. The method, called Uzawa’s in optimal
control, has a very simple updating rule.

More precisely, having the oracle information f(xk) and g(xk) provided by the
output pi(x

k) of the power plants for i = 1, . . . , I, the manager defines the next
price as

xk+1 = xk − tkg(xk) for a suitable stepsize tk > 0,

satisfying the conditions
∑
tk =∞ and tk → 0; see [2, Ch.9.3.1].

This type of methods, which can be declined in several variants for the stepsize
(all satisfying the conditions above), is very popular because the update is easy
to implement. Typically, subgradient methods stop after reaching a maximum
number of iterations (when the manager gets tired?). As such, they are not suitable
when high precision is required as it is the case if the manager needs, for example,
to set a price for the generated electricity.

Another drawback of subgradient methods is that the sequence of function
values is not monotone: f(xk+1) can be larger than f(xk). The reason is that,
contrary to the smooth case and no matter how small the stepsize tk is taken, the
direction opposed to a subgradient may not provide descent.
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0 0

∂fR(x)

x2

x1

x2x2

x1

−g(x)

−∇fL(x)

Figure 3. A subgradient may not provide descent

Figure 3, taken from [2], illustrates this phenomenon, displaying the level-lines
for two functions minimized at 0 ∈ <2; the differentiable function fL(x1, x2) =
x21 +2x22 on the left and the nondifferentiable function fR(x1, x2) := |x1|+2|x2| on
the right. The shadowed area shows all descent-directions in the two cases. Observe
that for this simple case, the direction opposite to g(x) = (1, 2) ∈ ∂fR(0, x2), for
x2 > 0, is not a direction of descent.

Figure 4 shows a typical trajectory for a sequence of function values generated
with the subgradient method. We observe that f(x4), f(x5), f(x6) all have larger
values than f(x3) and that the condition tk → 0 “shortens” the improvement
toward a minimizer as iterations progress. This zigzagging phenomenon slows
down the convergence speed and makes it difficult, if not impossible, to achieve
high accuracy with this type of methods.

f(x1)
f(x2)

f(x4)

f(x5)

f(x6)
f(x3)

Figure 4. Zigzagging of a subgradient method

3.3. Cutting-plane Methods. The subgradient method update does not
make use of the function information f(xk), provided by the oracle together with
the gradient g(xk). By contrast, cutting-plane methods, [3] and [12], use all the
oracle information to define lower linearizations:

f(x) ≥ f(xk) +
〈
g(xk), x− xk

〉
for all x ∈ <T ,
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and build a convex model Mk for the function f . For the manager problem, (4)
gives linearizations of the form

f(xk) +
〈
g(xk), x− xk

〉
= −

I∑
i=1

Li(pi(x
k), x)− 〈x, d〉 . (11)

The interest of having a model lies in the fact that it can be used as a replace-
ment for the unknown function f to compute the next iterate:

xk+1 solves min
x∈<T

Mk(x) where Mk(x) := max
j≤k

{
f(xj) +

〈
g(xj), x− xj

〉}
.

This updating rule is more involved than the subgradient method update, as it
requires solving a linear programming problem (by adding an extra variable and
constraints, to represent the maximum defining the model Mk, as in Section 5.1).
The additional computational effort is compensated by the availability of a stop-
ping test. Indeed, the distance between the model and the function gives an
optimality measure

in cutting-plane methods, the nominal decrease δk+1 := f(xk+1)−Mk(xk+1)→ 0

as k →∞; see [2, Ch.9.3.2]. Notwithstanding, for this convergence result to hold,
all the past linearizations must be kept in the model. As k grows, the linear
program defining iterates has more and more constraints, many of them similar.
The optimization problem becomes ill conditioned, and the algorithm struggles to
achieve high accuracy. A way out of this tailing-off effect is to clean the model,
and eliminate inactive constraints, for example defining

Mk
act(x) := max

j∈Jk
act

{
f(xj) +

〈
g(xj), x− xj

〉}
for the active index set

Jk
act :=

{
j ≤ k : Mk(xk+1) = f(xj) +

〈
g(xj), xk+1 − xj

〉}
,

and taking

Mk+1(x) = max
{
Mk

act(x), f(xk+1) +
〈
g(xk+1), x− xk+1

〉}
= max

{
f(xj) +

〈
g(xj), x− xj

〉
: j ∈ Jk+1 = Jk

act ∪ {k + 1}
}
.

Unfortunately, by the nature itself of the approach, dropping inactive cuts destroys
the convergence theory of cutting-plane methods. We shall see that the bundle
methods considered below address this issue maintaining the convergence results,
thanks to a technique referred to as bundle compression.

The consideration of a model endows the cutting-plane approach with a stop-
ping test. But the lack of monotonicity in the successive function values remains.
The method exhibits an inherent instability that leads to bad numerical behavior
near an optimum, preventing once more reaching high accuracy. When getting
close to a solution, g(xk) ≈ 0, and “horizontal” affine functions are added to the
model. This makes iterates move far away from the set of minima and oscillate
wildly; we refer to [2, Ch.9.3.2] for detailed explanations; see also [10, Vol.II].
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3.4. Bundle Methods. The key ingredient to defeat instability and oscil-
lations is monotonicity. To the important concept of model, that gives a stopping
test, bundle methods add the notion of serious steps. The serious step subse-
quence {x̂k} gathers iterates that satisfy a descent rule, depending on a parameter
m ∈ (0, 1):

Set x̂k+1 = xk+1 if f(xk+1) ≤ f(x̂k)−mδk, for δk = f(x̂k)−Mk(xk+1) . (12)

Otherwise, the serious step is maintained: x̂k+1 = x̂k and the step is declared
null. It can be shown that 0 ≤ δk → 0, and that the limit points of the monotone
serious-step subsequence {x̂k} minimize f ; see [2, Ch.10.3.4]. The convergence
analysis also shows that if there are only finitely many serious steps, then the last
one is a solution and the infinite tail of null steps that follows also converges to
the last serious step.

To address the oscillating phenomenon in the cutting-plane method, the current
serious-step is used as a stabilization center in the rule defining the next iterate.
One possibility, called proximal bundle method, takes

xk+1 solves min
x∈<T

Mk(x) +
1

2tk
‖x− x̂k‖2 , (13)

for a proximal stepsize tk > 0. Other bundle variants, respectively called with
trust-region and level bundle, minimize the cutting-plane model over a ball around
x̂k, or find the closest point to x̂k that reduces sufficiently the cutting-plane model;
see [2, Ch.10.2].

In bundle methods the choice of the model Mk is rather flexible. Incidentally,
the word bundle refers to the collection of past information that is used to define
the model, which can be nonpolyhedral. Or, as explained, it can be a cutting-plane
model, which makes (13) a quadratic programming problem.

In all cases, to prevent the size of (13) from growing indefinitely as with the
cutting-plane method, the bundle of information can be reduced to the active
linearizations only, or it can be compressed, using certain aggregate linearization.
To define this linearization, notice that that convexity of Mk makes (13) strongly
convex, with unique solution characterized by the optimality condition

0 ∈ ∂Mk(xk+1) +
1

tk
(xk+1 − x̂k) ,

and, hence,

xk+1 = x̂k − tkĝk for ĝk ∈ ∂Mk(xk+1) . (14)

After solving (13), the aggregate linearization, defined by

`k(x) = Mk(xk+1) +
〈
ĝk, x− xk+1

〉
,

can be computed. For the next iteration, any convex model satisfying

max
{
`k(x), f(xk+1) +

〈
g(xk+1), x− xk+1

〉}
≤Mk+1(x) ≤ f(x) , (15)
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can be taken (keeping in mind that if Mk is not polyhedral, (13) will no longer be
a quadratic program). With the leftmost choice, in particular, (13) is a quadratic
program with only two constraints: |Jk+1| = 2. The corresponding bundle method
is sometimes called poor man’s. While still convergent, this variant is slower than
others using richer models (with larger sets Jk+1). For combinatorial problems,
the poorman bundle algorithm has been successfully applied as an improvement of
the volume method; see [1]. For some other applications, it may preferable to use
a better model, spend more time in each iteration and make more progress, thus
reaching a good accuracy in less time overall.

Like with cutting-plane methods, convergence depends on showing that δk → 0.
Working out the algebra it can be seen that

ĝk ∈ ∂εkf(x̂k) for εk ≥ 0 and δk = tk‖ĝk‖2 + εk .

In addition to the possibility of reducing or compressing the bundle (which keeps
small the size of (13)), the relation above is a second strong point in favor of bundle
methods: by driving δk to zero, the method ensures eventual satisfaction of the
approximate stopping test (10).

4. What Can The Manager Do With The Result?

The power plant manager applied the decomposition scheme illustrated by Figure 1
because solving the problem directly, as a whole, was not possible. Such a detour
through the dual function and its maximization with some nonsmooth algorithm
has an impact that we explain below.

4.1. The Struggle for Feasibility. When the manager uses a bundle
method (the best available option) to define prices, the output of the iterative
process is

ĝklast ≈ 0 and εklast ≈ 0 ,

where klast denotes the iteration triggering the stopping test.
Suppose a polyhedral cutting-plane model is used:

Mk(x) := max
j∈Jk

{
f(xj) +

〈
g(xj), x− xj

〉}
for some index set Jk of past iterations. Then ∂Mk(xk+1) = conv{g(xj) : j ∈ Jk

act}
and, hence, there exists a simplicial vector 0 ≤ αk ∈ <|Jk| with

∑
j∈Jk αk

j = 1 such
that the aggregate gradient in (14) satisfies

ĝklast =
∑

j∈Jklast

αklast
j g(xj) .

In view of (9), this amounts to having

I∑
i=1

pconvi ≈ d for pconvi :=
∑

j∈Jklast

αklast
j pi(x

j) ,
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and where each pi(x
j) ∈ Pi, by construction. If the manager is interested in pricing

the electricity generation, i.e., in obtaining an accurate xklast, the output provided
by the decomposition approach is highly satisfactory, as the bundle method ensures
the method ended with a reliable stopping criterion, finding a solution with high
accuracy.

However, if the manager is also interested in determining a production plan,
some additional calculations might be needed. For some power plants, typically
thermal ones, the set Pi is not convex and, hence,

for all j ∈ Jklast each pi(x
j) ∈ Pi but pconvi 6∈ Pi .

This means that the outcome of the decomposition approach cannot be sent directly
as a directive to the power plants: if Pi involved binary variables to represent units
switched on and off, the convex combination pconvi might require to turn on only
a fraction of the corresponding unit!

A primal point associated with x̂klast is p(x̂klast), the information sent by the
oracle solving the power plant subproblems. Unlike pconvi , each pi(x̂

klast) ∈ Pi,
even when Pi is not convex. However, and contrary to pconvi ,

I∑
i=1

pi(x̂
klast) 6≈ d .

After all the efforts putting in place a decomposition scheme, the manager ends
the process with a feasible generation plan which does not satisfy demand, or with
a plan of electricity generation that satisfies the demand, but cannot be produced
by the power plants of the company. Recovering primal feasibility without losing
much optimality is the subject of many works in energy optimization, we refer to
[4], [7], [29], and the recent review on unit-commitment, [25].

For the dual approach to have any chance to provide primal points that are
satisfactory, at the very least the distance between the primal and dual optimal
values, such as (3) and (7), or (1) and (2), should be the same. This distance is
called duality gap [10]; see also [14].

For the Lagrangian in (4), the duality gap can be shown to be zero only for
problems that are convex if certain constraint qualification [11, Ch.1] condition
holds. In this case, the error εk computed by the bundle method measures the
optimality gap; see [16, Rem.4.4]. For nonconvex problems, the duality gap is
positive, so if the manager needs not only the electricity price but also a generation
plan, there are two possibilities:

- After solving (7), initiate a primal recovery phase, ideally using pconv as a
guide and without losing the separability structure; see [5], [7].

- Primal recovery is based on heuristic approaches that (try to) generate primal
solutions, even for discrete or non convex feasible sets. In such a setting, not
much can be shown theoretically. At least not with the classical Lagrangian
(4): we shall see that a different Lagrangian can close the duality gap, even
for nonconvex problems (the price to pay will be a loss of separability).
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Table 1 gives in a condensed form the main advantages and drawbacks of using
the classical Lagrangian relaxation approach presented so far.

Table 1. Classical Lagrangian for Nonconvex Problems (3)

Lagrangian Subproblem Shadow Primal Zero
definition Separability Price Feasibility Duality Gap

(4) YES YES NO NO

4.2. Exploring Alternative Lagrangians. Since problem (3) is too
hard to tackle directly, separability was induced by solving the dual problem de-
rived from (4). As dual approaches solve in fact the bi-dual of the initial primal
problem, when (3) is nonconvex the decomposition technique ends up with a pos-
itive duality gap, which can be thought of as the price to be paid for separability.

The classical Lagrangian (4) is a particular case of certain general dualizing
parameterizations, described in Chapter 11.K in [21], devoted to augmented La-
grangians and nonconvex duality. Given two dual variables, x ∈ <T , as before,
and 0 ≤ r ∈ <, we shall consider two of such options:

the Proximal Lagrangian
from [21, Ex.11.57]

Lprox(p, x, r) = L(p, x) +
r

2

T∑
t=1

( I∑
i=1

pti − dt
)2

(16)

and

the Sharp Lagrangian
from [21, Ex.11.58]

L#(p, x, r) = L(p, x) + r

T∑
t=1

∣∣∣ I∑
i=1

pti − dt
∣∣∣ . (17)

Sharp Lagrangians can be defined for any norm, the expression above uses the `1-
norm, taking just the absolute value of each t-component of the relaxed constraint,
for convenience. By (4), the corresponding (negative of the) dual functions are

fprox(x, r) = max
p∈D
−

I∑
i=1

Li(pi, x)− r

2

T∑
t=1

( I∑
i=1

pti − dt
)2

and

f#(x, r) = max
p∈D
−

I∑
i=0

Li(pi, x)− r
T∑

t=1

∣∣∣ I∑
i=1

pti − dt
∣∣∣ ,

where we used the relation min(−L) = −maxL.
When comparing the new dual functions with (8), we observe that in both cases

the augmentation term kills separability along the i-components. For the scheme
in Figure 1, this amounts to gathering all the separate squares on the right into
one tall rectangle and, hence replacing the difficult (3) by a sequence of difficult
problems! The tactics explained in Section 5 aim at providing a compromise in
this sense.
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The loss of separability is compensated by the elimination of the duality gap.
Under mild assumptions [21, Thm.11.59] shows that

the optimal value of
either min

(x,r)≥0
fprox(x, r)

or min
(x,r)≥0

f#(x, r)
equals the optimal value of (3),

even when the primal problem is not convex.
Beware that closing the duality gap does not necessarily entail primal feasibility,

although the feature is already a good starting point (without closing the gap there
is no hope). The question of the extent to which a null duality gap gives a primal
solution has its answer in the necessary and sufficient conditions for exactness,
stated in [21, Thm.11.61]. This result involves the concepts of proximal subgradient
for (16) and calmness for (17). Rather than detailing those technical concepts, we
consider the different dual functions for an instance of (1), putting a particular
emphasis on the Sharp Lagrangian.

Example. Suppose in (1) the data is

Ct(pT ) = p2T , CH(pH) =
1

2
p2H ,PT = {0, P} ,PH = [0, P ] , d =

3

2
P .

For this simple problem, writing and solving the optimality conditions by hand
gives that

p̄T = P , p̄H =
1

2
P , x̄ = P , v(d) =

9

8
P 2 .

The separable dual function (7) is the sum f(x) = fT (x)+fH(x)−xd. After some
algebra, the two subfunctions defined in (8) have the expressions

fT (x) = max
pT∈{0,P}

{xpT − p2T } = max
(

0, P (x− P )
)

and fH(x) = max
pH∈[0,P ]

{xpH −
1

2
p2H} =

1

2
proj [0,P ](x)2 + max

(
0, P (x− P )

)
, so the

dual function is

f(x) =
1

2
proj [0,P ](x)2 + 2 max

(
0, P (x− P )

)
− xd .

Its minimizer x̄ = P has a multiplier ᾱ = 3
4 = d/2, given by the the optimality

condition. With this multiplier, the convex combinations of the primal points
pT (x̄) = P and pH(x̄) = P result in pconv = ᾱpT (x̄)+(1− ᾱ)pH(x̄), which satisfies
the demand constraint (note than ᾱpT (x̄) = 3

4P 6∈ {0, P}). Finally, the optimal
dual value is f(x̄) = −P 2, so θ(x̄) = −f(x̄) gives a duality gap equal to 1

8P
2.

The computations for the proximal and sharp dual functions can be derived by
rewriting the nonseparable problem, so that pH is a function of pT . To describe
the procedure, consider the Lagrangian (17)

f#(x, r) = −xd+


max x(pT + pH)− p2T − 1

2p
2
H − r

∣∣∣pT + pH − d
∣∣∣

s.t. pT ∈ {0, P}
pH ∈ [0, P ] ,



16 C. Sagastizábal

and its equivalent problem f#(x, r) = −xd + max
{
F#(x, r, p) : p = 0, P

}
for the

functions

F#(x, r, p) = xp− p2 +

{
max xpH − 1

2p
2
H − r

∣∣∣p+ pH − d
∣∣∣

s.t. pH ∈ [0, P ] .

By the optimality conditions, each of these functions has a unique solution param-
eterized by p, denoted by q#(p) and given by

q#(p) = proj [0,P ]

(
x− r proj [−1,1]

(x+ p− d
r

))
.

Replacing this value in F# and solving over the two choices p = 0 and p = P yields
the sharp function whose level sets are displayed on the left graph in Figure 5.

r-
co

m
p
o
n
e
n
t

x-component

Figure 5. Level sets for a sharp and proximal dual function (left and right)

The minimization of the sharp dual function f# gives an optimal value equal to
9
8 (no duality gap), with minimizers x̄# = P and r ≥ r̄# = 1

2P . The primal points

corresponding to x̄# and r̄# are p̄#T = P and p̄#H = q#(P ) = x̄#− r̄# = 1
2P , which

satisfy all the primal constraints, including demand. Table 2 adds to Table 1 the
new information.

Table 2. Classical and Sharp Lagrangian for Nonconvex Problems (3)

Lagrangian Subproblem Shadow Primal Zero
definition Separability Price Feasibility Duality Gap

(4) YES YES NO NO
(17) NO YES YES YES

Proceeding likewise for the proximal Lagrangian (16), we obtain that

qprox(p) = proj [0,P ]

( x

1 + r
− r p− d

1 + r

)
;
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the specific calculations for this Lagrangian are left to the reader. The right graph
in Figure 5 shows the level sets of the corresponding (smooth) proximal dual func-
tion.

5. Designing Alternative Bundle Methods

For the manager problem (1), or its instance in Section 4.2, combining (4) with
(11) gives the cutting-plane model

Mk(x) = max
j∈Jk

{
−L(p(xj), x)

}
= max

j∈Jk

{〈
x, pT (xj) + pH(xj)− d

〉
− CT (pT (xj))− CH(pH(xj))

}
. (18)

As long as the relations in (15) hold, a variety of other model functions can be
used, including nonpolyhedral ones (conditions that are even weaker than (15) and
still maintain convergence can be found in [16]). We now explain how to exploit
this versatility for the specific case under consideration. In particular, this fea-
ture allows us to build separable approximations for the nonseparable augmented
Lagrangians.

5.1. Bundle Update Subproblems. To ease the reading, we use the
shorten notation pjT for the vectors pT (xj), and likewise for pH . Then the expres-
sion (18) gives in (13)

min a+ 1
2tk
‖x− x̂k‖2

s.t. (x, a) ∈ <T ×<
a ≥

〈
x, pjT + pjH − d

〉
− CT (pjT )− CH(pjH) for j ∈ Jk ,

Following the proof of [2, Lem.10.8], it is possible to compute the dual of this
strongly convex quadratic programming problem, which has the form

min
∑
j∈Jk

αj(CT (pjT )+CH(pjH))+
〈
x̂k, d−qT−qH

〉
+
tk
2
‖d−qT−qH‖2

s.t. 0 ≤ αj for j ∈ Jk ,
∑
j∈Jk

αj = 1

where qT =
∑
j∈Jk

αjp
j
T and qH =

∑
j∈Jk

αjp
j
H .

(19)

Like in (13)-(14), the new price xk+1 can be computed using the the aggregate

gradient ĝk =
∑
j∈Jk

αk
j (pjT + pjH − d), where the simplicial multipliers αk

j solve (19).

To see how the dual problem (19) opens the way to model definitions that go
beyond the usual cutting-plane model, suppose for the moment the costs CT and
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CH are linear. Then (19) is equivalent to
min

∑
j∈Jk

αjCT (pjT )+
∑
j∈Jk

αjCH(pjH)+
〈
x̂k, d−qT−qH

〉
+
tk
2
‖d−qT−qH‖2

s.t. qT ∈ Pk
T := conv{pjT : j ∈ Jk} and qH ∈ Pk

H := conv{pjH : j ∈ Jk} .
(20)

With respect to problem (1), we note that

- the feasible set P = PT × PH is replaced by the smaller set Pk
T × Pk

H , and

- the objective function is an augmented Lagrangian with augmentation pa-
rameter tk and multiplier fixed to x̂k.

For nonlinear generation costs, the equivalence with (19) is lost, but (20) still
can be interpreted as an augmented Lagrangian of an approximation to (3). The
descent rule to declare xk+1 a serious iterate in fact checks if that approximation
is sufficiently good. The bundle update of the multiplier xk+1 can then be thought
of as a variant of the well-known multiplier method, [8] and [20], adapted to such
approximations.

The purpose of solving (13) or its variant (19) is to compute the next iterate
xk+1. For the example in Section 4.2 an alternative subproblem could be{

min CT (qT ) + CH(pH) +
〈
x̂k, d− qT − pH

〉
+ tk

2 ‖d− qT − pH‖
2

s.t. qT ∈ Pk
T , pH ∈ PH .

(21)

As long as CH(·) is quadratic and PH is a polyhedron, (21) is also a quadratic
program. So from the optimization point of view, the subproblem difficulty remains
comparable to (19). In terms of the model (going back from (21) to a problem on
x variables, like (13)), this amounts to using

Mk(x) = −〈x, d〉+ max
pH∈PH

{〈x, pH〉 − CT (pH))}+ max
qT∈Pk

T

{〈x, qT 〉 − CT (qT )} ,

a better model than (18) (in the latter, the maximum of the pH -term is also taken
over qH in the convex hull Pk

H).
With (21), the price update remains as in (14), for the aggregate gradient

ĝk+1 = qk+1
T + pk+1

H − d , where qk+1
T and pk+1

H solve (21).

As the proximal Lagrangian may need to drive r to∞ to ensure exactness (and,
hence, recover primal solutions directly from the dual solution), in view of Table 2
it may be preferable to use the Sharp Lagrangian, which amounts to replacing the
rightmost objective term in (21) by rk

∑T
t=1 |dt − qtT − ptH |.

5.2. Tackling Nonseparability. The augmented Lagrangians (17) and
(16) close the duality gap, but destroy the efficiency of the decomposition ap-
proach illustrated by Figure 1. With respect to this figure, (21) is representing the
decision process on the right, that is not taken individually for each power plant,
but in a block, for both the hydraulic and thermal plants. This can be potentially
difficult; to make decomposition appealing also in this case, one could
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- either leave the block decision process, but perform the optimization only
approximately, to gain speed;

- or approximate the block decision process by individual decisions of the power
plants.

We describe briefly the consequences of these approximations for the bundle
method defining the update (14). We refer for details to [16]; see also [22].

On-Demand Accuracy Bundle Methods. In the first case, the minimization
in (21) can be stopped before reaching optimality, by sending the solver (usually
a commercial package) a threshold for the desired accuracy. By construction, the
approximate solutions q̃k+1

T and p̃k+1
H define a linearization that remains below the

dual function. But the oracle response is noisy, since we only have estimates of
these objects, neither the exact function value f(xk+1) nor an exact subgradient
g(xk+1) are available. With such lower linearizations, the right inequality in (15)
remains true, and δk in (12) is always nonnegative. So the bundle method needs
no modification to generate a convergent sequence of serious steps. Moreover, if
the accuracy threshold is driven to zero, the method will asymptotically converge
to an exact solution. Otherwise, the solution inherits the oracle error.

A clever variation of the asymptotically exact bundle methods described above
is the variant called with on-demand accuracy. In this method, the approximations
q̃k+1
T and p̃k+1

H satisfy the accuracy threshold only if they provide an estimate for
the function value f(xk+1) that satisfies the descent test. As a result, the error on
the serious step sequence is controlled, and by driving it to zero, the method is once
more asymptotically exact (without the need of having accurate approximations
for null steps).

Jacobi-like Approximations. In (21), to separate the minimization over qT
from the minimization over pH , the nonseparable term can be approximated as
below:

‖d− qT − pH‖2 ≈
1

2
‖d− qT − pkH‖2 +

1

2
‖d− qkT − pH‖2 .

The approximation splits (21) in two subproblems:

〈
x̂k, d

〉
+

{
min CT (qT )−

〈
x̂k, qT

〉
+ tk

4

∥∥d− qT − pkH∥∥2
s.t. qT ∈ Pk

T

+

{
min CH(pH)−

〈
x̂k,−pH

〉
+ tk

4

∥∥d− qkT − pH∥∥2
s.t. pH ∈ PH ,

corresponding to the individual squares on the right of Figure 1. Contrary to the
first option, there is no guarantee that the linearization built with the estimates
q̃k+1
T and p̃k+1

H solving the two problems above will be of the lower type. The right
inequality in (15) holds only if adding to f(x) a positive constant, bounding the
error made in the estimations.
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The noise produced by the approximation may make the decrease δk in (12)
negative. To detect when noise has become too cumbersome (to the extent that
the descent rule cannot be applied), the bundle method incorporates certain noise
attenuation procedure to suitably modify the stepsize tk. The variant is shown to
converge, within the bound for the oracle error.

Final Comments

To ease the reading, we focused our explanations on Lagrangian decomposition
for optimal power management problems. Similar ideas and techniques can be
applied to solve other real-life problems, as long as they exhibit some kind of
decomposability feature (along time steps, along sources of commodity, etc). This
is often the case in the gas and oil industry, for example.

Bundle algorithms capable of handling inaccurate information go back to [9] and
[24]. The seminal work [13] gave a general theoretical framework that was revisited
in [16] to incorporate the on-demand accuracy feature, among other enhancements.

We have also chosen a particular instance, called proximal bundle method, for
our development. Other variants exist, and a recent one, called doubly stabilized
[17], offers an interesting alternative for the approximations discussed in Section 5.
Level bundle methods for inexact oracles are considered in [18], [15], [28], [30].

As an illustration of the impressive gains that can be obtained with these ap-
proaches in mid-term power planning and the optimal management of hydrovalleys,
we refer to [6], [27], [26].
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[18] Oliveira, W. L., Sagastizábal, C., and Scheimberg, S. Inexact Bundle Methods for
Two-Stage Stochastic Programming. SIAM Journal on Optimization, 21:517–544,
2011.

[19] Pereira, M. and Pinto, L. Multi-stage stochastic optimization applied to energy
planning. Math. Program., 52(2):359–375, 1991.

[20] Rockafellar, R. The multiplier method of Hestenes and Powell applied to convex
programming. Journal of Optimization Theory and Applications, 6:555–562, 1973.

[21] Rockafellar, R. and Wets, R.-B. Variational Analysis. Number 317 in Grund. der
math. Wiss. Springer-Verlag, 1998.
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