1a. Lista de Exercícios

MM456 Equações Diferenciais Ordinárias. maio de 2010

- 1. Escreva os detalhes, seguindo o roteiro dado em aula, da demonstração do teorema da subvariedade estável.
- 2. Dado o sistema x' = X(x), com X de classe C^1 e x_0 um ponto de equilíbrio hiperbólico, verifique que as subvariedades estável e instável passando por x_0 são únicas. Argumente sem usar o Teorema de Hartman-Grobman.
- 3. Dê exemplos onde não vale o teorema da subvariedade estável (não existe ou existem mais de uma subvariedade estável/instável) porque não são satisfeitas as seguintes hipóteses: a) O ponto fixo x_0 não é hiperbólico e o campo X é de classe C^1 ; b) (bem mais difícil) A diferecial DX não é contínua em x_0 , embora ela exista neste ponto e seja hiperbólica.
- 4. Considere a equação diferencial x' = X(x) em \mathbf{R}^n onde X é um campo de classe C^1 com X(0) = 0.
 - a) Suponha que S, uma subvariedade de \mathbf{R}^n de dimensão 1 passando pela origem, seja invariante pelo fluxo. Verifique que sua tangente na origem T_0S é uma direção de autovetores de D_0X . Além disso, se todo ponto de S converge para a origem quando $t \to +\infty$ então os autovalores associados são não-positivos. Analogamente, se todo ponto de S converge para a origem quando $t \to -\infty$ então os autovalores associados são não-negativos.
 - b) Suponha que n=2 e que pela origem passam 3 subvariedades invariantes pelo fluxo, duas contraindo para 0 e outra repelindo, tais que duas a duas seus espaços tangentes são l.i. Mostre que $D_0X=0$.

5. Demonstre a desigualdade de Gronwall. Aplique essa desigualdade para mostrar que se K é a constante de Lipschitz (na variável espacial) de uma função contínua $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ então as soluções $\varphi(t, t_0, x_0)$ e $\varphi(t, t_0, y_0)$ da equação diferencial associada ao campo determinado por f com condições iniciais x_0 e y_0 , respectivamente, satisfazem a seguinte condição de limitação superior das distâncias:

$$|\varphi(t, t_0, x_0) - \varphi(t, t_0, y_0)| \le e^{K|t - t_0|} |x_0 - y_0|.$$

Por outro lado, dê um exemplo em \mathbb{R}^2 para mostrar que $f: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ pode ser contínua com

$$k|x - y| \le |f(t, x) - f(t, y)|$$

para todo (t,x),(t,y) em $\mathbb{R}\times\mathbb{R}^2$ e no entanto não temos uma limitação inferior:

$$|x_0 - y_0|e^{k|t-t_0|} \le |\varphi(t, t_0, x_0) - \varphi(t, t_0, y_0)|.$$

6. Seja $\Omega = \mathbb{R}$ e $f: \Omega \to \mathbb{R}$ dada por $f(x) = \frac{x^2 - 1}{2}$. Mostre que se x_0 não for ponto fixo da equação x' = f(x) então a solução é da forma

$$\varphi(t) = \frac{1 + ce^t}{1 - ce^t},$$

com $c \neq 0$. Qual é o intervalo máximo de definição destas soluções $I(x) = (\omega_{-}(x), \omega_{+}(x))$? Faça um esboço geométrico das soluções em Ω . Verifique se os pontos fixos são hiperbólicos. Esboce as subvariedades estáveis e instáveis onde for o caso

7. Determine explicitamente a solução do sistema em \mathbb{R}^2 dado por:

$$(x', y') = (2x + y + 1, 2y),$$

com condição inicial $x(0) = x_0$. Determine e ache a solução fundamental da equação linearizada deste sistema. Dê uma interpretação geométrica para o sistema linearizado.

8. Seja $x=(x_1,\ldots,x_{n+d})\in\mathbb{R}^{n+d}$ e considere a seguinte equação diferencial:

$$\begin{cases} \dot{x}_j(t) = f_j(t, x(t)) & \text{para } j = 1, \dots, n \\ x(0) = x_0 \in \mathbb{R}^{n+d} \end{cases}$$

Determine condições sobre a $f: \mathbb{R}^{n+d} \to \mathbb{R}^n$ para que exista uma solução para esse sistema (chamado de sub-determinado). Demonstre sua afirmação. Dê um exemplo. É possível estabelecer a unicidade da solução?

- 9. Defina conjugação topológica (C^0) e C^k entre dois fluxos. Aponte condições necessárias e suficientes para que dois campos de vetores sejam conjugados.
- 10. Exercícios do 20. Capítulo do livro do Sotomayor: 1,2, 7, 9 e 10 (aplicação direta da teoria, pense em exemplos). Mais difíceis, mas interessantes: 3,4,5,6, 11. Problema no enunciado do 7. Leia como: dada uma solução $\varphi(t,t_0,x_0,\lambda_0)$ de $x'=f(t,x,\lambda)$ e $y(t)=D_4\varphi(t,t_0,x_0,\lambda_0)(v)$ onde $v\in T_{\lambda_0}\Lambda$ então

$$y'(t) = \frac{\partial f}{\partial \lambda}(t, \varphi(t, t_0, x_0, \lambda_0), \lambda_0) \ y(t).$$

A sugestão aqui é usar a variável do parâmetro λ como sendo condição inicial no espaço de estados estendido $\mathbf{R}^n \times \Lambda$ conforme falamos várias vezes na aula: i.e. na demonstração da dependência diferenciável em relação a λ , ignoramos esse parâmetro. Esse exercício vem cobrar justamente isso: agora considere o parâmetro de novo e faça as contas usando que o λ está no espaço de estados.

No enunciado do 10. Use o Teorema 3.1. Na última linha acrescente $J(t) := \frac{\partial f(t,x,\lambda)}{\partial t}(\varphi(t,t_0,x_0,\lambda))$. Interprete o que acontece no retrato de fase.

- 11. Seja X um campo vetorial em uma variedade diferenciável M e Ψ : $M \to N$ é um difeomorfismo, mostre que X é completo se e somente se $d\Psi(X)$ é completo. Dê exemplos de campos completos e não completos e respectivas imagens por difeomorfismos.
- 12. Mostre que se a derivada de um campo é limitada, esse campo é completo (exemplos?). Se uma variedade for compacta, todo campo é completo.