Exame Final/Prova Substitutiva

MM456 Equações Diferenciais Ordinárias. 30 de junho de 2010

Escolha 4 dentre as 8 questões abaixo, com pelo menos uma de cada bloco. Boa prova! BLOCO 1

- 1. Defina equivalência topológica e estabilidade estrutural. Dê um exemplo de dois sistemas que são topologicamente equivalentes mas não são conjugados. Dê dois exemplos de uma família de campos de vetores de classe C^1 parametrizados continuamente por $\mu \in \mathbf{R}$ tal que o fluxo associado aos campos, variando μ , atravessa classes distintas de estabilidade estrutural.
- 2. Enuncie o teorema de Poincaré-Bendixson. Agora identifique como ele pode ser aplicado para concluirmos que o sistema $(x', y') = (y + x(1 x^2 y^2), -x + y(1 x^2 y^2))$ tem pelo menos uma órbita periódica no anel $A = \{x \in \mathbf{R}^2; 1/2 < ||x|| < 2\}$. Identifique essa órbita e verifique se é ciclo limite estável (atrator de uma vizinhança dela), instável ou nem um dos dois casos.
- 3. Transforme o "sistema newtoniano" x'' + u(x) = 0 em um sistema hamiltoniano e use a teoria apresentada no curso para esboçar o retrato de fase para valores de $x \ge 0$ sabendo que neste intervalo o gráfico da função u tem a forma de um "W" com dois pontos de mínimo e um de máximo local.

BLOCO 2

- 1. Se uma variedade for compacta, todo campo é completo.
- 2. Dada a equação diferencial $x' = f(x, \lambda)$, com $f : \mathbf{R}^n \times \mathbf{R}^k \to \mathbf{R}^n$ de classe C^{∞} . Explique e descreva como a solução $\varphi(t, x_0, \lambda)$ varia com x_0 e λ . Exemplifique no caso n = k = 1 e $x' = \lambda x$, quais são as equações diferenciais das transformações lineares $\frac{\partial}{\partial x_0} \varphi(t, x_0, \lambda)$ e de $\frac{\partial}{\partial \lambda} \varphi(t, x_0, \lambda)$.
- 3. Seja X um campo vetorial em uma variedade diferenciável M e Ψ : $M \to N$ um difeomorfismo. Mostre que X é completo se e somente se $d\Psi(X)$ é completo.

BLOCO 3

- 1. a) Seja $\varphi(t)$ uma família de matrizes não-singulares com diferivada contínua em todo $t \in \mathbb{R}$. Prove que existe uma única matriz A(t) contínua tal que $\varphi(t)$ é uma solução fundamental.
 - b) Use o item acima para mostrar que $e^{tA}e^{tB}=e^{t(A+B)}$ se e somente se o colchete [A,B]:=BA-AB for zero.
- 2. Seja $f: \mathbf{R} \times \mathbf{R}^n \to \mathbf{R}^n$ contínua e globalmente lipschitziana na segunda coordenada. Prove que dado $(t_0, x_0) \in \mathbf{R} \times \mathbf{R}^n$, existe uma única solução da EDO x'(t) = f(t, x(t)) com $x(t_0) = x_0$. (Se quiser, use sem demonstrar, mas enunciando com detalhes o Teorema de Picard).