Espaços Métricos: lista de exercícios 8

- 1. Seja (X,d) um espaço métrico e $F:X\to X$ uma função tal que para algum $k\in\mathbb{N},\,F^k=F\circ\cdots\circ F$ é uma contração. Provar que F é uma contração.
- 2. Sejam (X,d) e (X',d') espaços métricos e $F:X\to X'$ uma contração. Se X' é discreto, que pode concluir sobre F?
- 3. Seja $C_0([0,1]) \subset C([0,1])$ o subconjunto das funções continuas tais que em zero valem zero, Prove que $C_0([0,1])$ é fechado. Definimos

$$Tf(x) := \int_0^x |f(t)| dt.$$

Prove que T é uma contração. Logo existe uma unica solução de f' = |f| em $C_0([0,1])$.

4. Seja $R = \{(x,y) : a \le x \le b \text{ e } c \le y \le d\} \subset \mathbb{R}^2 \text{ e } F : D \to \mathbb{R}$ com derivadas continuas. Então existe uma única $g : [a,b] \to \mathbb{R}$ tal que para todo $x \in [a,b]$,

$$F(x, g(x)) = 0$$

DICA: Sejam $m \leq \frac{\partial F}{\partial y}(x,y) \leq M$ para todo $(x,y) \in R$. Considere

$$T(\varphi)(x) := \varphi(x) - \frac{1}{M}F(x,\varphi(x)).$$

Mostre que T é uma contração em C([a, b]).

- 5. Um conjunto é dito genérico, se seu complementar é uma união enumerável de conuntos magros. Prove que em um espaço métrico completo, um conunto genério é denso.
- 6. Existe alguma métrica equivalente a métrica usual tal que Q é completo com essa métrica?
- 7. Prove que \mathbb{R}^n não é uma união enumerável de subspaços de dimensão menor que n.
- 8. Prove que \mathbb{Z} é magro em \mathbb{R} .
- 9. Seja (X,d) um espaço métrico completo e $f_n: X \to X$ e $f: X \to X$ contrações com $\lim_{n \to \infty} f_n = f$ uniformemente. Sejam $x_n \in X$ e $x \in X$ os pontos fixos de f_n e f respectivamente. Provar que $\lim_{n \to \infty} x_n = x$.
- 10. Provar que existe uma e só uma função contínua limitada $y; [0, \infty) \to \mathbb{R}$ tal que

$$y(t) = e^{\cos t} + \int_0^t e^{\frac{s}{2}} y(s) ds.$$

- 11. Provar que a bola unitária de l^1 é fechada e tem interior vazio em l^2 .
- 12. Sejam E e F espaços normados e $f_{\alpha}: E \to F$ aplicações lineares e contínuas para todo $\alpha \in A$. Suponha que E é um espaço de Banach e que para todo $x \in E$, temos que $\sup\{\|f_{\alpha}(x)\|: \alpha \in A\} < \infty$. Prove que $\sup\{\|f_{\alpha}\|: \alpha \in A\} < \infty$. DICA: Considere

$$E_n = \{x \in E : |f_{\alpha}(x)| \le n \text{ para todo } \alpha \in A\}$$

observe que os E_n são fechados e $E = \bigcup_n E_n$.

- 13. Sejam E um espaço de Banach, F um espaço normado e $f_n: E \to F$ aplicações lineares e continuas tais que para todo $x \in X$, existe $\lim_{n\to\infty} f_n(x)$. Prove que $f = \lim_{n\to\infty} f_n$ é linear e continua, $||f|| \le \liminf_{n\to\infty} f_n$ e que $\sup_n ||f_n|| < \infty$.
- 14. Sejam $\pi_n = \{\frac{k}{2^n} : 0 \le k \le 2^n\}$ a familia das partições diadicas do intervalo [0,1] e $x \in C([0,1])$. Definimos as aplicações lineares $T_n : C([0,1]) \to \mathbb{R}$ por

$$T_n(h) = \sum_k h(\frac{k}{2^n})(x(\frac{k+1}{2^n}) - x(\frac{k}{2^n})).$$

Prove que para todo $h \in C([0,1])$ existe

$$\int_{0}^{1} h(t)dx(t) := \lim_{n \to \infty} T_n(h)$$

se e somente se x é de variação limitada (i.e. $\sup_n \sum_k |x(\frac{k+1}{2^n}) - x(\frac{k}{2^n})| < \infty$).

DICA: $|T_n(h)| \le \|h\|_{\infty} \sum_k |x(\frac{k+1}{2^n}) - x(\frac{k}{2^n})|$ e para cada $n \in \mathbb{N}$, existe $h_n \in C([0,1])$ tal que $\|h_n\|_{\infty} = 1$

$$h_n(\frac{k}{2^n}) = sign(x(\frac{k+1}{2^n}) - x(\frac{k}{2^n})).$$

- 15. Sejam (X, d) um espaço métrico completo e $\{F_n : n \in \mathbb{N}\}$ uma familia enumerável de conjuntos fechados tal que $X = \bigcup_n F_n$, Prove que $\bigcup \operatorname{int}(F_n)$ é um aberto denso. (Sugestão, ver ELL, Prop. 18, paragrafo 7, Cap.7)
- 16. Prove que não existe uma função contínua $F: \mathbb{R} \to \mathbb{R}$ tal que $F(\mathbb{R} \mathbb{Q}) \subset \mathbb{Q}$ e $F(\mathbb{Q}) \subset \mathbb{R} \mathbb{Q}$.
- 17. Sejam (X,d) um espaço métrico completo e (Y,d') um espaço métrico, $FX \times Y \to X$ continua tal que existe $c \in (0,1)$ tal que para quaisquer $x, x' \in X$ e $y \in Y$ temos que

$$d'(F(x,y), F(x',y)) \le c \cdot d(x,x').$$

Então existe uma unica $g: Y \to X$ contínua tal que g(y) = F(g(y), y).

- 18. Mostre que a imagem de um compacto por uma aplicação contínua é compacto.
- 19. Mostre que um espaço métrico M é compacto se e somente se toda função real contínua e positiva possui ínfimo positivo.
- 20. Defina espaço métrico separável. Verifique que todo espaço métrico compacto é separável porque verifica a propriedade de Lindelöf.
- 21. E L Lima, Capítulo 8, exercícios 1-4-6-9-15-17-27-29-30-36-52.
- 22. E L Lima, Capítulo 8, exercícios (mais interessantes e mais trabalhosos, portanto opcionais) 31-32-33-34-35-46-47.
- 23. E L Lima, Capítulo 9, exercícios 1-2-3-4-5(mais trabalhoso)-15.