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Preface

Ready by now:

• Section 1.1: Basic definitions and facts
• Section 2.1: Classical proof (of recurrence)
• Section 2.3: Lyapunov functions
• Section 2.4: Exercises (for Sections 2.1 and 2.3)
• Chapter 5: Intermezzo

At the moment, other stuff in this book is mostly copy/paste.
********************************************

How does it look like when a mathematician explains something
to a fellow mathematician (postdocs included)? Everyone knows:
there are many pictures on the blackboard, there is a lot of in-
tuition flying around, and so on. It is not surprising that mathe-
maticians often prefer a conversation with a colleague instead of
“simply” reading a book. So, the initial idea was to write a book
as if I was just explaining things to a colleague or a research stu-
dent. In such a book, there should be a lot of pictures, and plenty
of detailed explanations, so that the reader would hardly have any
questions left. After all, wouldn’t it be nice that a person could
just read in a bus (bed, park, sofa, etc.) and still learn some ideas
from contemporary mathematics?

Sometimes the proof of a mathematical fact is difficult, with lots
of technicalities which are hard to follow. It is not uncommon that
people have troubles with understanding such proofs without first
getting a “general idea” about what is going on. Also, one forgets
technicalities but general ideas remain (and if the ideas are not
forgotten, the technical details can usually be reconstructed with
some work). So, in this book the following approach is used. The
author always prefers to explain the intuition first. If the proof is
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vi Preface

instructive and not too long, it will be there. Otherwise, we let
the interested reader to look up the details in other books and/or
papers.

As one can deduce from the title, the book revolves around the
two dimensional simple random walk, seemingly simple but very
special and fascinating mathematical object. The purpose of this
book is not to provide a complete treatment of that object, but
rather make an interesting tour around it. In the end we will come
to a relatively new topic of random interlacements (which can be
viewed as “canonical” nearest-neighbour loops through infinity),
and on the way we will take our time to digress to some related
topics which are somewhat under-represented in the literature,
such as, for example, Doob’s h-transforms for Markov chains.

Readership and level

We expect our book to be of interest to research students and
postdocs working with random walks, and to mathematicians in
neighbouring fields.

It is better suited for those who want to “get the intuition first”,
i.e., first obtain a general idea of what is going on, and only after
that pass to technicalities. The author is aware that not every-
body likes this approach but still hopes that the book will find its
audience.

The technical prerequisites will be rather mild. The technical
material in the book will be at a level accessible to graduate stu-
dents in probability, for instance, with some background in mar-
tingales and Markov chains (at the level, for instance, of [18]);
the book will be largely self-contained (we also recall all necessary
definitions and results in Chapter 1).

As explained above, this book is designed primarily for self-
study, but it can also be used for a one-semester course in addi-
tional topics in Markov chains.

Relation to other recent books

Many topics of this book are treated at length in the literature,
e.g. [17, 26, 29]; on the other hand, it contains some recent ad-
vancements (namely, soft local times and two-dimensional random
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interlacements) that were not covered in other books. In any case,
the main distinguishing feature of this book is not its content, but
rather the way it is presented.

Say that a secret plan of the author is to attract more
students to the field where he works?

Special thanks are due to those whose collaborations directly
relate to material presented in one or more of the chapters of
this book: Francis Comets, Mikhail Menshikov, Augusto Teixeira,
Gunter Schütz, Marina Vachkovskaia, and Andrew Wade. I thank
..... who read the manuscript at different stages and made many
useful commments and suggestions. (see other books for tem-
plates. . . )
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Introduction

Introduction: why it is such a fascinating mathematical object.
The two-dimensional case is really critical. Blablabla.

Due to (3.23), probability to escape to ∂B(1000000) is approx-
imately 1/(1.0293737 + 2

π
ln 1000000) ≈ 0.101785.

Here: some funny examples for the above (step out of France
starting in Paris, step out of our galaxy, all before coming back to
the origin).

Let us recall the classical Polya’s theorem:

Theorem 1.1 Simple random walk in dimension d is recurrent
for d = 1, 2 and transient for d ≥ 3.

A well known interpretation of this fact, attributed to Kakutani,
is: “a drunken man always returns home, but a drunken bird will
be eventually lost”. The author cannot resist the temptation to
add that this result explains why birds do not drink vodka, a fact
well-known to ornithologists.

Also: write about how is difficult to simulate the two-dimensional
SRW. E.g., estimate how long shall we wait until it returns to the
origin, say, a hundred times.

Future side quests include: E.g., Lyapunov functions etc.
About some interesing things that we will not discuss. A little

blablabla about other things, also put some pictures of DLA, they
are nice :)

Level: [18] should be enough. We assume that the reader is
familiar with the basic concepts of probability theory, including
convergence of random variables and uniform integrability.

List literature, [26, 37] etc.
In the following, further contents of the book is described. At

the end of each chapter (except for the introduction) there is a
list of exercises, and at the end of the book there is a section
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2 Introduction

with hints and solutions to selected exercises. A note about the
exercises: they are mostly not meant to be easily solved during a
walk in the park; their purpose is to guide an interested reader
who wants to dive deeper into the subject.

1.1. Basic definitions. General overview of the book, and motiva-
tion. Some words about why the simple random walk in two
dimensions is such a fascinating mathematical object (in some
sense, the two-dimensional case is really critical).

Also, we recall here some basic definitions and facts for Markov
chains and martingales, mainly for reference purposes.

1. Recurrence of the walk. First, we recall two well-known proofs
of recurrence of two-dimensional simple random walk: the clas-
sical combinatorial proof, and the proof with electric networks.
We then observe that the first proof heavily relies on specific
combinatorics and so it is very sensitive to small changes of
the model’s parameters, and the second one only applies to
reversible Markov chains. Then, we present a very short in-
troduction to the Lyapunov functions method (which neither
requires reversibility nor is sensitive to small perturbations of
transition probabilities). Generally speaking, this method con-
sists of finding a function (from the state space of the stochastic
process to R) such that the image under this function of the
stochastic process is, in some sense, “nice”. That is, this new
one-dimensional process satisfies some conditions that enable
one to obtain results about it and then transfer these results
to the original process.

2. Some potential theory for simple random walks. This chapter
will contain a gentle introduction to the potential theory for
simple random walks, first in the transient case (d ≥ 3), and
then in two dimensions. The idea is only to recall and discuss
the basic concepts (such as Green’s function, potential kernel,
harmonic measure) needed in the rest of the book, and then ob-
tain explicit estimates of two-dimensional capacities and hitting
probabilities, for many different kind of sets. These estimates
will be heavily used in Chapters 4 and 6; also, hopefully, they
may prove useful for the readers of the book in other circum-
stances.

3. Simple random walk conditioned on not hitting the origin. Here,
we first recall the idea of Doob’s h-transform, which permits



Introduction 3

us to represent a conditioned (on an event of not hitting some
set) Markov chain as a (unconditional) Markov chain with a
different set of (possibly time-dependent) transition probabil-
ities. We consider a few classical examples and discuss some
properties of this construction. Then, we work with the Doob’s
transform of the simple random walk in two dimensions, with
respect to its potential kernel. It turns out that this condi-
tioned simple random walk is a fascinating object on its own
right: just to cite one of its properties, the probability that a
site y is ever visited by the walk started somewhere close to the
origin, converges to 1/2 as y →∞.

4. Intermezzo: Soft local times and Poisson processes of things.
This chapter is about two topics, apparently unrelated to sim-
ple random walks. One is called soft local times; generally
speaking, the method of soft local times is a way to construct
an adapted stochastic process on a general space Σ, using an
auxiliary Poisson point process on Σ × R+. In Chapter 6 this
method will be an important tool for dealing with excursion
processes. Another topic we discuss is “Poisson processes of in-
finite objects”, using as an introductory example the Poisson
line process1. While this example per se is not formally neces-
sary for the book, it helps to get some intuition about of what
will happen in the next chapter.

5. Two-dimensional random interlacements. In this chapter we
discuss random interlacements, which are Poisson processes of
simple random walk trajectories. First, we review Sznitman’s
random interlacements model in dimension d ≥ 3, [38]. Then,
we discuss the two-dimensional case recently introduced in [12];
it is here that various plot lines of this book finally meet. This
model will be constructed using the trajectories of the sim-
ple random walk conditioned on not hitting the origin, studied
in Chapter 4. Using estimates on two-dimensional capacities
and hitting probabilities from Chapter 3, we then prove sev-
eral properties of the model, and the soft local times will enter
as an important tool in some of these proofs. As stated by
Sznitman in [40], “One has good decoupling properties of the
excursions . . . when the boxes are sufficiently far apart. The soft

1 judging from the author’s experience, many people working with random walks

do not know how Poisson line processes are constructed
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local time technique of [34], especially in the form developed
in the Section 2 of [11], offers a very convenient tool to express
these properties”.

The next section is intentionally kept dry and concise, since the
author hopes that the reader would not really read it, but would
rather occasionally use it for reference purposes.

1.1 Markov chains and martingales: basic definitions
and facts

First, let us recall some basic definitions related to real-valued
stochastic processes with discrete time. In the following, all ran-
dom variables are defined on a common probability space (Ω,F ,P).
We write E for expectation corresponding to P, which will be ap-
plied to real-valued random variables. Set N = {1, 2, 3, . . .},Z+ =
{0, 1, 2, . . .},Z+ = Z+ ∪ {+∞}.

Definition 1.2 (Basic concepts for discrete-time stochastic pro-
cesses)

• A discrete-time real-valued stochastic process is a sequence of
random variables Xn : (Ω,F) → (R,B) indexed by n ∈ Z+,
where B is the Borel sigma-field. We write such sequences as
(Xn, n ≥ 0), with the understanding that the time index n is
always an integer.

• A filtration is a sequence of σ-fields (Fn, n ≥ 0) such that Fn ⊂
Fn+1 ⊂ F for all n ≥ 0. Let us also define F∞ := σ

(⋃
n≥0Fn

)
⊂

F .

• A stochastic process (Xn, n ≥ 0) is adapted to a filtration
(Fn, n ≥ 0) if Xn is Fn-measurable for all n ∈ Z+.

• For a (possibly infinite) random variable τ ∈ Z+, the random
variable Xτ is (as the notation suggests) equal to Xn on {τ =
n} for finite n ∈ Z+ and equal to X∞ := lim supn→∞Xn on
{τ =∞}.
• A (possibly infinite) random variable τ ∈ Z+ is a stopping time

with respect to a filtration (Fn, n ≥ 0) if {τ = n} ∈ Fn for
all n ≥ 0.

• If τ is a stopping time, the corresponding σ-field Fτ consists of
all events A ∈ F∞ such that A ∩ {τ ≤ n} ∈ Fn for all n ∈ Z+.
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Note that Fτ ⊂ F∞; events in Fτ include {τ = ∞}, as well as
{Xτ ∈ B} for all B ∈ B.
• For A ∈ B let us define

τA = min{n ≥ 0 : Xn ∈ A}, (1.1)

and

τ+
A = min{n ≥ 1 : Xn ∈ A}; (1.2)

we may refer to either τA or τ+
A as the hitting time of A (also

called the passage time into A). It is straightforward to check
that both τA and τ+

A are stopping times.

Observe that, for any stochastic process (Xn, n ≥ 0), one can
define the minimal filtration to which this process is adapted via
Fn = σ(X0, X1, . . . , Xn). This is the so-called natural filtration.

To keep the notation concise, we will frequently writeXn and Fn
instead of (Xn, n ≥ 0) and (Fn, n ≥ 0) and so on, when no confu-
sion will arise.

Next, we need to recall some martingale-related definitions and
facts.

Definition 1.3 (Martingales, submartingales, supermartingales)
A real-valued stochastic process Xn adapted to a filtration Fn is
a martingale (with respect to the given filtration) if, for all n ≥ 0,

(i) E|Xn| <∞, and
(ii) E[Xn+1 −Xn | Fn] = 0.

If in (ii) “=” is replaced by “≥” (respectively, “≤”), then Xn is
called a submartingale (respectively, supermartingale).

Evidently, if Xn is a submartingale then (−Xn) is a super-
martingale, and vise versa; also, a martingale is both submartin-
gale and supermartingale. Also, one can easily check the impor-
tant fact that for any stopping time τ , if Xn is a (sub-, super-
)martingale, then so is Xn∧τ .

Martingales have a number of remarkable properties; we do not
even try to elaborate on this topic here. Let us only cite the pa-
per [32], whose title speaks for itself. In the following, we mention
only the results needed in this book.

One of fundamental results is the martingale convergence theo-
rem:
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Theorem 1.4 (Martingale convergence theorem) Assume that
Xn is a submartingale such that supn E[X+

n ] < ∞. Then there
is an integrable random variable X such that Xn → X a.s. as
n→∞.

Observe that, under the hypotheses of Theorem 1.4, the se-
quence EXn is non-decreasing (by the submartingale property)
and bounded above by supn E[X+

n ], so limn→∞ EXn exists and is
finite; however, it is not necessarily equal to EX.

Using Theorem 1.4 and Fatou’s lemma, it is straightforward to
obtain that the following result holds:

Theorem 1.5 (Convergence of non-negative supermartingales)
Assume that Xn ≥ 0 is a supermartingale. Then there is an inte-
grable random variable X such that Xn → X a.s. as n→∞, and
EX ≤ EX0.

Another fundamental result that we will frequently use is the
following:

Theorem 1.6 (Optional stopping theorem) Suppose that σ ≤ τ
are stopping times, and Xτ∧n is a uniformly integrable submartin-
gale. Then EXσ ≤ EXτ <∞ and Xσ ≤ E[Xτ | Fσ] a.s.

Note that, if Xn is a uniformly integrable submartingale and τ
is any stopping time, then it can be shown that Xτ∧n is also uni-
formly integrable: see e.g. Section 5.7 of [18]. Also, observe that
two applications of Theorem 1.6, one with σ = 0 and one with
τ =∞, show that for any uniformly integrable submartingale Xn

and any stopping time τ , it holds that EX0 ≤ EXτ ≤ EX∞ <∞,
where X∞ := lim supn→∞Xn = limn→∞Xn exists and is inte-
grable, by Theorem 1.4.

Theorem 1.6 has the following corollary, obtained on setting
σ = 0 and using well-known sufficient conditions for uniform in-
tegrability (see e.g. Sections 4.5 and 4.7 of [18]).

Corollary 1.7 Let Xn be a submartingale and τ a finite stop-
ping time. For a constant c > 0, suppose that at least one of the
following holds:

(i) τ ≤ c a.s.;
(ii) |Xn∧τ | ≤ c a.s. for all n ≥ 0;

(iii) Eτ <∞ and E[|Xn+1 −Xn| | Fn] ≤ c a.s. for all n ≥ 0.
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Then EXτ ≥ EX0. If Xn is a martingale and at least one of the
above conditions (i)–(iii) holds, then EXτ = EX0.

Next, we recall some fundamental definitions and facts on Markov
processes with discrete time and countable state space, also known
as countable Markov chains. In the following, (Xn, n ≥ 0) is a se-
quence of random variables taking values on a countable set Σ.

Definition 1.8 (Markov chains)

• A process Xn is a Markov chain if, for any y ∈ Σ, any n ≥ 0,
and any m ≥ 1,

P[Xn+m = y | X0, . . . , Xn] = P[Xn+m = y | Xn], a.s.. (1.3)

This is the Markov property.

• If there is no dependence on n in (1.3), the Markov chain is
homogeneous in time (or time-homogeneous). Unless explicitly
stated otherwise, all Markov chains considered in this book
are assumed to be time-homogeneous. In this case, the Markov
property (1.3) becomes

P[Xn+m = y | Fn] = pm(Xn, y), a.s., (1.4)

where pm : Σ × Σ → [0, 1] are the m-step Markov transi-
tion probabilities, for which the Chapman–Kolmogorov equa-
tion holds: pn+m(x, y) =

∑
z∈Σ pn(x, z)pm(z, y). Also, we write

p(x, y) := P[X1 = y | X0 = x] = p1(x, y) for the one-step tran-
sition probabilities of the Markov chain.

• We use the shorthand notation Px[ · ] = P[ · | X0 = x] and
Ex[ · ] = E[ · | X0 = x] for probability and expectation for the
time-homogeneous Markov chain starting from initial state x ∈
Σ.

• A time-homogeneous, countable Markov chain is irreducible if
for all x, y ∈ Σ there exists n0 = n0(x, y) ≥ 1 such that
pn0

(x, y) > 0.

• For an irreducible Markov chain, we define its period as the
greatest common divisor of {n ≥ 1 : pn(x, x) > 0} (it is not
difficult to show that it does not depend on the choice of x ∈ Σ).
An irreducible Markov chain with period 1 is called aperiodic.

• LetXn be a Markov chain, and τ be a stopping time with respect
to the natural filtration of Xn. Then, for all x, y1, . . . , yk ∈ Σ,
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n1, . . . , nk ≥ 1, it holds that

P[Xτ+nj = yj, j = 1, . . . , k | Fτ , Xτ = x] = Px[Xτ+nj = yj, j = 1, . . . , k]

(this is the strong Markov property).

Suppose now that Xn is a countable Markov chain. For A ⊂ Σ,
consistently with (1.1)–(1.2), let us define

τA = min{n ≥ 0 : Xn ∈ A}, and τ+
A = min{n ≥ 1 : Xn ∈ A}.

For x ∈ Σ, we use the notation τ+
x := τ+

{x} and τx := τ{x} for
hitting times of one-point sets. Note that for any x ∈ A it holds
that Px[τA = 0] = 1, while τ+

A ≥ 1 is then the return time to A.
Also note that Px[τA = τ+

A ] = 1 for all x ∈ Σ \A.

Definition 1.9 For a countable Markov chain Xn, a state x ∈ Σ
is called

• recurrent if Px[τ+
x <∞] = 1;

• transient if Px[τ+
x <∞] < 1.

A recurrent state x is classified further as

• positive recurrent if Exτ+
x <∞;

• null recurrent if Exτ+
x =∞.

It is straightforward to see that the four properties in Defini-
tion 1.9 are class properties, which entails the following statement.

Proposition 1.10 For an irreducible Markov chain, if a state
x ∈ Σ is recurrent (respectively, positive recurrent, null recurrent,
transient) then all states in Σ are recurrent (respectively, positive
recurrent, null recurrent, transient).

By the above fact, it is legitimate to call an irreducible Markov
chain itself recurrent (positive recurrent, null recurrent, transient).

Next, the following proposition is an easy consequence of the
strong Markov property:

Proposition 1.11 For an irreducible Markov chain, if a state
x ∈ Σ is recurrent (respectively, transient), then, regardless of the
initial position of the process, it will be visited infinitely (respec-
tively, finitely) many times almost surely.
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Finally, let us state also the following simple result which some-
times helps to prove recurrence/transience of Markov chains:

Lemma 1.12 Let Xn be an irreducible Markov chain on a count-
able state space Σ.

(i) If for some x ∈ Σ and some non-empty A ⊂ Σ it holds that
Px[τA <∞] < 1, then Xn is transient.

(ii) If for some finite non-empty A ⊂ Σ and all x ∈ Σ \ A it holds
that Px[τA <∞] = 1, then Xn is recurrent.

The reader will probably find that the above fact is evident,
but we still mention that its proof can be found e.g. in [29] (cf.
Lemma 2.5.1 there).



2

Recurrence of the walk

2.1 Classical proof

In this section we present the classical combinatorial proof of re-
currence of the two-dimensional simple random walk.

Let us start with some general observations on recurrence and
transience of random walks, which, in fact, are valid in a much
broader setting. Namely, we will prove that the number of visits
to the origin is a.s. finite if and only if the expected number of visits
to the origin is finite (note that this is something which is not true
for general random variables). This is a useful fact, because, as it
frequently happens, it is easier to control the expectation than the
random variable itself.

Let p(d)
m (x, y) = Px[S(d)

m = y] be the transition probability from x
to y in m steps for the simple random walk in d dimensions.
Let qd = P0[τ+

0 <∞] be the probability that, stating at the origin,
the walk eventually returns to the origin. If qd < 1, then the total
number of visits (counting the initial instance S

(d)
0 = 0 as a visit)

is a Geometric random variable with success probability 1 − qd,
which has expectation (1− qd)−1 <∞. If qd = 1, then, clearly, the
walk visits the origin infinitely many times a.s.. So, the random
walk is transient (i.e., qd < 1) if and only if the expected num-
ber of visits to the origin is finite. This expected number equals
(note that we can put the expectation inside the sum due to the
Monotone Convergence Theorem)

E0

∞∑

k=0

1{S(d)
k = 0} =

∞∑

k=0

E01{S(d)
k = 0} =

∞∑

n=0

P0[S
(d)
2n = 0]

(observe that the walk can be at the starting point only after an
even number of steps). We thus obtain that the recurrence of the

10
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walk is equivalent to

∞∑

n=0

p
(d)
2n (0, 0) =∞. (2.1)

Before actually proving anything, let us try to understand why
Theorem 1.1 should hold. One can represent the d-dimensional
simple random walk S(d) as

S(d)
n = X

(d)
1 + · · ·+X(d)

n ,

where (X
(d)
k , k ≥ 1) are i.i.d. random vectors, uniformly distributed

on the set {±ej, j = 1, . . . , d}, where e1, . . . , ed is the canonical
basis of Rd. Since these random vectors are centered (expectation
is equal to 0, component-wise), one can apply the (multivariate)
Central Limit Theorem to obtain that S(d)

n /
√
n converges in dis-

tribution to a (multivariate) centered Normal random vector with
a diagonal covariation matrix. That is, it is reasonable to expect
that S(d)

n should be at distance of order
√
n from the origin.

So, what about p2n(0, 0)? Well, if x, y ∈ Zd are two even sites1

at distance of order at most
√
n from the origin, then our CLT-

intuition tell us that p2n(0, x) and p2n(0, y) should be comparable,
i.e., their ratio should be bounded away from 0 and ∞. In fact,
this statement can be made rigorous by using the local Central
Limit Theorem (e.g., Theorem 2.1.1 from [26]). Now, if there are
O(nd/2) sites where p2n(0, ·) are comparable, then the value of
these probabilities (including p2n(0, 0)) should be of order n−d/2.
It remains only to observe that

∑∞
n=1 n

−d/2 diverges only for d =
1 and 2 to convince oneself that Pólya’s theorem indeed holds.
Notice, by the way, that for d = 2 we have the harmonic series
which diverges just barely, its partial sums have only logarithmic
growth2.

Now, let us prove that (2.1) holds for the two-dimensional sim-
ple random walk. In the proof below we drop the superindex, since
it is about the two-dimensional case only. For this, we first count
the number of paths N2n of length 2n that start and end at the
origin. For such a path, the number of steps up must be equal
to the number of steps down, and the number to the right must

1 a site is called even if the sum of its coordinates is even; observe that the origin

is even.
2 as some physicists say, “in practice, logarithm is a constant!”
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be equal to the number of steps to the left. The total number of
steps up (and, also, down) can be any integer k between 0 and n;
in this case, the trajectory must have n − k steps to the left and
n − k steps to the right. So, if the number of steps up is k, the
total number of trajectories starting and ending at the origin is
the polynomial coefficient

(
2n

k,k,n−k,n−k
)
. This means that

N2n =
n∑

k=0

(
2n

k, k, n− k, n− k

)
=

n∑

k=0

(2n)!

(k!)2((n− k)!)2
.

Note that

(2n)!

(k!)2((n− k)!)2
=

(
2n

n

)(
n

k

)(
n

n− k

)
;

the last two factors are clearly equal, but in a few lines it will
become clear why we have chosen to write it this way. Since the
probability of any particular trajectory of length m is 4−m, we
have

p2n(0, 0) = 4−2nN2n

= 4−2n

(
2n

n

)
n∑

k=0

(
n

k

)(
n

n− k

)
. (2.2)

There is a nice combinatorial argument that allows one to deal
with the sum in the right-hand side of (2.2). Consider a group
of 2n children of which n are boys and n are girls. What is the
number of ways to choose a subgroup of n children from that
group? On one hand, since there are no restrictions on the gender
composition of the subgroup, the answer is simply

(
2n
n

)
. On the

other hand, the number of boys in the subgroup can vary from 0
to n, and, given that there are k boys (and, therefore, n−k girls),
there are

(
n
k

)(
n

n−k
)

ways to choose the subgroup; so, the answer
is precisely the above sum. This means that the above sum just
equals

(
2n
n

)
, and we thus obtain

p2n(0, 0) =

(
2−2n

(
2n

n

))2

. (2.3)

Certainly, (2.3) is concise and beautiful; it is, however, not apriori
clear which asymptotic behaviour does it have (as it frequently
happens with concise and beautiful formulas). To clarify this, we
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use the Stirling’s formula, n! =
√

2πn(n/e)n(1 + o(1)), to obtain
that

2−2n

(
2n

n

)
= 2−2n (2n)!

(n!)2

= 2−2n

√
4πn(2n/e)2n

2πn(n/e)2n
(1 + o(1))

(fortunately, almost everything cancels. . . )

=
1√
πn

(1 + o(1)).

Then, (2.3) implies that p2n(0, 0) = (πn)−1(1 + o(1)), and, using
the fact that the harmonic series diverges, we obtain (2.1) and
therefore recurrence.

2.2 Electric networks

The classical book [16] is an absolute must-read.
Let c(x, y) be the conductance of the edge (x, y). The transition

probabilities are then defined by

p(x, y) =
c(x, y)

π(x)
, where π(x) =

∑

v:v∼x
c(x, v). (2.4)

Definition 2.1 Consider a Markov chain with state space Σ and
transition probabilities (p(x, y), x, y ∈ Σ). A function f : Σ → R
is called harmonic on a set A ⊂ Σ, if

f(x) =
∑

y∈Σ

p(x, y)f(y),

for all x ∈ A.

Reversibility. . .
The following result is a useful criterion of reversibility: one can

check if the Markov chain is reversible without actually calculating
the reversible measure.

Theorem 2.2 A Markov chain is reversible if and only if for
any cycle x0, x1, . . . , xn−1, xn = x0 of states it holds that:

n−1∏

k=0

p(xk, xk+1) =
n∏

k=1

p(xk, xk−1); (2.5)
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that is, the product of the transition probabilities along the cycle
does not depend on the direction.

Proof It is instructive (potential fields. . . )!

proof of recurrence with electric networks (infinite effective re-
sistance to infinity). The harmonic series strikes again!

2.3 Lyapunov functions

The proofs of Sections 2.1 and 2.2 are simple and beautiful. This
is good and bad. The problem with both proofs is that they are
not robust. Assume that we change the transition probabilities
of the two-dimensional simple random walk in only one site, say,
(1, 1). For example, let the walk go from (1, 1) to (1, 0), (1, 2),
(0, 1), (2, 1), with probabilities, say, 1

7
, 1

7
, 2

7
, 3

7
, respectively. We

keep all other transition probabilities intact. Then, after this ap-
parently innocent change, both proofs break down! Indeed, in the
classical proof of Section 2.1 the weights of any trajectory that
passes through (1, 1) would no longer be equal to 4−2n, and so the
combinatorics would be hardly manageable (instead of simple for-
mula (2.2), a much more complicated expression will appear). The
situation with the proof of Section 2.2 is even worse: the random
walk is no longer reversible (cf. Exercise 2.4), so the technique of
the previous section does not apply at all! It is therefore a good
idea to search for a proof which is more robust, i.e., less sensible
to small changes of the model’s parameters.

In this section we present a very short introduction to the Lya-
punov functions method3. Generally speaking, this method con-
sists of finding a function (from the state space of the stochas-
tic process to R) such that the image under this function of the
stochastic process is, in some sense, “nice”. That is, this new one-
dimensional process satisfies some conditions that enable one to
obtain results about it and then transfer these results to the orig-
inal process.

We emphasize that this method is usually “robust”, in the sense
that the underlying stochastic process need not satisfy simplifying
assumptions such as the Markov property, reversibility, or time-
homogeneity, for instance, and the state space of the process need

3 it is one of the side quests that was promised.



2.3 Lyapunov functions 15

not be necessarily countable. In particular, this approach works
for non-reversible Markov chains.

In this section we follow mainly [29] and [19]. Other sources on
the Lyapunov functions method are e.g. [2, 4, 30].

The next result is the main Lyapunov-functions-tool for proving
recurrence of Markov chains.

Theorem 2.3 (Recurrence criterion) An irreducible Markov chain
Xn on a countably infinite state space Σ is recurrent if and only
if there exist a function f : Σ → R+ and a finite non-empty set
A ⊂ Σ such that

E[f(Xn+1)− f(Xn) | Xn = x] ≤ 0, for all x ∈ Σ \A, (2.6)

and f(x)→∞ as x→∞.

Proof To prove that having a function that satisfies (2.6) is suffi-
cient for the recurrence, let x ∈ Σ be an arbitrary state, and take
X0 = x. Let us reason by contradiction, assuming that Px[τA =
∞] > 0 (which would imply, in particular, that the Markov chain
is transient). Set Yn = f(Xn∧τA) and observe that Yn is a non-
negative supermartingale. Then, by Theorem 1.5, there exists a
random variable Y∞ such that Yn → Y∞ a.s. and

ExY∞ ≤ ExY0 = f(x), (2.7)

for any x ∈ Σ. On the other hand, since f → ∞, it holds that
the set GM := {y ∈ Σ : f(y) ≤ M} is finite for any M ∈ R+;
so, our assumption on transience implies that GM will be vis-
ited only finitely many times, meaning that limn→∞ f(Xn) = +∞
a.s. on {τA = ∞} (see Figure 2.1). Hence, on {τA = ∞}, we
must have Y∞ = limn→∞ Yn = +∞, a.s.. This would contra-
dict (2.7) under the assumption Px[τA = ∞] > 0, because then
Ex[Y∞] ≥ Ex[Y∞1{τA =∞}] = ∞. Hence Px[τA = ∞] = 0 for
all x ∈ Σ, which means that the Markov chain is recurrent, by
Lemma 1.12 (ii).

For the “only if” part (i.e., recurrence implies that there exist f
and A as above), see the proof of Theorem 2.2.1 of [19]. See also
Exercise 2.10.

As a (very simple) example of application of Theorem 2.3, con-
sider the one-dimensional simple random walk S(1), together with
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A

GM

GM+1

GM+2
x

Figure 2.1 On the proof of Theorem 2.3: if the Markov
chain does not hit A, it can have only finitely many visits to
any finite set, and therefore goes to infinity.

the set A = {0} and the function f(x) = |x|. Then (2.6) holds
with equality, which shows that S(1) is recurrent.

Although in this chapter we are mainly interested in the recur-
rence, let us also formulate and prove a criterion for transience,
for future reference:

Theorem 2.4 (Transience criterion) An irreducible Markov chain
Xn on a countable state space Σ is transient if and only if there
exist a function f : Σ→ R+ and a non-empty set A ⊂ Σ such that

E[f(Xn+1)− f(Xn) | Xn = x] ≤ 0, for all x ∈ Σ \A, (2.8)

and

f(y) < inf
x∈A

f(x), for at least one site y ∈ Σ \A. (2.9)

Note that (2.8) by itself is identical to (2.6); the difference is in
what we require of the nonnegative function f . Also, differently
from the recurrence criterion, in the above result the set A need
not be finite.
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Proof of Theorem 2.4 Assume thatX0 = y (where y is from (2.9)),
and (similarly to the previous proof) define the process Yn =
f(Xn∧τA). Then (2.8) implies that Yn is a supermartingale (with
respect to the filtration Fn = σ(X0, . . . , Xn)). Since Yn is also
non-negative, Theorem 1.5 implies that there is a random variable
Y∞ ∈ R+ such that limn→∞ Yn = Y∞ a.s., and EY∞ ≤ EY0 = f(y).
Observe that, if the Markov chain eventually hits the set A, then
the value of Y∞ equals the value of f at some random site (namely,
XτA) belonging to A; formally, we have that, a.s.,

Y∞1{τA <∞} = lim
n→∞

Yn1{τA <∞} = f(XτA)1{τA <∞}
≥ inf

x∈A
f(x)1{τA <∞}.

So, we obtain

f(y) = EY0 ≥ EY∞ ≥ EY∞1{τA <∞} ≥ Py[τA <∞] inf
x∈A

f(x),

which implies

Py[τA <∞] ≤ f(y)

infx∈A f(x)
< 1,

proving the transience of the Markov chain Xn, by Lemma 1.12(i).
For the “only if” part, see Exercise 2.5.

Let us now think about how to apply Theorem 2.3 to the simple
random walk in two dimensions. For this, we need to find a (Lya-
punov) function f : Z2 7→ R+, such that the “drift with respect
to f”, that is,

E[f(Sn+1)− f(Sn) | Sn = x], (2.10)

is nonpositive for all but finitely many x ∈ Z2, and also such that
f(x)→∞ as x→∞. The reader must be warned, however, that
finding a suitable Lyapunov function is a kind of an art, which
usually involves a fair amount of guessing and failed attempts.
Still, let us try to understand how it works. In the following, the
author will do his best to explain how it really works, with all the
failed attempts and guessing.

First of all, it is more convenient to think of f as a function of
real arguments. Now, if there is a general rule of finding a suitable
Lyapunov function for processes that live in Rd, then it is the
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0

(k, 0)

(−j, j)

Figure 2.2 The drift with respect to f(x) = ‖x‖ is positive

following: consider the level sets4 of f and think how they should
look. In the two-dimensional case we speak about the level curves;
of course, we need the function to be sufficiently “good” to ensure
that the level curves are really curves in some reasonable sense of
this word.

Now, we know that the simple random walk converges to the
(two-dimensional) Brownian motion, if suitably rescaled. The Brow-
nian motion is invariant under rotations, so it seems reasonable to
search for a function that only depends on the Euclidean norm
of the argument, f(x) = g(‖x‖) for some increasing function
g : R 7→ R+. Even if we did not know about the Brownian mo-
tion, it would still be reasonable to make this assumption because,
well, why not? It is easier to make calculations when there is some
symmetry. Notice that, in this case, the level curves of f are just
circles centered at the origin5.

So, let us begin by looking at the level curves of a very simple
function f(x) = ‖x‖, and see what happens to the drift (2.10).

4 for a function f : Rd 7→ R, the level sets are sets of the form {x ∈ Rd : f(x) = c}
for c ∈ R.

5 there are many examples where they are not circles/spheres; let us mention e.g.

Section 4.3 of [29], which is based on [31].
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Actually, let us just look at Figure 2.2; the level curves shown are
{‖x‖ = k−1}, {‖x‖ = k}, {‖x‖ = k+1} on the right, and {‖x‖ =√
j2 + (j − 1)2}, {‖x‖ = j

√
2}, {‖x‖ = 2

√
2j−

√
j2 + (j − 1)2} on

the left6. It is quite clear then that the drift with respect to f(x) =
‖x‖ is strictly positive in both cases. Indeed, one sees that, in the
first case, the jumps to the left and to the right “compensate”
each other, while the jumps up and down both slightly increase
the norm. In the second case, jumps up and to the left change the
norm by a larger amount than the jumps down and to the right.
In fact, it is even possible to prove that the drift is positive for
all x ∈ Z2, but the above examples show that, for proving the
recurrence, the function f(x) = ‖x‖ will not work anyway.

Now, think e.g. about the “diagonal case”: if we move the third
level curve a little bit out, then the drift with respect to the func-
tion would become nonpositive, look at Figure 2.3. It seems to
be clear that, to produce such level curves, the function g should
have a sublinear growth. Recall that we are “guessing” the form
that g may have, so such nonrigorous reasoning is perfectly ac-
ceptable; we just need to find a function that works, and the way
how we arrived to it is totally unimportant from the formal point
of view. A natural first candidate would be then g(s) = sα, where
α ∈ (0, 1). So, let us try it! Let x ∈ Z2 be such that ‖x‖ is large,
and let e be a unit vector (actually, it is ±e1 or ±e2). Write (being
(y, z) the scalar product of y, z ∈ Z2)

‖x+ e‖α − ‖x‖α = ‖x‖α
((‖x+ e‖

‖x‖
)α
− 1
)

= ‖x‖α
(((x+ e, x+ e)

‖x‖2
)α/2

− 1
)

= ‖x‖α
((‖x‖2 + 2(x, e) + 1

‖x‖2
)α/2

− 1
)

= ‖x‖α
((

1 +
2(x, e) + 1

‖x‖2
)α/2

− 1
)
.

Now, observe that |(x, e)| ≤ ‖x‖, so the term 2(x,e)+1

‖x‖2 should be

small (at most O(‖x‖−1)); let us also recall the Taylor expansion

6 observe that, similarly to the previous case, these level curves have form

{‖x‖ = a− b}, {‖x‖ = a}, {‖x‖ = a+ b} with

a = j
√

2, b = j
√

2−
√
j2 + (j − 1)2.
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0

0

a
a+ b

a− b

s

g(s)

x

Figure 2.3 What should the function g look like? (We
have a = g(‖x‖),
b = g(‖x+ e1‖)− g(‖x‖) = g(‖x‖)− g(‖x− e1‖).)

(1 +y)α/2 = 1 + α
2
y− α

4

(
1− α

2

)
y2 +O(y3). Using that, we continue

the above calculation:

‖x+ e‖α − ‖x‖α

= ‖x‖α
(α(x, e)

‖x‖2 +
α

2‖x‖2 −
α

4

(
1− α

2

)(2(x, e) + 1)2

‖x‖4 +O(‖x‖−3)
)

= α‖x‖α−2
(

(x, e) +
1

2
−
(

1− α

2

)(x, e)2

‖x‖2 +O(‖x‖−1)
)
. (2.11)

Observe that in the above display the O(·)’s actually depend also
on the direction of x (that is, the unit vector x/‖x‖), but this
is not a problem since they are clearly uniformly bounded from
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above. Now, notice that, with x = (x1, x2) ∈ Z2,

∑

e∈{±e1,±e2}
(x, e) = 0, and

∑

e∈{±e1,±e2}
(x, e)2 = 2x2

1 + 2x2
2 = 2‖x‖2.

(2.12)
Using (2.11) and (2.12), we then obtain for f(x) = ‖x‖α, as ‖x‖ →
∞,

E[f(Sn+1)− f(Sn) | Sn = x]

=
1

4

∑

e∈{±e1,±e2}

(
‖x+ e‖α − ‖x‖α

)

= α‖x‖α−2
(1

2
−
(

1− α

2

) ‖x‖2
2‖x‖2 +O(‖x‖−1)

)

= α‖x‖α−2
(α

4
+O(‖x‖−1)

)
, (2.13)

which, for all α ∈ (0, 1), is positive for all sufficiently large x. So,
unfortunately, we had no luck with the function g(s) = sα. That
does not mean, however, that the above calculation was in vain;
with some small changes, it will be useful for one of the exercises
in the end of this chapter.

Since g(s) = sα is still “too much”, the next natural guess is
g(s) = ln s then7. Well, let us try it now (more precisely, we set
f(x) = ln ‖x‖ for x 6= 0 and f(0) = 0, but in the calculation
below x is supposed to be far from the origin in any case). Using
the Taylor expansion ln(1 + y) = y − 1

2
y2 +O(y3), we write

ln ‖x+ e‖ − ln ‖x‖ = ln
(x+ e, x+ e)

‖x‖2

= ln
(

1 +
2(x, e) + 1

‖x‖2
)

=
2(x, e)

‖x‖2 +
1

‖x‖2 −
2(x, e)2

‖x‖4 +O(‖x‖−3),

(2.14)

7 the reader may have recalled that ln ‖x‖ is a harmonic function in two

dimensions, so ln ‖Bt‖ is a (local) martingale, where B is a two-dimensional

standard Brownian motion. But, lattice effects may introduce some

corrections. . .
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so, using (2.12) again, we obtain (as x→∞)

E[f(Sn+1)− f(Sn) | Sn = x] =
1

4

∑

e∈{±e1,±e2}

(
ln ‖x+ e‖ − ln ‖x‖

)

=
1

‖x‖2 −
1

4
× 4‖x‖2
‖x‖4 +O(‖x‖−3)

= O(‖x‖−3),

which gives us absolutely nothing. Apparently, we need more terms
in the Taylor expansion, so let us do the work: with ln(1 + y) =
y − 1

2
y2 + 1

3
y3 − 1

4
y4 +O(y5) we have8

ln ‖x+ e‖ − ln ‖x‖ = ln
(

1 +
2(x, e) + 1

‖x‖2
)

=
2(x, e)

‖x‖2 +
1

‖x‖2 −
2(x, e)2

‖x‖4 − 2(x, e)

‖x‖4 −
1

2‖x‖4

+
8(x, e)3

3‖x‖6 +
4(x, e)2

‖x‖6 − 4(x, e)4

‖x‖8 +O(‖x‖−5).

Then, using (2.12) together with the fact that
∑

e∈{±e1,±e2}
(x, e)3 = 0, and

∑

e∈{±e1,±e2}
(x, e)4 = 2(x4

1 + x4
2),

we obtain

E[f(Sn+1)− f(Sn) | Sn = x]

=
1

‖x‖2 −
1

‖x‖2 −
1

2‖x‖4 +
2‖x‖2
‖x‖6 −

2(x4
1 + x4

2)

‖x‖8 +O(‖x‖−5)

= ‖x‖−4
(3

2
− 2(x4

1 + x4
2)

‖x‖4 +O(‖x‖−1)
)
. (2.15)

We want the right-hand side of (2.15) to be nonpositive for all x
large enough, and it is indeed so if x is on the axes or close enough
to them (for x = (a, 0) or (0, a) the expression in the paren-
theses becomes 3

2
− 2 + O(‖x‖−1) < 0 for all large enough x).

Unfortunately, when we check it for the “diagonal” sites (i.e.,

x = (±a,±a), so that 2(x4
1+x4

2)

‖x‖4 = 2(a4+a4)

4a4
= 1), we obtain that

the expression in the parentheses is 3
2
− 1 + O(‖x‖−1), which is

strictly positive for all large enough x.

8 the reader is invited to check that only one extra term is not enough.



2.3 Lyapunov functions 23

So, this time we were quite close, but still missed the target. A
next natural candidate would be a function that grows even slower
than the logarithm; so, let us try the function f(x) = lnα ‖x‖
with α ∈ (0, 1). Hoping for the best, we write (using (1 + y)α =

1 + αy − α(1−α)

2
y2 +O(y3) in the last passage)

lnα ‖x+ e‖ − lnα ‖x‖

= lnα ‖x‖
( lnα ‖x+ e‖

lnα ‖x‖ − 1
)

= lnα ‖x‖
((

ln
(
‖x‖2

(
1 + 2(x,e)+1

‖x‖2
))

ln ‖x‖2

)α
− 1

)

= lnα ‖x‖
((

1 + (ln ‖x‖2)−1 ln
(

1 +
2(x, e) + 1

‖x‖2
))α

− 1

)

(2.14)
= lnα ‖x‖

((
1 + (ln ‖x‖2)−1

(2(x, e)

‖x‖2 +
1

‖x‖2

− 2(x, e)2

‖x‖4 +O(‖x‖−3)
))α

− 1

)

= lnα ‖x‖
(
α(ln ‖x‖2)−1

(2(x, e)

‖x‖2 +
1

‖x‖2 −
2(x, e)2

‖x‖4 +O(‖x‖−3)
)

− α(1− α)

2
(ln ‖x‖2)−2 4(x, e)2

‖x‖4 +O
(
(‖x‖ ln ‖x‖)−3

)
)
.

Then, using (2.12) we obtain

E[f(Sn+1)− f(Sn) | Sn = x]

= α lnα−1 ‖x‖
( 1

‖x‖2 −
‖x‖2
‖x‖4 +O(‖x‖−3)

− (1− α)

2
(ln ‖x‖2)−1 2‖x‖2

‖x‖4 +O
(
(‖x‖ ln ‖x‖)−2

))

= − α

‖x‖2 ln2−α ‖x‖
((1− α)

2
+O

(
(ln ‖x‖)−1

))
,

which is9 negative for all sufficiently large x. Thus Theorem 2.3

9 finally!
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shows that SRW on Z2 is recurrent, thus proving Pólya’s theorem
(Theorem 1.1) in the two-dimensional case.

Now, it is time to explain why the author likes this method of
proving recurrence (and many other things) of countable Markov
chains. First, observe that the above proof does not use any tra-
jectory-counting arguments (as in Section 2.1) or reversibility (as
in Section 2.2), recall the example in the beginning of this section.
Moreover, consider any Markov chain Xn on the two-dimensional
integer lattice with asymptotically zero drift, and let us abbreviate
Dx = X1−x. Analogously to the above, we can obtain (still using
f(x) = lnα ‖x‖ with α ∈ (0, 1))

E[f(Xn+1)− f(Xn) | Xn = x]

=− α

‖x‖2 ln2−α ‖x‖
(
− ln ‖x‖2Ex(x,Dx)− ln ‖x‖2Ex‖Dx‖2

+ ln ‖x‖2 2Ex(x,Dx)
2

‖x‖2 + 2(1− α)
Ex(x,Dx)

2

‖x‖2 +O
(
(ln ‖x‖)−1

))
.

Now, if we can prove that the expression in the parentheses is pos-
itive for all large enough x, then this would imply the recurrence.
It seems to be clear that it will be the case if the transitions prob-
abilities at x are sufficiently close to those of the simple random
walk (and the difference converges to 0 sufficiently fast as x→∞).
This is what we meant when saying that the method of Lyapunov
functions is robust: if it works for a particular model (the simple
random walk in two dimensions, in our case), then one may expect
that the same (or almost the same) Lyapunov function will also
work for “close” models. See also Exercise 2.9 for some further
ideas.

2.4 Exercises

Combinatorial proofs (Section 2.1):

Exercise 2.1 Understand the original proof of Polya [33]. (Warn-
ing: it uses generating functions, and it is in German.)

Exercise 2.2 Check that p
(d)
2n (0, 0) =

(
p

(1)
2n (0, 0)

)d
for d = 2.

Should this be true for all d ≥ 3 as well?

Exercise 2.3 Find a direct (combinatorial) proof of the recur-
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rence of simple random walk on some other regular lattice (e.g.,
triangular, hexagonal, etc.) in two dimensions.

Electrics networks (Section 2.2):

Exercise 2.4 Show that the random walk described in the be-
ginning of Section 2.3 (the one where we changed the transition
probabilities at the site (1, 1)) is not reversible.

Lyapunov functions (Section 2.3):

Exercise 2.5 Prove the “only if” part of the transience criterion
(Theorem 2.4).

Exercise 2.6 Find a Lyapunov-function proof of transience of
one-dimensional nearest-neighbor random walk with drift.

Exercise 2.7 Using Theorem 2.4, prove that simple random
walk in dimensions d ≥ 3 is transient. Hint: use f(x) = ‖x‖−α for
some α > 0.

Exercise 2.8 Prove that f(x) = ln ln ‖x‖ (suitably redefined at
the origin and the sites at distance at most 2.71828 from it) would
also work for proving the recurrence of the two-dimensional simple
random walk.

Exercise 2.9 Using Lyapunov functions, prove the recurrence of
a two-dimensional spatially homogeneous zero-mean random walk
with bounded jumps.

Exercise 2.10 Understand the proof of the “only if” part of the
recurrence criterion (Theorem 2.3) see the proof of Theorem 2.2.1
of [19]. Can you find10 a simpler proof?

Exercise 2.11 The following result (also known as Foster’s cri-
terion ) provides a criterion for the positive recurrence of an irre-
ducible Markov chain:

An irreducible Markov chain Xn on a countable state space Σ is
positive recurrent if and only if there exist a positive function f :
Σ→ R+, a finite non-empty set A ⊂ Σ, and ε > 0 such that

E[f(Xn+1)− f(Xn) | Xn = x] ≤ −ε, for all x ∈ Σ \A, (2.16)

E[f(Xn+1) | Xn = x] <∞, for all x ∈ A. (2.17)

10 if you find it, please, let me know!
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(a) Prove the “only if” part.
(b) Understand the proof of the “if” part (see e.g. Theorems 2.6.2

and 2.6.4 of [29]).

Exercise 2.12 For the d-dimensional simple random walk, show
that the first and the second moments of ∆x := ‖S(d)

1 ‖ − ‖x‖
under Ex are given by

Ex∆x =
d− 1

2d‖x‖ +O(‖x‖−2), (2.18)

Ex∆2
x =

1

d
+O(‖x‖−1). (2.19)

Exercise 2.13 Suppose now that (Xn, n ≥ 0) is a time-homogeneous
Markov chain on an unbounded subset Σ of R+. Assume that Xn

has uniformly bounded increments, so that

P[|Xn+1 −Xn| ≤ B] = 1 (2.20)

for some B ∈ R+. For k = 1, 2 define

µk(x) := E[(Xn+1 −Xn)k | Xn = x].

The first moment function, µ1(x), is also called the one-step mean
drift of Xn at x.

Lamperti [23, 24, 25] investigated the extent to which the asymp-
totic behaviour of such a process is determined by µ1,2(·), in a
typical situation when µ1(x) = O(x−1) and µ2(x) = O(1). The
following three statements are particular cases of Lamperti’s fun-
damental results on recurrence classification:

(a) If 2xµ1(x) + µ2(x) < −ε for some ε > 0 and all large enough x,
then Xn is positive recurrent;

(b) If 2xµ1(x)− µ2(x) < −ε for some ε > 0 and all large enough x,
then Xn is recurrent;

(c) If 2xµ1(x) − µ2(x) > ε for some ε > 0 and all large enough x,
then Xn is transient.

Prove (a), (b), and (c).

Exercise 2.14 Let d ≥ 3. Prove that for any ε > 0 there ex-
ists large enough Cd = Cd(ε) such that ‖S(d)

n∧τ1(B(Cd))‖−(d−2)+ε is

a supermartingale and ‖S(d)
n∧τ1(B(Cd))‖−(d−2)−ε is a submartingale.

What happens in the case ε = 0?
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Some potential theory for simple
random walks

Disclaimer: this chapter is by no means a systematic treatment
of the subject. If the reader is looking for one, the author can
recommend e.g. Chapter 6 of [26], or (smth else?). Here we rather
recall some general notions and tools that permit us to obtain
estimates on the really interesting things — probabilities related
to simple random walks.

3.1 Transient case

First, let us go back to dimensions d ≥ 3, where the simple random
walk is transient.

Three pillars: Green’s function, capacity, harmonic measure.
..............................................
We need first to recall some basic definitions related to simple

random walks in higher dimensions. We shall mainly abbreviate
S := S(d), since it always either will be clear in which dimension
we are, or the argument is dimension-independent. For d ≥ 3 let

G(x, y) = Ex
∞∑

k=0

1{Sk = y} =
∞∑

k=0

P[Sk = y] (3.1)

denote the Green’s function (i.e., the mean number of visits to y
starting from x). It is important to note that in the case x = y
we do count this as one “initial” visit. By symmetry, it holds that
G(x, y) = G(y, x) = G(0, y − x), so let us abbreviate G(y) :=
G(0, y). Now, a very important property of G(·) is that it is har-
monic outside the origin, that is

G(x) =
1

2d

∑

y∼x
G(y) for all x ∈ Zd \ {0}. (3.2)

27
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One readily obtains the above from the total expectation formula,
with only a little bit of thinking in the case when x is a neighbour
of the origin. Due to (3.2), the process G(Sn∧τ0(0)) is a martingale
for any initial distribution of S0; note that with τ1 on the place
of τ0 it would not be true in the case when the walk starts from
the origin.

Now, how should G(x) behave as x → ∞? It is (almost) clear
that it converges to 0 by transience, but how fast? It is not diffi-
cult to see that it must be of order ‖x‖−(d−2), due to the following
heuristic argument. First, the simple random walk needs time of
order ‖x‖2 to be able to deviate from its initial position by dis-
tance ‖x‖ (which is a necessary condition if it wants to go to x).
Then, at time m > ‖x‖2, the walk can be anywhere1 in a ball
of radius roughly m1/2, which has volume of order md/2. So, the
chance that the walk is in x should be of order m−d/2; therefore,
the Green’s function’s value in x is roughly

∞∑

m=‖x‖2
m−d/2 �

(
‖x‖2

)−d/2+1
= ‖x‖−(d−2).

Note that G(x) = Px[τ0(0) > ∞]G(0) (starting from 0, the mean
number of visits to x is the mean number of visits to x counted
from the time when x is first visited). (unclear) This implies that
the probability of ever visiting y starting from x is also of order
‖x−y‖−(d−2). Have to state local CLT for RW’s somewhere?
In fact, it is possible to obtain that

G(x) =
Cd
‖x‖d−2

+O
(
‖x‖−d

)
, (3.3)

with Cd = Γ(d/2)d

πd/2(d−2)
, see Theorem 4.3.1 of [26].

Let us move on. (or another blabla) For x ∈ A denote the es-
cape probability from A by EsA(x) = Px[τ1(A) =∞]. The capacity
of a finite set A ⊂ Zd is defined by

cap(A) =
∑

x∈A
EsA(x).

What capacity is good for? To get some insight about this,

1 well, not really (since the simple random walk has period two), but you

understand what I mean
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consider a finite A ⊂ Zd, and let y ∈ Zd \A. Let us prove that

Py[τ0(A) <∞] =
∑

x∈A
G(y, x) EsA(x). (3.4)

For the proof, we use an important idea called the last-visit de-
composition. On the event {τ0(A) <∞}, let

σ = max{n : Sn ∈ A}
be the moment of the last visit to A (if the walk did not hit A at
all, the reader is free to define σ in any convenient way, e.g., just
set it to be 0). By transience (recall that A is finite!), it is clear
that σ is a.s. finite. It is important to note that σ is not a stopping
time, which actually turns out to be good! By the strong Markov
property, the walk’s trajectory after any stopping time is “free”,
that is, informally, it walks in the same way (rewrite). Now, if we
know that σ happened at a given time, we know something about
the future, namely, that the walk must not return to A anymore. In
other words, after σ the walk’s law is the conditioned (on τ1(·) =
∞) one. Now, look at Figure 3.1: what is the probability that
the walker visits x ∈ A exactly k times (on the picture, k = 2),
and then escapes to infinity being x the last visited point of A?
Clearly, for that, the walker must first visit x exactly k times
(so, the piece of the trajectory until σ corresponds to the event
{x is visited at least k times}), and then escape to infinity! (or
maybe “We are interested in trajectories such that. . . )
This means that for any x ∈ A and k ≥ 1 it holds that

Py[exactly k visits to x, Sσ = x] = Py[at least k visits to x] EsA(x).
(3.5)

Then, summing (3.5) in k from 1 to ∞ we obtain

Py[τ0(A) <∞, Sσ = x] = G(y, x) EsA(x), (3.6)

and summing the above in x ∈ A we obtain (3.4).
Next, using also (3.3), we obtain from (3.4) that

Py[τ1(A) <∞] =
Cd cap(A)

(dist(y,A))d−2

(
1 +O(dist(y,A)−2)

)
.

The above means that, informally, the capacity measures how
large is the set from the point of view of the random walk. (more
explanation here)
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A x

y

Figure 3.1 A picture useful for some proofs here

Next, exact expressions (in terms of G) for capacities of one-
and two-point sets.

As for the capacity of a d-dimensional ball, observe that Propo-
sition 6.5.2 of [26] implies (recall that d ≥ 3)

cap(B(n)) =
nd−2

Cd
+O(nd−3). (3.7)

Next, let us define the harmonic measure on A by

hmA(x) =
EsA(x)

cap(A)
, x ∈ A. (3.8)

Remarkably, it holds also that hmA is the “entrance measure to A
from infinity”, that is

hmA(x) = lim
y→∞

P[Sτ1(A) = x | τ1(A) <∞]. (3.9)

Why this? Let us give an informal explanation. As we just saw
in (3.6), the probability that the walk leaves the set A at x is
(almost) proportional to EsA(x) when the starting point in very far
away. Now, look again at Figure 3.1 and reverse the direction of the
trajectory (i.e., exchange y with the little arrow): “to leave A at x”
now becomes “to enter A at x”. Clearly, this time reversal does
not change the “weight” of the trajectory2, and this, hopefully,
convinces the reader about the validity of (3.9). (rewrite...)

Here: explain also why the O( r
s
) error term in the “en-

trance measure” estimate. Maybe also formulate the cor-
responding theorem from [26]

..............................................
2 formally, for infinite trajectories this only means that 0 = 0, but you understand

what I wanted to say
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Estimates for hitting probabilities in terms of capacities. “min-
max” lemma e.g. from Cerny-Popov [5]: (move to exercises?)
For n ≥ 0, x ∈ Zd, A ⊂ Zd, let

qx(A;n) = Px[τ1(A) ≤ n]

The following lemma will be used repeatedly to estimate the hit-
ting probabilities:

Lemma 3.1 For all x ∈ Zd, finite A ⊂ Zd, and 0 ≤ n ≤ ∞
G(x,A;n)

maxy∈AG(y,A;n)
≤ qx(A;n) ≤ G(x,A)

miny∈AG(y,A)
. (3.10)

Proof Using the definition of G and the strong Markov property,

G(x,A) =
∑

y∈A
Px[τA <∞, SτA = y]G(y,A)

≥ min
y∈A

G(y,A)
∑

y∈A
Px[τA <∞, SτA = y].

Since qx(A;n) ≤ qx(A) =
∑

y∈A Px[τA < ∞, SτA = y], the second
inequality in (3.10) follows. The first inequality is then implied by

G(x,A;n) =
n∑

k=0

∑

y∈A
Px[τA = k, SτA = y]G(y,A;n− k)

≤
n∑

k=0

∑

y∈A
Px[τA = k, SτA = y]G(y,A;n)

≤ max
y∈A

G(y,A;n)
n∑

k=1

∑

y∈A
Px[τA = k, SτA = y],

together with qx(A;n) =
∑n

k=0

∑
y∈A Px[τA = k, SτA = y].

Let me stress that Lemma 3.1 is really useful, I’ve used it many
times myself.

Proposition about capacity of a ball. Exercises: estimate (order
of) capacity of the ball using Lyapunov functions. Estimate better
using the asymptotic expression for the Green’s function.

3.2 Potential theory in two dimensions

........................................
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First, there is one big difference between the dimension two and
higher dimensions: as shown in Chapter 2, the two-dimensional
simple random walk is recurrent. This means that the mean num-
ber of visits from any site to any other site equals infinity; this
prevents us from defining the Green’s function in the same way as
in Chapter 3.1. In spite of this unfortunate circumstance, we still
would like to use martingale arguments, so a “substitute” of the
Green’s function is needed. Now comes the key observation: while
the mean number of visits to the origin is infinite, the difference
between the mean number of visits to the origin starting from 0
and starting from x is finite, if suitably defined. Namely, let us
define the potential kernel by

a(x) =
∞∑

k=0

(
P0[Sk = 0]− Px[Sk = 0]

)
. (3.11)

Let us first see that the series converges and then figure out how
big a(x) should be. The “normal” approach would be using the
Local CLT for this, but we prefer using another interesting and
very useful tool called coupling. Assume that both coordinates
of x 6= 0 are even, so, in particular, two random walks simultane-
ously started at x and at the origin can meet. Next, we construct
these two random walks together, that is, on the same probability
space. We do this in the following way: say, at a given moment n
the positions of the walks are S′n and S′′n; we have then S′0 = 0,
S′′0 = x. Let ζn and Zn be independent random variables assum-
ing values in {1, 2} and {−1, 1} respectively, with equal (to 1

2
)

probabilities. Set

(S′n+1, S
′′
n+1) =

{
(S′n + Zneζn , S

′′
n − Zneζn), if S′n · eζn 6= S′′n · eζn ,

(S′n + Zneζn , S
′′
n + Zneζn), if S′n · eζn = S′′n · eζn ;

in words, we first choose one of the two coordinates at random, and
then make the walks jump in the opposite directions if the values
of the chosen coordinates are different, and in the same direction in
case they are equal, see Figure 3.2. Note that if the first (second)
coordinates of the two walks are equal at some moment, then
they will remain so forever. Let us assume, for definiteness, that x
belongs to the first quadrant, that is, x = (2a1, 2a2) for a1,2 ≥ 0.
Let

Tj = min{n ≥ 0 : S′n · ej = S′n · ej}
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0

x

Figure 3.2 The coupling of two random walks starting at 0
and x. Note that their first coordinate become equal at
time 3, and the walks meet at time 6.

for j = 1, 2; that is, Tj is the moment when the jth coodrinates
of S′ and S′′ coincide for the first time. Notice that, alternatively,
one can express them in the following way:

Tj = min{n ≥ 0 : S′n ·ej = aj} = min{n ≥ 0 : S′′n ·ej = aj} (3.12)

(they have to meet exactly in the middle). Let also T = T1∨T2 be
the coupling time, i.e., the moment when the two walks definitely
meet.

Now, we go back to (3.11) and use the strategy usually called
“divide and conquer”: write

a(x) =
∑

k<‖x‖

(
P0[Sk = 0]− Px[Sk = 0]

)

+
∑

k∈[‖x‖,‖x‖2)

(
P0[Sk = 0]− Px[Sk = 0]

)

+
∑

k≥‖x‖2

(
P0[Sk = 0]− Px[Sk = 0]

)

=: M1 +M2 +M3,

and then deal with the terms M1,2,3 separately.
First, let us recall that the calculations from Section 2.1: we

have obtained there that

P0[S2k = 0] � 1

k
. (3.13)
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Also, it is easy to obtain that, for all n ≥ 1

P0[S2k = 0] > Px[S2k = 0]. (3.14)

To see this, first consider trajectories that make 2m horizontal
steps and 2(k−m) vertical ones. The number of such trajectories
that go from 0 to 0 is

(
2k
2m

)(
2m
m

)(
2(k−m)
k−m

)
, and the number of such

trajectories that go from x to 0 is
(

2k
2m

)(
2m
m−a1

)(
2(k−m)
k−m−a2

)
. It remains

only to use the simple fact that
(

2u
u

)
>
(

2u
v

)
for v 6= u. Note

that (3.14) already implies that a(x) > 0 (but we didn’t yet prove
it is finite).

To deal with the term M1, just observe that Px[Sk = 0] = 0 for
k < ‖x‖— there simply will not be enough time for the walker to
get from x to 0. The relation (3.13) then implies that

M1 � ln ‖x‖. (3.15)

For the second term, (3.13)–(3.14) imply that

0 ≤M2 . ln ‖x‖, (3.16)

and it remains to deal with the third term. It is here that we use
the coupling idea: let us write

∑

k≥‖x‖2

(
P0[Sk = 0]− Px[Sk = 0]

)

= E
∑

k≥‖x‖2

(
1{S′k = 0} − 1{S′′k = 0}

)

(write 1 = 1{T ≤ k}+ 1{T > k}, and note that the kth term equals 0 on {T ≤
k})

= E
∑

k≥‖x‖2

(
1{S′k = 0} − 1{S′′k = 0}

)
1{T > k}

(if T > k then S′′
k can’t be at the origin, recall (3.12))

= E
∑

k≥‖x‖2
1{S′k = 0}1{T > k}

=
∑

k≥‖x‖2
P[S′k = 0, T > k]

(since {T > k} = {T1 > k} ∪ {T2 > k})

≤
∑

k≥‖x‖2
P[S′k = 0, T1 > k] +

∑

k≥‖x‖2
P[S′k = 0, T2 > k]
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Figure 3.3 Two famous visual proofs

(by symmetry)

= 2
∑

k≥‖x‖2
P[S′k = 0, T1 > k]. (3.17)

We are now going to prove that the terms in the above sum are
of order k−3/2. For this, we first prove that, for all m ≥ a2

1,

P0[X2m = 0, T̂ (a1) > 2m] � 1

m
, (3.18)

where X is a one-dimensional simple random walk, and T̂ (s) =
min{` > 0 : X` = s}. To show (3.18), we use the following well-
known fact:

Proposition 3.2 (The Reflection Principle) Let us consider ori-
ented paths3 in Z2, such that from x the path can go to either to
x + e1 − e2 or to x + e1 + e2. Let two sites x = (x1, x2) and
y = (y1, y2) be such that x1 < y1, x2 > 0, y2 > 0. Then the num-
ber of paths that go from x to y and have at least one common
point with the horizontal axis is equal to the total number of paths
that go from x̄ = (x1,−x2) to y.

Proof Just look at Figure 3.3 (on the right).

3 these are the space-time paths of one-dimensional simple random walk, the

horizontal axis represents time and the vertical axis represents space
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Now, we write

P0[X2m = 0, T̂ (a1) ≤ 2m] = Pa1 [X2m = a1, T̂ (0) ≤ 2m]

(by the Reflection Principle)

= P−a1 [X2m = a1]

= 2−2m

(
2m

m− a1

)
.

So, we have for m ≥ a2
1,

P0[X2m = 0, T̂ (a1) > 2m]

= 2−2m
((2m

m

)
−
(

2m

m− a1

))

= 2−2m

(
2m

m

)(
1− (k − a1 + 1) · · · (k − 1)k

(k + 1) · · · (k + a1)

)

= 2−2m

(
2m

m

)(
1−

(
1− a1

k + 1

)
· · ·
(

1− a1

k + a1

))

= 2−2m

(
2m

m

)(
1−

(
1− a1

k

)a1)

(with some simple calculus)

. 2−2m

(
2m

m

)
× a2

1

m

(recall Section 2.1)

.
a2

1

m3/2
.

Note also that, if N1 is a Binomial(2k, 1
2
) random variable (think

of the number of steps in vertical direction of two-dimensional
simple random walk up to time 2k), then it holds that4

P
[

2
3
k ≤ N1 ≤ 4

3
k
]
≥ 1− e−ck.

So, using this, we have

P[S′2k = 0, T1 > 2k]

4 use e.g. the Chernoff’s bound
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=
k∑

m=0

P[N1 = m]P0[X2m = 0, T̂ (a1) > 2m]P0[X2(k−m) = 0]

.
a2

1

m3/2
× 1√

m
;

going back to (3.17) we find that the term M3 is bounded above
by a constant, and this finally shows that a(x) exists and is of
order ln ‖x‖.

It is possible to prove that (more bla-bla-bla?) as x→∞,

a(x) =
2

π
ln ‖x‖+ γ′ +O(‖x‖−2), (3.19)

where, being γ = 0.5772156 . . . the Euler-Mascheroni constant,

γ′ =
2γ + ln 8

π
= 1.0293737 . . . , (3.20)

cf. Theorem 4.4.4 of [26].
Also, the function a is harmonic outside the origin, i.e.,

1

4

∑

y:y∼x
a(y) = a(x) for all x 6= 0. (3.21)

explain why harmonic: intuitively, if a Green’s function is
harmonic, then the difference between two Green’s func-
tions is harmonic as well.

Observe that (3.21) immediately implies that a(Sk∧τ0(0)) is a
martingale, we will repeatedly use this fact in the sequel. With
some abuse of notation, we also consider the function

a(r) =
2

π
ln r + γ′

of a real argument r ≥ 1 (note that, in general, a(x) need not be
equal to a(‖x‖)). The advantage of using this notation is e.g. that,
due to (3.19), we may write, as r →∞,

∑

y∈∂B(x,r)

ν(y)a(y) = a(r) +O
(‖x‖ ∨ 1

r

)
(3.22)

for any probability measure ν on ∂B(x, r).
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Say that a(y) = 1 if y ∼ 0 (cite [37]). Here: the Optional Stop-
ping Theorem together with (3.19) imply that

P0[τ1(∂B(r))] =
1

γ′ + 2
π

ln r
. (3.23)

The harmonic measure of a finite A ⊂ Z2 is the entrance law
“starting at infinity”,

hmA(x) = lim
‖y‖→∞

Py[Sτ1(A) = x]. (3.24)

The existence of the above limit follows from Proposition 6.6.1
of [26]; also, this proposition together with (6.44) implies that

hmA(x) =
2

π
lim
R→∞

Px
[
τ1(A) > τ1

(
∂B(R)

)]
lnR. (3.25)

Intuitively, (3.25) means that the harmonic measure at x ∈ ∂A
is proportional to the probability of escaping from x to a large
sphere. Observe also that, by recurrence of the walk, hmA is a
probability measure on ∂A. Now, for a finite set A containing the
origin, we define its capacity by

cap(A) =
∑

x∈A
a(x) hmA(x); (3.26)

in particular, cap
(
{0}
)

= 0 since a(0) = 0. For a set not containing
the origin, its capacity is defined as the capacity of a translate of
this set that does contain the origin. Indeed, it can be shown that
the capacity does not depend on the choice of the translation.
A number of alternative definitions are available, cf. Section 6.6
of [26]. Observe that, by symmetry, the harmonic measure of any
two-point set is uniform, so cap

(
{x, y}

)
= 1

2
a(y−x) for any x, y ∈

Z2. Also, (3.22) implies that

cap
(
B(r)

)
= a(r) +O(r−1). (3.27)

Formula for the capacity via escape probabilities to
large circumference.

........................................
comment on the exact values of a(e1), a(e1 + e2) etc., [37]
capacity,
tricky calculations of hitting probabilities and (as a consequence)

capacities of special kinds of sets.
.........................................
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Here, we formulate several basic facts about simple random
walks on annuli.

Lemma 3.3 (i) For all x ∈ Z2 and R > r > 0 such that x ∈
B(R) \ B(r) we have

Px
[
τ1(∂B(R)) < τ1(B(r))

]
=

ln ‖x‖ − ln r +O(r−1)

lnR− ln r
, (3.28)

as r,R→∞.
(ii) For all x ∈ Zd, d ≥ 3, and R > r > 0 such that x ∈ B(R) \B(r)

we have

Px
[
τ1(∂B(R)) < τ1(B(r))

]
=
r−(d−2) − ‖x‖−(d−2) +O(r−(d−1))

r−(d−2) −R−(d−2)
,

(3.29)
as r,R→∞.

Proof Essentially, this comes out of an application of the Op-
tional Stopping Theorem to the martingales a(Sn∧τ0(0)) (in two
dimensions) or G(Sn∧τ0(0)) (in higher dimensions). See Lemma 3.1
of [12] for the part (i). As for the part (2), apply the same kind
of argument and use the expression for the Green’s function e.g.
from Theorem 4.3.1 of [26].

Lemma 3.4 Let c > 1 be fixed. Then for all large enough n we
have for all v ∈ (B(cn) \ B(n)) ∪ ∂B(n)

c1

‖v‖ − n+ 1

n
≤ Pv

[
τ1(∂B(cn)) < τ1(B(n))

]
≤ c2

‖v‖ − n+ 1

n
.

(3.30)
with c1,2 depending on c.

Proof This follows from Lemma 3.3 together with the observation
that (3.28)–(3.29) start working when ‖x‖−n become larger than
a constant (and, if x is too close to B(n), we just pay a constant
price to force the walk out). See also Lemma 8.5 of [34] (for d ≥
3) and Lemma 6.3.4 together with Proposition 6.4.1 of [26] (for
d = 2).

do we need the following lemma?

Lemma 3.5 Fix c > 1 and δ > 0 such that 1 + δ < c − δ, and
abbreviate An = (B(cn) \B(n))∪∂B(n). Then, there exist positive
constants c3, c4 (depending only on c, δ, and the dimension) such
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that for all u1,2 ∈ Zd with (1 + δ)n < ‖u1,2‖ < (c − δ)n and
‖u1 − u2‖ ≥ δn it holds that c3n

−(d−2) ≤ GAn(u1, u2) ≤ c4n
−(d−2).

Proof Indeed, we first notice that Proposition 4.6.2 of [26] (to-
gether with the estimates on the Green’s function and the poten-
tial kernel, Theorems 4.3.1 of [26] and (3.19)) imply thatGAn(v, u2) �
n−(d−2) for all d ≥ 2, where δ′n− 1 < ‖v − u2‖ ≤ δ′n, and δ′ ≤ δ
is a small enough constant. Then, use the fact that from any u1

as above, the simple random walk comes from u1 to B(u2, δ
′n)

without touching ∂An with uniformly positive probability.

..........................................

3.3 Exercises

General theory in the transient case (Section 3.1):

For a finite set A ⊂ Zd and x, y ∈ A \ ∂A define

GA(x, y) = Ex
τ1(∂A)−1∑

k=0

1{Sk = y}

to be the mean number of visits to y starting from x before hit-
ting ∂A (since A is finite, this definition makes sense for all di-
mensions).

Exercise 3.1 Prove that GA(x, y) = GA(y, x) for any x, y ∈
A \ ∂A.

Now, there is a useful fact that follows from a reversibility cal-
culation:

Lemma 3.6 For all y /∈ A we have

Py[τ1(A) <∞, Sτ1(A) = x] = Ex
τ1(∂An)∑

j=1

1{Sj = x} = ĜA(x, y)

(3.31)
(that is, the probability of entering A through x is equal to the
mean number of visits to y before hitting ∂An, starting from x)
for all x ∈ ∂A.

Proof This follows from a standard reversibility argument. In-
deed, write (the sums below are over all nearest-neighbor trajec-
tories % beginning in y and ending in x that do not touch A before
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hitting x; %∗ stands for % reversed, |%| is the number of edges in %,
and k(%) is the number of times % was in y)

Py[τ1(A) <∞, Sτ1(A) = x] =
∑

%

(2d)−|%|

=
∑

%

(2d)−|%
∗|

=
∞∑

j=1

∑

%:k(%)=j

(2d)−|%
∗|,

and observe that the jth term in the last line is equal to the
probability that y is visited at least j times (starting from x)
before coming back to A. This implies (3.31).

variational expressions for the capacity
capacity of some sets (segment, plaquette, cilinder) using vari-

ous methods
capacity of a ball using Lyapunov functions (use Exercise 2.14?)
tricky calculations of hitting probabilities (also using the Möbius

tranform)
complete the proof of existence of a(x) for all x (hint: first for

site with even sum of coodrinates, and then for the rest)
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Simple random walk conditioned on
not hitting the origin

4.1 Doob’s h-transform

Let us start with a one-dimensional example. Let S be the simple
random walk in dimension 1, starting at some site b > 0.

Etc.

4.2 Conditional simple random walk

............................................
Let us define another random walk (Ŝn, n ≥ 0) on Z2 (in fact,

on Z2\{0}) in the following way: the transition probability from x

to y equals a(y)

4a(x)
for all x ∼ y (this definition does not make sense

for x = 0, but this is not a problem since the walk Ŝ can never enter
the origin anyway). The walk Ŝ can be thought of as the Doob
h-transform of the simple random walk, under condition of not
hitting the origin (see Lemma 4.1 and its proof). Note that (3.21)

implies that the random walk Ŝ is indeed well defined, and, clearly,
it is an irreducible Markov chain on Z2 \{0}. We denote by P̂x, Êx
the probability and expectation for the random walk Ŝ started
from x 6= 0. Let τ̂0, τ̂1 be defined as in (??)–(??), but with Ŝ in
the place of S. Then, it is straightforward to observe that

• the walk Ŝ is reversible, with the reversible measure µx := a2(x);
• in fact, it can be represented as a random walk on the two-

dimensional lattice with conductances (or weights)
(
a(x)a(y), x, y ∈

Z2, x ∼ y
)
;

• let N be the set of the four neighbours of the origin. Then,
a direct calculation shows that 1/a(Ŝk∧τ̂0(N )) is a martingale

(write it!). Theorem 2.4 then implies that the random walk Ŝ
is transient.

42
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............................................
Next, we relate the probabilities of certain events for the walks S

and Ŝ. For M ⊂ Z2, let Γ
(x)
M be the set of all nearest-neighbour

finite trajectories that start at x ∈ M \ {0} and end when enter-

ing ∂M for the first time; denote also Γ
(x)
y,R = Γ

(x)
B(y,R). For A ⊂ Γ

(x)
M

write S ∈ A if there exists k such that (S0, . . . , Sk) ∈ A (and the

same for the conditional walk Ŝ). In the next result we show that

Px
[
· | τ1(0) > τ1

(
∂B(R)

)]
and P̂x[ · ] are almost indistinguishable

on Γ
(x)
0,R (that is, the conditional law of S almost coincides with

the unconditional law of Ŝ). A similar result holds for excursions
on a “distant” (from the origin) set.

Lemma 4.1 (i) Assume A ⊂ Γ
(x)
0,R. We have

Px
[
S ∈ A | τ1(0) > τ1

(
∂B(R)

)]
= P̂x

[
Ŝ ∈ A

](
1+O((R lnR)−1)

)
.

(4.1)

(ii) Assume that A ⊂ Γ
(x)
M and suppose that 0 /∈ M , and denote

s = dist(0,M), r = diam(M). Then, for x ∈M ,

Px[S ∈ A] = P̂x[Ŝ ∈ A]
(

1 +O
( r

s ln s

))
. (4.2)

Proof Let us prove part (i). Assume without loss of generality
that no trajectory from A passes through the origin. Then, it
holds that

P̂x[Ŝ ∈ A] =
∑

%∈A

a(%end)

a(x)

(1

4

)|%|
,

with |%| the length of %. On the other hand, by (??)

Px[S ∈ A | τ1(0) > τ1

(
∂B(R)

)
] =

a(R) +O(R−1)

a(x)

∑

%∈A

(1

4

)|%|
.

Since %end ∈ ∂B(R), we have a(%end) = a(R)+O(R−1), and so (4.1)
follows.

The proof of part (ii) is analogous (observe that a(y1)/a(y2) =
1 +O

(
r

s ln s

)
for any y1, y2 ∈M).

Next, we estimate the probability that the Ŝ-walk avoids a ball
centered at the origin:
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Lemma 4.2 Assume r ≥ 1 and ‖x‖ ≥ r + 1. We have

P̂x
[
τ̂1

(
B(r)

)
=∞

]
= 1− a(r) +O(r−1)

a(x)
.

Proof By Lemma 4.1 (i) we have

P̂x
[
τ̂1

(
B(r)

)
=∞

]
= lim

R→∞
Px
[
τ1(∂B(r)) > τ1

(
∂B(R)

)
| τ1(0) > τ1

(
∂B(R)

)]
.

The claim then follows from (??)–(??).

Remark 4.3 Alternatively, one can deduce the proof of Lemma 4.2
from the fact that 1/a(Ŝk∧τ̂0(N )) is a martingale, together with the
Optional Stopping Theorem.

We will need also an expression for the probability of avoiding
any finite set containing the origin:

Lemma 4.4 Assume that 0 ∈ A ⊂ B(r), and ‖x‖ ≥ r+ 1. Then

P̂x[τ̂1(A) =∞] = 1− cap(A)

a(x)
+O

(r ln r ln ‖x‖
‖x‖

)
. (4.3)

Proof Indeed, using Lemmas ?? and 4.1 (i) together with (??),
we write

P̂x[τ̂1(A) =∞]

= lim
R→∞

Px
[
τ1(A) > τ1

(
∂B(R)

)
| τ1(0) > τ1

(
∂B(R)

)]

= lim
R→∞

a(R) +O(R−1)

a(x)
×

a(x)− cap(A) +O
(
r ln r ln ‖x‖
‖x‖

)

a(R)− cap(A) +O
(
R−1 + r ln r ln ‖x‖

‖x‖
) ,

thus obtaining (4.3).

It is also possible to obtain exact expressions for one-site escape
probabilities, and probabilities of (not) hitting a given site:

P̂x[τ̂1(y) <∞] =
a(x) + a(y)− a(x− y)

2a(x)
, (4.4)

for x 6= y, x, y 6= 0 and

P̂x[τ̂1(x) <∞] = 1− 1

2a(x)
(4.5)

for x 6= 0. We temporarily postpone the proof of (4.4)–(4.5). Ob-

serve that, in particular, we recover from (4.5) the transience of Ŝ.
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Also, observe that (4.4) implies the following surprising fact: for
any x 6= 0,

lim
y→∞

P̂x[τ̂1(y) <∞] =
1

2
.

The above relation leads to the following heuristic explanation for
Theorem 6.2 (iii) (in the case when A is fixed and ‖x‖ → ∞).
Since the probability of hitting a distant site is about 1/2, by
conditioning that this distant site is vacant, we essentially throw
away three quarters of the trajectories that pass through a neigh-
bourhood of the origin: indeed, the double-infinite trajectory has
to avoid this distant site two times, before and after reaching that
neighbourhood.

Let us state several other general estimates, for the probability
of (not) hitting a given set (which is, typically, far away from the
origin), or, more specifically, a disk:

Lemma 4.5 Assume that x /∈ B(y, r) and ‖y‖ > 2r ≥ 1. Ab-

breviate also Ψ1 = ‖y‖−1r, Ψ2 = r ln r ln ‖y‖
‖y‖ , Ψ3 = r ln r

(
ln ‖x−y‖
‖x−y‖ +

ln ‖y‖
‖y‖

)
.

(i) We have

P̂x
[
τ̂1(B(y, r)) <∞

]
=

(
a(y) +O(Ψ1)

)(
a(y) + a(x)− a(x− y) +O(r−1)

)

a(x)
(
2a(y)− a(r) +O(r−1 + Ψ1)

) .

(4.6)
(ii) Consider now any nonempty set A ⊂ B(y, r). Then, it holds

that

P̂x
[
τ̂1(A) <∞

]
=

(
a(y) +O(Ψ1)

)(
a(y) + a(x)− a(x− y) +O(r−1 + Ψ3)

)

a(x)
(
2a(y)− cap(A) +O(Ψ2)

) .

(4.7)

Observe that (4.6) is not a particular case of (4.7); this is be-
cause (??) typically provides a more precise estimate than (??).

Proof Fix a (large) R > 0, such that R > max{‖x‖, ‖y‖+ r}+ 1.
Denote

h1 = Px
[
τ1(0) < τ1

(
∂B(R)

)]
,

h2 = Px
[
τ1

(
B(y, r)

)
< τ1

(
∂B(R)

)]
,

p1 = Px
[
τ1(0) < τ1

(
∂B(R)

)
∧ τ1(B(y, r))

]
,
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B(R)

0

y

B(y, r)

x

p1

p2

1− p1 − p2

q12

q21

Figure 4.1 On the proof of Lemma 4.5

p2 = Px
[
τ1

(
B(y, r)

)
< τ1

(
∂B(R)

)
∧ τ1(0)

]
,

q12 = P0

[
τ1

(
B(y, r)

)
< τ1

(
∂B(R)

)]
,

q21 = Pν
[
τ1(0) < τ1

(
∂B(R)

)]
,

where ν is the entrance measure to B(y, r) starting from x condi-
tioned on the event

{
τ1

(
B(y, r)

)
< τ1

(
∂B(R)

)
∧ τ1(0)

}
, see Fig-

ure 4.1. Using Lemma 3.3, we obtain

h1 = 1− a(x)

a(R) +O(R−1)
, (4.8)

h2 = 1− a(x− y)− a(r) +O(r−1)

a(R)− a(r) +O(R−1‖y‖+ r−1)
, (4.9)

and

q12 = 1− a(y)− a(r) +O(r−1)

a(R)− a(r) +O(R−1‖y‖+ r−1)
, (4.10)

q21 = 1− a(y) +O(‖y‖−1r)

a(R) +O(R−1‖y‖) . (4.11)

Then, as a general fact, it holds that

h1 = p1 + p2q21,
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h2 = p2 + p1q12.

Solving these equations with respect to p1, p2, we obtain

p1 =
h1 − h2q21

1− q12q21

, (4.12)

p2 =
h2 − h1q12

1− q12q21

, (4.13)

and so, using (4.8)–(4.11), we write

Px
[
τ1(B(y, r)) < τ1

(
∂B(R)

)
| τ1(0) > τ1

(
∂B(R)

)]

=
p2(1− q21)

1− h1

=
(h2 − h1q12)(1− q21)

(1− h1)(1− q12q21)

=

(
a(x)

a(R) +O(R−1)
+

a(y)− a(r) +O(r−1)

a(R)− a(r) +O(R−1‖y‖+ r−1)

− a(x− y)− a(r) +O(r−1)

a(R)− a(r) +O(R−1‖y‖+ r−1)
+O

( ln ‖x− y‖ ln ‖y‖
ln2R

))

× a(y) +O(‖y‖−1r)

a(R) +O(R−1‖y‖) ×
( a(x)

a(R) +O(R−1)

)−1

×
(

a(y)− a(r) +O(r−1)

a(R)− a(r) +O(R−1‖y‖+ r−1)
+

a(y) +O(‖y‖−1r)

a(R) +O(R−1‖y‖) +O
( ln2 ‖y‖

ln2R

))−1

.

Sending R to infinity, we obtain the proof of (4.6).
To prove (4.7), we use the same procedure. Define h′1,2, p′1,2, q′12,

q′21 in the same way but with A in place of B(y, r). It holds that
h′1 = h1, q′21 is expressed in the same way as q21 (although q′21 and
q21 are not necessarily equal, the difference is only in the error
terms O(·)) and, by Lemma ??,

h′2 = 1−
a(x− y)− cap(A) +O

(
r ln r ln ‖x−y‖
‖x−y‖

)

a(R)− cap(A) +O
(
R−1‖x− y‖+ r ln r ln ‖x−y‖

‖x−y‖
) ,

q′12 = 1−
a(y)− cap(A) +O

(
r ln r ln ‖y‖
‖y‖

)

a(R)− cap(A) +O
(
R−1‖y‖+ r ln r ln ‖y‖

‖y‖
) .

After the analogous calculations, we obtain (4.7).
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Proof of relations (4.4)–(4.5) Formula (4.5) rephrases (6.5) with
A = {0, x}. Identity (4.4) follows from the same proof as in
Lemma 4.5 (i), using (??) instead of (??).

............................................

4.3 Exercises

Doob’s h transforms of Lamperti’s RWs?

Exercise 4.1 For one-dimensional random walk Xn with drift
(i.e., it jumps to the left with probability p ∈

(
0, 1

2

)
and to the

right with probability 1− p), prove that (somewhat surprisingly)
|Xn| is a Markov chain, and calculate its transition probabilities.
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Intermezzo: Soft local times and
Poisson processes

5.1 Soft local times

Let us start with the following elementary question. Assume thatX
and Y are two random variables with the same support1 but dif-
ferent distributions. Let X1, X2, X3, . . . be a sequence of indepen-
dent copies of X. Does there exist an infinite permutation (i.e.,
a bijection N 7→ N) σ = (σ(1), σ(2), σ(3), . . .) such that the se-
quence Xσ(1), Xσ(2), Xσ(3), . . . has the same law as the sequence
Y1, Y2, Y3, . . ., a sequence of independent copies of Y ? Of course,
such a permutation should be random: if it is deterministic, then
the permuted sequence would simply have the original law2. For
constructing σ, one is allowed to use additional random variables
(independent of the X-sequence) besides the realization of the
X-sequence itself. As far as the author knows, constructing the
permutation without using additional randomness (i.e., when the
permutation is a deterministic function of the random sequence
X1, X2, X3, . . .) is still an open problem, a rather interesting one.

As usual, when faced with such a question, one tries a “simple”
case first, to see if it gives any insight on the general problem.
For example, take X to be Binomial(n, 1

2
) and Y to be discrete

Uniform[0, n]. One may even consider the case when X and Y are
Bernoullis, with different probabilities of success. How can one
obtain σ in these cases?

After some thought, one will come with the following solu-
tion, simple and straightforward: just generate the i.i.d. sequnce
Y1, Y2, Y3, . . . independently, then there is a permutation that sends

1 Informally, the support of a random variable Z is the (minimal) set where it

lives. Formally, it is the intersection of all closed sets F such that P[Z ∈ F ] = 1.
2 even more, the permutation σ should depend on X1, X2, X3, . . .; if it is

independent of the X-sequence, it is still easy to check that the permuted

sequence has the original law.

49
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X-sequence to the Y -sequence. Indeed (this argument works for
any pair of discrete random variables with the same support), al-
most surely any possible value of X (and Y ) occurs infinitely many
times both in the X-sequence and the Y -sequence. It is then quite
straightforward to see that there is a permutation that sends one
sequence to the other.

Now, let us be honest with ourselves: this solution looks like
cheating. In a way, it is simply too easy. Common wisdom tells us,
however, that there ain’t no such thing as a free solution; in this
case, the problem is that the above construction does not work
at all when the random variables are continuous. Indeed, if we
generate the two sequences independently, then, almost surely, no
element of the first sequence will be even present in the second
one. So, a different approach is needed.

Later in this section, we will see how to solve the above problem
using a sequence of i.i.d. Exponential random variables as addi-
tional randomness. The solution will come out as an elementary
application of the method of soft local times, the main subject of
this section. Generally speaking, the method of soft local times
is a way to construct an adapted stochastic process on a general
space Σ, using an auxiliary Poisson point process on Σ× R+.

Naturally, we assume that the reader knows what is a Poisson
point process in Rd with (not necessarily constant) rate λ. If one
needs to consider a Poisson process on, say, Z× R, then it is still
easy to understand what exactly it should be (a union of Poisson
processes on the straight lines indexed by the sites of Z). In any
case, all this fits into the Poissonian paradigm: what happens in a
domain does not affect what is going on in a disjoint domain, the
probability that there is exactly one point in a “small” domain
of volume δ located “around” x is δλ(x) (up to terms of smaller
order), and the probability that there are at least two points in
that small domain is o(δ). Here, the tradition dictates that the
author cites a comprehensive book on the subject, so, [35].

Coming back to the soft local times method, we mention that,
in full generality, it was introduced in [34]; see also [11, 12] which
contain short surways of this method applied to constructions of
excursion processes3. The idea of using projections of Poisson pro-
cesses for constructions of other (point) processes is not new, see

3 but this will be treated in a detailed way in Section 6.3.1 below.
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e.g. [27, 20]. The key tool of this method (Lemma 5.1) appears
in [42] in a simpler form, and the motivating example we gave in
the beginning of this section is also from that paper.

Next, we are going to present the key result that makes the
soft local times possible. Over here, we call it “the magic lemma”.
Assume that we have a space Σ, which has enough structure4 that
permits us to construct a Poisson point process on Σ of rate µ,
where µ is a measure on Σ.

Now, we main object we need is the Poisson point process on
Σ × R+, with rate µ ⊗ dv, where dv is the Lebesgue measure on
R+. At this point we have to write some formalities. In the next
display, Ξ is a countable index set. We prefer not to use Z+ for the
indexing, because we are not willing to fix any particular ordering
of the points of the Poisson process for the reason that will become
clear in a few lines. Let

M =
{
η =

∑

%∈Ξ

δ(z%,v%); z% ∈ Σ, v% ∈ R+,

and η(K) <∞ for all compact K
}
, (5.1)

be the set5 of point configurations of this process. It is a general
fact that one can canonically construct a Poisson point process η
as above; see e.g. Proposition 3.6 on p.130 of [35] for details of
this construction.

The result below is our “magic lemma”: it provides us with
a way to simulate a random element of Σ with law absolutely
continuous with respect to µ, using the Poisson point process η.
We first write it formally, and then explain, what does it mean.

Lemma 5.1 Let g : Σ → R+ be a measurable function with∫
g(z)µ(dz) = 1. For η =

∑
%∈Ξ δ(z%,v%) ∈M, we define

ξ = inf
{
t ≥ 0; there exists % ∈ Ξ such that tg(z%) ≥ v%

}
. (5.2)

Then, under the law Q of the Poisson point process η,

1. there exists a.s. a unique %̂ ∈ Ξ such that ξg(z%̂) = v%̂,

4 for example, the following is enough: let Σ be a locally compact and Polish

metric space, and µ is a Radon measure (i.e., every compact set has finite

µ-measure) on the measurable space (Σ,B), where B is the Borel σ-algebra on Σ.
5 endowed with sigma-algebra D generated by the evaluation maps η 7→ η(A),

A ∈ B ⊗ B(R).
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Z

ξg(·)

Σ

R+

(z%̂, v%̂)

Figure 5.1 The magic lemma. The random variable Z has
density g, •’s are points of η, and ◦’s are points of the new
Poisson process η′.

2. (z%̂, ξ) is distributed as g(z)µ(dz)⊗ Exp(1),
3. η′ :=

∑
%6=%̂ δ(z%,v%−ξg(z%)) has the same law as η and is indepen-

dent of (ξ, %̂).

That is, in plain words (see Figure 5.1):

• In (5.2) we define ξ as the smallest positive number such that
there is exactly one point (z%̂, v%̂) of the Poisson process on the
graph of ξg(·), and nothing below this graph.
• The first coordinate Z of the chosen point is a random variable

with density g (with respect to µ). Also, ξ is Exponential with
parameter 1, and it is independent of Z.
• Remove the point that was chosen, and translate every other

point (z, v) of η down by amount ξg(z). Call this new config-
uration η′. Then, η′ is also a Poisson point process on Σ × R+

with rate µ⊗ dv, and it is independent of ξ and Z.

Sketch of the proof of Lemma 5.1. The formal proof can be found
in [34] (Lemma 5.1 is Proposition 4.1 of [34]), and here we give
only an informal argument to convince the reader that the above
lemma is not only magic, but also true. In fact, this result is one
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?
?

?

Σ
εg(·)2εg(·)

R+

R

ε
∫
R
g(z)µ(dz)

Figure 5.2 A slow exploration of the space: why
Lemma 5.1 is valid

of those statements that become evident after one thinks about it
for a couple of minutes; so, it may be a good idea for the reader
to ponder on it for some time before going further.

So, one may convince oneself that the result holds e.g. in the
following way. Fix a very small ε > 0 and let us explore the space
as shown on Figure 5.2. That is, first look at the domain {(z, u) :
u ≤ εg(z)} and see if we find a point of the Poisson process there
(observe that finding two points is highly improbable). If we don’t,
then we look at the domain {(z, u) : εg(z) < u ≤ 2εg(z)}, and so
on.

How many steps do we need to discover the first point? First,
observe that g is a density, so it integrates to 1 with respect to µ,
and therefore the area6 below εg equals ε. So the number of points
below εg is Exponential with rate ε, which means that on the first
step (as well as on each subsequent one) we are successful with
probability 1 − e−ε. Hence the number of steps Nε until the first
success is Geometric(1 − e−ε). It is then quite straightforward to
see that εNε converges in law to an Exponential random variable
with parameter 1 as ε→ 0 (note that 1−e−ε = ε+o(ε) as ε→ 0).
Therefore, ξ should indeed be Exponential(1).

The above fact could have been established in a direct way

6 with respect to µ⊗ dv
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(note that Q[ξ > t] equals the probability that the set {(z, u) :
u ≤ tg(z)} is empty, and the “volume” of that set is exactly t),
but with an argument as above the questions about Z become
more clear. Indeed, consider an arbitrary (measurable) set R ⊂ Σ.
Then, on each step, we find a point with first coordinate in R
with probability 1−exp

(
−ε
∫
R
g(z)µ(dz)

)
= ε

∫
R
g(z)µ(dz)+o(ε).

Note that this probability does not depend on the number of steps
already taken; that is, independently of the past, the conditional
probability of finding a point with first coordinate in R given that
something is found on the current step7 is roughly

∫
R
g(z)µ(dz).

This shows that ξ and Z are independent random variables.
As for the third part, simply observe that, at the time we

discovered the first point, the shaded part on Figure 5.2 is still
completely unexplored, and so its contents is independent of the
pair (ξ, Z). In other words, we have a Poisson process on the set
{(z, v) : v > ξg(z)} with the same rate, which can be transformed
to the Poisson process in Σ × R+ by subtracting ξg(·) from the
second coordinate (observe that such transformation is volume-
preserving).

Now, the key observation is that Lemma 5.1 allows us to con-
struct virtually any discrete-time adapted stochastic process! More-
over, one can effectively couple two or more stochastic processes
using the same realization of the Poisson process. One can bet-
ter visualize the picture in a continuous space, so, to give a clear
idea on how the method works, assume that we desire to obtain
a realization of a sequence of (not necessarily independent nor
Markovian) random variables X1, X2, X3, . . . taking values in the
interval [0, 1]. Let us also construct simultaneously the sequence
Y1, Y2, Y3, . . ., where (Yk) are i.i.d. Uniform[0, 1] random variables,
thus effectively obtaining a coupling of the X- and Y -sequences.
We assume that the law of Xk conditioned on Fk−1 is a.s. abso-
lutely continuous with respect to the Lebesgue measure on [0, 1],
where Fk−1 is the sigma-algebra generated by X1, . . . Xk−1.

This idea of using the method of soft local times to couple (possi-
bly complicated) stochastic processes with independent sequences
already proved to be useful in many situations; for this book it
will be useful as well, as we will see in Chapter 6.

7 that is, we effectively condition on ξ, and show that the conditional law of Z

does not depend on the value of ξ.
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Our method for constructing a coupling of theX- and Y -sequences
is illustrated on Figure 5.3. Consider a Poisson point process in
[0, 1] × R+ with rate 1. Then, one can obtain a realization of
the Y -sequence by simply ordering the points according to their
second coodrinates, and then taking Y1, Y2, Y3, . . . to be the first
coodrinates of these points. Now, to obtain a realization of the
X-sequence using the same Poisson point process, one proceeds
as follows.

• First, take the density g(·) of X1 and multiply it by the unique
positive number ξ1 so that there is exactly one point of the
Poisson process lying on the graph of ξ1g and nothing strictly
below it; X1 is then the first coordinate of that point.

• Using Lemma 5.1, we see that, if we remove the point chosen on
the previous step8 and then translate every other point (z, u) of
the Poisson process to (z, u− ξ1g(z)), then we obtain a Poisson
process in [0, 1]× R+ which is independent of the pair (ξ1, X1).

• Thus, we are ready to use Lemma 5.1 again in order to con-
struct X2.

• So, consider the conditional density g( · | F1) of X2 given F1 and
find the smallest positive number ξ2 in such a way that exactly
one point lies on the graph of ξ2g( · | F1) + ξ1g(·) and exactly
one (the point we picked first) below it; again, X2 is the first
coordinate of the point that lies on the graph.

• Continue with g( · | F2), and so on.

The fact that the X-sequence obtained in this way has the pre-
scribed law is readily justified by the subsequent application of
Lemma 5.1. Now, let us state the formal result (it corresponds to
Proposition 4.3 of [34]); here it is only a bit more general since we
formulate it for general adapted processes.

Formally, for a general stochastic process (Zn, n ≥ 0) adapted
to a filtration (Fn, n ≥ 0) we define

ξ1 = inf
{
t ≥ 0 : there exists % ∈ Ξ such that tg(z%) ≥ v%

}
,

G1(z) = ξ1g(z | F0), for z ∈ Σ,

where g( · | F0) is the density of Z1 given F0, and

(z1, v1) is the unique pair in {(z%, v%)}%∈Ξ with ξ1G1(z1) = v1.

8 this point has coordinates (X1, ξ1g(X1))
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X1X2 X3 = Y4X4 = Y3 X5

ξ1g(·) + ξ2g( · | X1)

ξ1g(·)

Σ = [0, 1]

R+

Figure 5.3 Soft local times: the simultaneous construction
of the processes X and Y (here, Xk = Yk for k = 1, 2, 5); it
is very important to observe that the points of the two
processes need not necessarily appear in the same order
with respect to the vertical axis.

(that is, we call 1 the corresponding element of Θ). Denote also
R1 = {(z1, v1)}. Then, for n ≥ 2 we proceed inductively,

ξn = inf
{
t ≥ 0 : there exists (z%, v%) /∈ Rn−1

such that Gn−1(z%) + tg(z% | Fn−1) ≥ v%
}
,

Gn(z) = Gn−1(z) + ξng(z | Fn−1), (5.3)

and

(zn, vn) is the unique pair (z%, v%) /∈ Rn−1 with Gn(z%) = v%;

also, set Rn = Rn−1 ∪ {(zn, vn)}. Then, the previous discussion
implies that the following result holds:

Proposition 5.2 It holds that

(i) (z1, . . . , zn)
law
= (Z1, . . . , Zn) and they are independent from ξ1, . . . , ξn,

(ii) the point process
∑

(z%,v%)/∈Rn
δ(z%,v%−Gn(z%))

is distributed as η and independent of the above,
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1

R+

Σ z1 z3 z2

G3(·)

Figure 5.4 Comparison of soft and usual local times: the
usual local time L3(·) has three peaks (of size 1) at points
z1, z2, z3, and equals 0 in all other points. The soft one looks
much softer.

for all n ≥ 1.

We call Gn the soft local time of the process, at time n, with
respect to the reference measure µ. To justify the choice of this
name, consider a stochastic process in a finite or countable state
space, and define the “usual” local time of the process by

Ln(z) =
n∑

k=1

1{Xk = z}. (5.4)

Now, just look at Figure 5.4.
Next, we establish a very important relation between these two

different local times: their expectations are equal.

Proposition 5.3 For all z ∈ Σ it holds that

EGn(z) = ELn(z) =
n∑

k=1

P[Xk = z]. (5.5)

Notice that in continuous space we cannot expect the above
result to be true, since typically ELn(z) would be just 0 for any z.
Nevertheless, an analogous result holds in the general setting as
well (cf. Theorem 4.6 of [34]), but, to formulate it properly, one
would need to define the so-called expected local time density first
(cf. (4.16) of [34]), which we prefer not to do here.

Proof of Proposition 5.3. It is an easy calculation that uses con-
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G′
n

Gm

Figure 5.5 The set of Y s (with soft local time G′n(·))
contains all the Xs (with soft local time Gm(·)) and three
other points.

ditioning and induction. First, observe that g(z | Fn−1) = P[Xn =
z | Fn−1], so we have

EG1(z) = E(P[X1 = z | F0]) = P[X1 = z] = EL1(z).

Then, we proceed by induction: note thatGn−1(z) is Fn−1-measurable,
and ξn is a mean-1 random variable which is independent of Fn−1.
Recall also (5.3) and write

EGn(z) = E
(
E(Gn(z) | Fn−1)

)

= Gn−1(z) + E
(
E(ξng(z | Fn−1) | Fn−1)

)

= Gn−1(z) + E
(
g(z | Fn−1)E(ξn | Fn−1)

)

= Gn−1(z) + E
(
P[Xn = z | Fn−1)

)

= Gn−1(z) + P[Xn = z].

This concludes the proof.

As mentioned before, soft local times work really well for cou-
plings of stochastic processes: indeed, just construct them in the
way described above using the same realization of the Poisson
point process. Observe that, for this coupling of the processes (Xn)
and (Yn) it holds that

P
[
{X1, . . . , Xm} ⊂ {Y1, . . . , Yn}

]
≥ P

[
Gm(z) ≤ G′n(z) for all z ∈ Σ

]
,

(5.6)
where G′ is the soft local time of Y , see Figure 5.5. Then, in
principle, one may use large deviations tools to estimate the right-
hand side of (5.6). One have to pay attention to the following,
though: it is easy to see that the random variables (ξ1, . . . , ξm) are
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not independent of (ξ′1, . . . , ξ
′
n) (which enter to G′n). This can be

usually circumvented in the following way: we find a deterministic
function ϕ : Σ 7→ R which should typically be “between” Gm

and G′n, and then write

P
[
Gm(z) ≤ G′n(z) for all z ∈ Σ

]
≥ P

[
Gm(z) ≤ ϕ(z) for all z ∈ Σ

]

+ P
[
ϕ(z) ≤ G′n(z) for all z ∈ Σ

]
− 1.

Note that, in the right-hand side of the above relation we do not
have this “conflict of ξ’s” anymore. Let us also mention that in the
above large deviation estimates one has to deal with sequences of
random functions (not just real-valued random variables). When
the state space Σ is finite, this difficulty can be usually circum-
vented by considering the values of the functions separately in
each point of Σ and then using the union bound, hoping that
this last step would not cost too much. Otherwise, one has to
do the large deviations for random functions directly using some
advanced tools from the theory of empirical processes9; see e.g.
Section 6 of [14] and Lemma 2.9 of [7] for examples of how large
deviations for soft local times may be treated.

Now, finally, let us go back to the example from the beginning
of this section: recall that we had a realization of an i.i.d. sequence
X1, X2, X3, . . ., and we wanted to find an infinite permutation σ
such that Xσ(1), Xσ(2), Xσ(3), . . . is also an i.i.d. sequence, however,
sampled from another distibution (with the same support). With
Proposition 5.2 to hand, the solution is relatively simple. Take
a sequence of i.i.d. Exponential(1) random variables ξ1, ξ2, ξ3, . . .;
this sequence will serve as an additional randomness. As an ex-
ample, let us consider the case when X is Uniform on [−1, 1],
and Y has the “triangular” density f(y) = (1−|y|)1{y ∈ [−1, 1]}.
The first step is to reconstruct a Poisson process in [−1, 1]× R+,
using X’s and ξ’s. This can be done in the following way (see Fig-
ure 5.6): for all n ≥ 1, put a point to

(
Xn,

1
2
(ξ1 + · · ·+ ξn)

)
. Then,

using this Poisson process, we obtain the sequence Y1, Y2, Y3, . . .
of i.i.d. triangular random variables in the way described above;
look at Figure 5.6 which speaks for itself. Clearly, one sequence is
a permutation of the other: they use the same points! We leave as

9 note that they have to be more advanced than the Talagrand’s inequality (see

e.g. ??? of [3]) since, because of these i.i.d. Exponential ξ’s, the terms are not a.s.

bounded
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1
2ξ1

1
2 (ξ1 + ξ2 + ξ3)

1
2 (ξ1 + ξ2)

X1X2 X3

Figure 5.6 Making uniforms triangular. We first obtain a
particular instance of the Poisson process in [−1, 1]× R+

using the X-sequence, and then use the same collection of
points to build the Y -sequence. It holds that σ(1) = 1,
σ(2) = 3, σ(3) = 2, σ(4) = 6, σ(5) = 4, σ(6) = 10, σ(7) = 5.

an exercise for the reader to check that, this time, essentially the
same solution works in the general case.

5.2 Poisson processes of things

Of course, all people know what is a Poisson process of points
in Rd. But what if we need a Poisson process of more complicated
things, which still live in Rd? What is the right way to define
it? Naturally, we need the picture to be invariant with respect to
isometries10. Also, it should be, well, as independent as possible,
whatever it may mean.

Observe that, if those things are bounded (not necessarily uni-
formly), one can use the following natural procedure: take a d-
dimensional Poisson point process of rate λ > 0, and “attach” the
things to the points independently (as e.g. on Figure 5.7). A broad
example of this is the Poisson Boolean model, cf. e.g. [28].

10 translations, rotations, reflections, and combinations of them.
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Figure 5.7 A Poisson process of finite things

Figure 5.8 A Poisson line process (observed in the dotted
domain) in R2

However, the situation becomes much more complicated if we
need to build a Poisson process of infinite things. For example,
what about a two-dimensional Poisson process of lines, which
should look like as shown on Figure 5.8?

An idea that first comes to mind is simply to take a two-
dimensional Poisson point process, and draw independent lines
in random uniform directions through each point. One quickly re-
alises, however, that this way we would rather see what is shown
on Figure 5.9: there will be too many lines, one would obtain a
dense set on the plane instead of the nice picture above. Another
idea can be the following: first, fix a straight line on the plane (it
can be the horizontal axis or just anything; it is the thicker line on
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Figure 5.9 Too many lines!

ε

n n+ 10

α

Figure 5.10 Constructing a Poisson line process using the
reference line (here, α ∈ [−π/2, π/2] is the angle between
the line and the normal vector)

Figure 5.10), and then consider a one-dimensional Poisson point
process on this line. Then, through each of these points, draw a
line with uniformly distributed direction (that is, α on Figure 5.10
is uniform in [−π/2, π/2]; for definiteness, think that the positive
values of α are on the left side with respect to the normal vector
pointing up) independently, thus obtaining the “process of lines”
(not including the “reference” line) in R2.

Well, this looks as a reasonable procedure, but, in fact, it is not.
Let us show that, as a result, we obtain a dense set again. Assume
without loss of generality that the reference line is the horizontal
axis, and consider a disk of radius ε > 0 situated somewhere above
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ε

h

0 (x, 0)

α

Figure 5.11 Calculating the expected number of lines that
intersect the small ball. It holds that α = arccos h√

x2+h2
.

the origin (as on Figure 5.10). For all n ∈ Z, consider the events

Hn =
{

there is at least one line attached to a point in [n, n+ 1),

which intersects the disk
}
.

The events (Hn, n ∈ Z) are independent by construction, and it
not difficult to see that P[Hn] � εn−1 (indeed, for each point of
[n, n + 1), the “angular size” of the disk as seen from that point
is just of that order). Therefore, the divergence of the harmonic
series11 implies that a.s. this disk is crossed infinitely many times,
and from this it is straightforward to obtain that the set of lines
is dense.

Can this procedure be “repaired”? Well, examining the above
argument, we see that the problem was that we gave “too much
weight” to the angles α close to ±π/2. Therefore, choosing the
direction uniformly does not work, and hence we need to choose it
with some other density ϕ(·) on [−π/2, π/2] (of course, it should
be symmetric with respect to 0, i.e., the direction of the normal).

What should be this ϕ? Consider a small disk of diameter ε
situated at distance h above the origin, as on Figure 5.11. Con-
sider a point (x, 0) on the reference line (horizontal axis), with
x > 0. Then, clearly, to intersect the disk, the direction of a
straight line passing through x must be in [α − δ

2
, α + δ

2
], where

α = arccos h√
x2+h2 and (up to terms of smaller order) δ = ε√

x2+h2 .
So, if λ is the rate of the Poisson point process on the reference
line and N(h, ε) is the mean number of lines intersecting the small

11 this again! Why do we meet the harmonic series so frequently in two

dimensions?. . .
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ball, we have

EN(h, ε) = λε

+∞∫

−∞

ϕ
(
arccos h√

x2+h2

)
√
x2 + h2

dx+ o(ε). (5.7)

This does not look very nice, but notice that, if we just erase “ϕ”
and “arccos” from (5.7)12, the integral would become

+∞∫

−∞

h

x2 + h2
dx =

+∞∫

−∞

1
(
x
h

)2
+ 1

d
(x
h

)
=

+∞∫

−∞

du

u2 + 1
= π,

so the parameter h disappears. And, actually, it is easy to get
rid of ϕ and arccos at once: just choose ϕ(α) = 1

2
cosα. So, we

obtain from (5.7) that EN(h, ε) = 1
2
λε + o(ε), which is a good

sign that ϕ(α) = 1
2

cosα may indeed work for defining the Poisson
line process.

The above construction is obviously invariant with respect to
translations in the direction of the reference line, and, apparently,
in the other directions too (there is no dependence on h for the
expectations, but still some formalities are missing), but what
about the rotational invariance? This can be proved directly13,
but, instead of doing this now, let us consider another (in fact,
more general14) approach to defining Poisson processes of things.
The idea is to represent these things as points in the parameter
space; i.e., each possible “thing” is described by a (unique) set of
parameters, chosen in some convenient (and clever!) way. Then, we
just take a Poisson point process in that parameter space, which
a process of things naturally.

So, how can one carry this out in our case? Remember that
we already constructed something translationally invariant, so let
us try to find a parameter space where the rotational invariance
would naturally appear. Note that any straight line that does not
pass through the origin can be uniquely determined by two param-
eters: the distance r from the line to the origin, and the angle θ
between the horizontal axis and the shortest segment linking the
line to the origin. So, the idea is to take a realization of a Poisson
point process (with some constant rate) in the parameter space

12 and the two parentheses as well, although it not strictly necessary.
13 please, try to do it!
14 in fact, it is the approach.
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r1 r2 r3

θ1

θ2

θ3

r1

r2
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0
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3

Figure 5.12 Constructing a Poisson line process as a point
process in the parameter space.

R+ × [0, 2π), and translate it to a set of lines in R2, as shown on
Figure 5.12.

Now, what kind of process do we obtain? First, it is clearly
invariant under rotations. Secondly, it is not so obvious that it
should be invariant with respect to translations. Instead of try-
ing to prove it directly, we prefer to show that this construction
is equivalent to the one with reference line (and hence get the
translational invariance for free). Indeed, assume again that the
reference line is the horizontal axis. Then (look at Figure 5.13)
we have θ = α and dx = cosαdr, so the probability that there
is a line of the process crossing the reference line in the interval
[x, x + dx] (with respect to the first coordinate) and having the
direction in the interval [α, α+ dα] is proportional to cosαdrdα,
as required.

At this point we prefer to end this discussion and recommend
the beautiful book [22] to an interested reader; in particular, that
book contains a lot of information about Poisson processes of lines
and (hyper)planes.

Finally, here is the general message of this section: it may be
possible to construct something which can be naturally called a
Poisson process of things, but the construction may be quite non-
trivial. As for the Poisson line process itself, it serves as a sup-
porting example for the previous sentence and as a “get-some-



66 Intermezzo

0

r

(x, 0)

θ
α

dr = cosαdx

dx

Figure 5.13 Equivalence of the two constructions.

intuition” example for the next chapter15, but it is not directly
connected to anything else in the rest of this book. There is one
more reason, however, for its presence here: it is beautiful. As an
additional argument in favor of the last affirmation, let us consider
the following question: what is the distribution of the direction of
a “typical” line from the Poisson line process? Well, it should ob-
viously be uniform (the process is invariant under rotations, after
all). Now, what is the distribution of the direction of a “typical”
line intersecting the reference line? This time, it should obviously
obey the cosine law. And here comes the paradox: a.s. all lines
of the Poisson line process intersect the reference line, so we are
talking about the same sets of lines! So, what is “the direction of
a typical line”, after all?

5.3 Exercises

Soft local times (Section 5.1):

Exercise 5.1 Look again at Figure 5.6. Can you find the value
of σ(8)?

Exercise 5.2 Let (Xi)i≥1 be a Markov chain on a finite set Σ,
with transition probabilities p(x, x′), initial distribution π0, and
stationary measure π. Let A be a subset of Σ. Prove that for any

15 in particular, the reader is invited to pay special attention to Exercises 5.11

and 5.12 below
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Figure 5.14 Constructing a random chord

n ≥ 1 and λ > 0 it holds that

Pπ0
[τA ≤ n] ≥ Pπ0

[
ξ0π0(x)+

n−1∑

j=1

ξjp(Xj, x) ≥ λπ(x), for all x ∈ Σ
]
−e−λπ(A),

(5.8)
where ξi are i.i.d. Exp(1) random variables, also independent of
the Markov chain X.

Exercise 5.3 Find a nontrivial application of (5.8).

Exercise 5.4 Give a rigorous proof of Lemma 5.1 in case Σ is
discrete (i.e., finite or countably infinite set).

Poisson processes of things (Section 5.2):

Exercise 5.5 Let us recall the Bertrand paradox: “what is the
probability that a random chord of a circle is longer than the side
of the inscribed equilateral triangle?”.

The answer, of course, depends on how exactly we decide to
choose the random chord. One may consider (at least) three ap-
parently natural ways, see Figure 5.14 (from left to right):

1. choose two points uniformly and independently, and draw a
chord between them;

2. first choose a radius16 at random, then choose a random point
on it (all that uniformly), and then draw the chord perpendic-
ular to the radius through that point;

3. choose a random point inside the disk (note that, almost surely,
that point will not be the center), and then draw the unique
chord perpendicular to the corresponding radius;

16 i.e., a straight line segment linking the center to a boundary point.
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The author does not ask you to prove that the probability of the
above event will be 1

3
, 1

2
, and 1

4
respectively for the three above

methods, since it is very easy. Instead, let me ask the following
question: how to find the right way to choose a random chord (and
therefore resolve the paradox)? One reasonable idea is to consider
a Poisson line process and condition on the fact that only one line
intersects the circle, so that this intersection generates the chord.
To which of the three above ways it corresponds?

Exercise 5.6 Note that the uniform distribution on a finite set
(or a subset of Rd with finite Lebesgue measure) has the follow-
ing characteristic property : if we condition that the chosen point
belongs to a fixed subset, then this conditional distribution is uni-
form again (on that subset).

Now, consider a (smaller) circle which lies fully inside the origi-
nal circle, and condition that the random chord (that you defined
above) of the bigger circle intersects the smaller one, thus gener-
ating a chord in it as well. Does this induced random chord have
the right distribution?

Exercise 5.7 The above method of defining a random chord
works for any convex domain. What do you think, is there a
right way of defining a random chord for nonconvex (even non-
connected) domains?

Note that for such a domain one straight line can generate sev-
eral chords at once.

Exercise 5.8 Explain the paradox in the end of Section 5.2.

Exercise 5.9 Argue that the above paradox has a lot to do with
the motivating example of Section 5.1; in fact, show how one can
generate the Poisson line process using the “strip” representation
in two ways (with reference line, and without).

Exercise 5.10 (Random billiards) A particle moves with con-
stant speed inside some (connected, but not necessarily simply
connected) domain D. When it hits the boundary, it is reflected in
random direction according to the cosine law17 (i.e., with density
proportional to the cosine of the angle with the normal vector),
independently of the incoming direction, and keeping the absolute
value of its speed. Let Xt ∈ D be the location of the process at

17 recall the construction of the Poisson line process that used the reference line.
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ξ0

ξ1 ξ2

ξ3

(Xt, Vt)
D

Figure 5.15 Random billiard (starting on the boundary
of D)

time t, and Vt ∈ [0, 2π) be the corresponding direction; ξn ∈ ∂D,
n = 0, 1, 2, . . . are the points where the process hits the boundary,
as shown on Figure 5.15.

Prove that

• the stationary measure of the random walk ξn is uniform on ∂D;
• the stationary measure of the process (Xt, Vt) is the product of

uniform measures on D and [0, 2π).

Observe that this result holds for any (reasonable) domain D!
The d-dimensional version of this process appeared in [36] under

the name of “running shake-and-bake algorithm”, and was subse-
quently studied in [8, 9, 10]. For some physical motivation for the
cosine reflection law see e.g. [13] and references therein.

Exercise 5.11 Sometimes, instead of defining a Poisson process
of infinite objects “as a whole”, it is easier to define its image
inside a finite “window”. This is not the case for the Poisson line
processes18, but one can still do it. Let A ⊂ R2 be a convex do-
main. Prove that the following procedure defines a Poisson line
process as seen in A: take a Poisson point process on ∂A, and
then, independently for each of its points, trace a ray (pointing
inside the domain) according to the cosine law.

Then, prove directly (i.e., forget about the Poisson line process

18 I mean, it is not easier
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A

B

Figure 5.16 Poisson line process seen in a finite convex set

A1

A2

Figure 5.17 Poisson line process seen in two disjoint sets;
if a straight line intersects A1 the way shown on the picture,
it must intersect A2.

in R2 for now) that the above procedure is consistent : if B ⊂ A is
convex too, then the restriction of the process in A to B has the
right law (i.e., the same as if we took a Poisson point process on ∂B
with the same intensity, and traced rays from each of its points,
traced independent rays with the cosine law), see Figure 5.16.

Exercise 5.12 Now, let us consider two nonintersecting domains
A1, A2 ⊂ R2, and abbreviate r = max{diam(A1), diam(A1)}, s =
dist(A1, A2). Consider a two-dimensional Poisson line process with
rate λ. It is quite clear that the restrictions of this process on A1

and A2 are not independent, just look at Figure 5.17. However,
in the case s � r one still can decouple them. Let G1 and G2 be



5.3 Exercises 71

two events supported on A1 and A2. This means that, informally
speaking, the occurrence of the event Gk is determined by the
configuration seen on Ak, for k = 1, 2. Prove that, for some positive
constant C we have

∣∣P[G1 ∩G2]− P[G1]P[G2]
∣∣ ≤ Cλr

s
. (5.9)

Exercise 5.13 Find the expected value of the orthogonal pro-
jection of the unit cube on a randomly oriented plane.



6

Two-dimensional random
interlacements

6.1 Introduction: random interlacements in dimension
d ≥ 3

Explain about RI for d ≥ 3.
Mention that all one-dimensional Poisson processes with con-

stant rate can be constructed at once, as projections of a Poisson
process with rate 1 in R× R+, as on Figure 6.1.

........................................
Random interlacements were introduced by Sznitman in [38],

motivated by the problem of disconnection of the discrete torus
Zdn := Zd/nZd by the trace of simple random walk, in dimension 3
or higher. Detailed accounts can be found in the survey [6] and
the recent books [17, 39]. Loosely speaking, the model of random
interlacements in Zd, d ≥ 3, is a stationary Poissonian soup of
(transient) doubly infinite simple random walk trajectories on the

0

λ

R× R+

Figure 6.1 A simultaneous construction of
one-dimensional Poisson processes

72
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integer lattice. There is an additional parameter u > 0 entering the
intensity measure of the Poisson process, the larger u is the more
trajectories are thrown in. The sites of Zd that are not touched by
the trajectories constitute the vacant set Vu. The random inter-
lacements are constructed simultaneously for all u > 0 in such a
way that Vu1 ⊂ Vu2 if u1 > u2. In fact, the law of the vacant set
at level u can be uniquely characterized by the following identity:

P[A ⊂ Vu] = exp
(
− u cap(A)

)
for all finite A ⊂ Zd, (6.1)

where cap(A) is the capacity of A, recall ... (where it was defined).
..................................................

6.2 The two-dimensional case

..............................................
At first glance, the title of this section seems to be meaningless,

just because even a single trajectory of two-dimensional simple
random walk a.s. visits all sites of Z2, so the vacant set would be
always empty. Nevertheless, there is also a natural notion of capac-
ity in two dimensions (cf. Section 6.6 of [26]), so one may wonder if
there is a way to construct a decreasing family (Vα, α > 0) of ran-
dom subsets of Z2 in such a way that a formula analogous to (6.1)
holds for every finite A. This is, however, clearly not possible since
the two-dimensional capacity of one-point sets equals 0. On the
other hand, it turns out to be possible to construct such a family
so that

P[A ⊂ Vα] = exp
(
− πα cap(A)

)
(6.2)

holds for all sets containing the origin (the factor π in the expo-
nent is just for convenience, as explained below). We present this
construction in Section ??. To build the interlacements, we use tra-
jectories of simple random walks conditioned on never hitting the
origin. Of course, the law of the vacant set is no longer translation-
ally invariant, but we show that it has the property of conditional
translation invariance, cf. Theorem 6.2 below. In addition, we will
see that (similarly to the d ≥ 3 case) the random object we con-
struct has strong connections to random walks on two-dimensional
torus. All this makes us believe that “two-dimensional random in-
terlacements” is the right term for the object we introduce in this
paper.
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...........................................................
Our next definitions are appropriate for the transient case. For

a finite A ⊂ Z2, we define the equilibrium measure

êA(x) = 1{x ∈ A}P̂x[τ̂1(A) =∞]µx, (6.3)

and the capacity (with respect to Ŝ)

ĉap(A) =
∑

x∈A
êA(x). (6.4)

Observe that, since µ0 = 0, it holds that ĉap(A) = ĉap(A ∪ {0})
for any set A ⊂ Z2.

Now, we use the general construction of random interlacements
on a transient weighted graph introduced in [41]. In the following
few lines we briefly summarize this construction. Let W be the
space of all doubly infinite nearest-neighbour transient trajectories
in Z2,

W =
{
% = (%k)k∈Z : %k ∼ %k+1 for all k;

the set {m : %m = y} is finite for all y ∈ Z2
}
.

We say that % and %′ are equivalent if they coincide after a time
shift, i.e., % ∼ %′ when there exists k such that %m+k = %m for
all m. Then, let W ∗ = W/ ∼ be the space of trajectories modulo
time shift, and define χ∗ to be the canonical projection from W
to W ∗. For a finite A ⊂ Z2, let WA be the set of trajectories in W
that intersect A, and we write W ∗

A for the image of WA under χ∗.
One then constructs the random interlacements as Poisson point
process on W ∗ × R+ with the intensity measure ν ⊗ du, where ν
is described in the following way. It is the unique sigma-finite
measure on W ∗ such that for every finite A

1W∗A · ν = χ∗ ◦QA,

where the finite measure QA on WA is determined by the following
equality:

QA

[
(%k)k≥1∈F, %0 =x, (%−k)k≥1∈G

]
= êA(x)·P̂x[F ]·P̂x[G | τ̂1(A)=∞].

The existence and uniqueness of ν was shown in Theorem 2.1
of [41].

For a configuration
∑

λ δ(w∗λ,uλ) of the above Poisson process,
the process of random interlacements at level α (which will be
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referred to as RI(α)) is defined as the set of trajectories with label
less than or equal to πα, i.e.,

∑

λ:uλ≤πα
δw∗λ .

Observe that this definition is somewhat unconventional (we
used πα instead of just α, as one would normally do), but we will
see below that it is quite reasonable in two dimensions, since the
formulas become generally cleaner.

It is important to have in mind the following “constructive”
description of random interlacements at level α “observed” on a
finite set A ⊂ Z2. Namely,

• take a Poisson(πα ĉap(A)) number of particles;
• place these particles on the boundary of A independently, with

distribution eA =
(
(ĉapA)−1êA(x), x ∈ A

)
;

• let the particles perform independent Ŝ-random walks (since Ŝ
is transient, each walk only leaves a finite trace on A).

It is also worth mentioning that the FKG inequality holds for
random interlacements, cf. Theorem 3.1 of [41].

The vacant set at level α,

Vα = Z2 \
⋃

λ:uλ≤πα
ω∗λ(Z),

is the set of lattice points not covered by the random interlace-
ment. It contains the origin by definition. In Figure 6.2 we present
a simulation of the vacant set for different values of the parameter.

As a last step, we need to show that we have indeed constructed
the object for which (6.2) is verified. For this, we need to prove
the following fact:

Proposition 6.1 For any finite set A ⊂ Z2 such that 0 ∈ A it
holds that cap(A) = ĉap(A).

Proof Indeed, consider an arbitrary x ∈ ∂A, x 6= 0, and (large) r
such that A ⊂ B(r − 2). Write using (3.19)

P̂x
[
τ̂1(A) > τ̂1

(
∂B(r)

)]
=
∑

%

a(%end)

a(x)

(1

4

)|%|
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α=0.25

α=0.75 α=1.0

α=1.25 α=1.5

α=0.5

Figure 6.2 A realization of the vacant set (dark blue) of
RI(α) for different values of α. For α = 1.5 the only vacant
site is the origin. Also, note that we see the same
neighbourhoods of the origin for α = 1 and α = 1.25; this is
not surprising since just a few new walks enter the picture
when increasing the rate by a small amount.

=
(
1 + o(1)

) 2
π

ln r

a(x)

∑

%

(1

4

)|%|



6.2 The two-dimensional case 77

=
(
1 + o(1)

) 2
π

ln r

a(x)
Px
[
τ1(A) > τ1

(
∂B(r)

)]
,

where the sums are taken over all trajectories % that start at x, end
at ∂B(r), and avoid A ∪ ∂B(r) in between; %end ∈ ∂B(r) stands
for the ending point of the trajectory, and |%| is the trajectory’s
length. Now, we send r to infinity and use (3.25) to obtain that,
if 0 ∈ A,

a(x)P̂x[τ̂1(A) =∞] = hmA(x). (6.5)

Multiplying by a(x) and summing over x ∈ A (recall that µx =
a2(x)) we obtain the expressions in (3.26) and (6.4) and thus con-
clude the proof.

Together with formula (1.1) of [41], Proposition 6.1 shows the
fundamental relation (6.2) announced in introduction: for all finite
subsets A of Z2 containing the origin,

P[A ⊂ Vα] = exp
(
− πα cap(A)

)
.

As mentioned before, the law of two-dimensional random inter-
lacements is not translationally invariant, although it is of course
invariant with respect to reflections/rotations of Z2 that preserve
the origin. Let us describe some other basic properties of two-
dimensional random interlacements:

Theorem 6.2 (i) For any α > 0, x ∈ Z2, A ⊂ Z2, it holds that

P[A ⊂ Vα | x ∈ Vα] = P[−A+ x ⊂ Vα | x ∈ Vα]. (6.6)

More generally, for all α > 0, x ∈ Z2 \ {0}, A ⊂ Z2, and any
lattice isometry M exchanging 0 and x, we have

P[A ⊂ Vα | x ∈ Vα] = P[MA ⊂ Vα | x ∈ Vα]. (6.7)

(ii) With γ′ from (3.19) we have

P[x ∈ Vα] = exp
(
− παa(x)

2

)
= e−γ

′πα/2‖x‖−α
(
1 +O(‖x‖−2)

)
.

(6.8)
(iii) For A such that 0 ∈ A ⊂ B(r) and x ∈ Z2 such that ‖x‖ ≥ 2r

we have

P[A ⊂ Vα | x ∈ Vα] = exp

(
−πα

4
cap(A)

1 +O
(
r ln r ln ‖x‖
‖x‖

)

1− cap(A)

2a(x)
+O

(
r ln r
‖x‖
)
)
.

(6.9)
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(iv) For x, y 6= 0, x 6= y, we have P
[
{x, y} ⊂ Vα

]
= exp

(
− παΨ

)
,

where

Ψ =
a(x)a(y)a(x− y)

a(x)a(y) + a(x)a(x− y) + a(y)a(x− y)− 1
2

(
a2(x) + a2(y) + a2(x− y)

) .

Moreover, as s := ‖x‖ → ∞, ln ‖y‖ ∼ ln s and ln ‖x−y‖ ∼ β ln s
with some β ∈ [0, 1], we have

P
[
{x, y} ⊂ Vα

]
= s−

4α
4−β+o(1). (6.10)

(v) Assume that ln ‖x‖ ∼ ln s, ln r ∼ β ln s with β < 1. Then, as
s→∞,

P
[
B(x, r) ⊂ Vα

]
= s−

2α
2−β+o(1). (6.11)

These results invite a few comments.

Remark 6.3 1. The statement in (i) describes an invariance prop-
erty given that a point is vacant. We refer to it as the condi-
tional stationarity of two-dimensional random interlacements.

2. We can interpret (iii) as follows: the conditional law of RI(α)
given that a distant site x is vacant, is similar – near the origin
– to the unconditional law of RI(α/4). Combined with (i), the
similarity holds near x as well. Moreover, one can also estimate
the “local rate” away from the origin, see Figure 6.3. More
specifically, observe from Lemma ?? (ii) that cap(A2) � ln s

with s = dist(0, A2) large implies cap
(
{0}∪A2

)
= a(s)

2
(1+o(1)).

If x is at a much larger distance from the origin than A2, say
ln ‖x‖ ∼ ln(s2), then (6.9) reveals a “local rate” equal to 2

7
α,

that is, P[A2 ⊂ Vα | x ∈ Vα] = exp
(
− 2

7
πα cap

(
{0} ∪ A2

)
(1 +

o(1))
)
; indeed, the expression in the denominator in (6.9) equals

approximately 1− cap({0}∪A2)

2a(x)
≈ 1− a(s)/2

2a(s2)
≈ 7

8
.

3. By symmetry, the conclusion of (iv) remains the same in the
situation when ln ‖x‖, ln ‖x− y‖ ∼ ln s and ln ‖y‖ ∼ β ln s.

Proof of (i) and (ii) To prove (i), observe that

cap
(
{0, x} ∪A

)
= cap

(
{0, x} ∪ (−A+ x)

)

by symmetry. For the second statement in (i), note that, for A′ =
{0, x} ∪ A, it holds that cap

(
A′
)

= cap
(
MA′

)
= cap

(
{0, x} ∪

MA
)
. Item (ii) follows from the above mentioned fact that cap

(
{0, x}

)
=

1
2
a(x) together with (3.19).
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A1

A2

x

0

s2

s

α1 ≈ 1
4α

α2 ≈ 2
7α

Figure 6.3 How the “local rate” looks like if we condition
on the event that a “distant” site is vacant.

We postpone the proof of other parts of Theorem 6.2, since it
requires some estimates for capacities of various kinds of sets. We
now turn to estimates on the cardinality of the vacant set.

Theorem 6.4 (i) We have

E
(
|Vα ∩B(r)|

)
∼





2π
2−αe

−γ′πα/2 × r2−α, for α < 2,

2πe−γ
′πα/2 × ln r, for α = 2,

const, for α > 2.

(ii) For α > 1 it holds that Vα is finite a.s. Moreover, P
[
Vα =

{0}
]
> 0 and P

[
Vα = {0}

]
→ 1 as α→∞.

(iii) For α ∈ (0, 1), we have |Vα| =∞ a.s. Moreover,

P
[
Vα ∩

(
B(r) \B(r/2)

)
= ∅

]
≤ r−2(1−√α)2+o(1). (6.12)

It is worth noting that the “phase transition” at α = 1 in (ii)
corresponds to the cover time of the torus, as shown in Theorem ??
below.

Proof of (i) and (ii) (incomplete, in the latter case) Part (i) im-
mediately follows from Theorem 6.2 (ii).

The proof of the part (ii) is easy in the case α > 2. Indeed,
observe first that E|Vα| < ∞ implies that Vα itself is a.s. finite.
Also, Theorem 6.2 (ii) actually implies that E|Vα \ {0}| → 0 as
α→∞, so P

[
Vα = {0}

]
→ 1 by the Chebyshev inequality.

Now, let us prove that, in general, P
[
|Vα| < ∞

]
= 1 implies

that P
[
Vα = {0}

]
> 0. Indeed, if Vα is a.s. finite, then one can

find a sufficiently large R such that P
[
|Vα∩ (Z2 \B(R))| = 0

]
> 0.
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Since P[x /∈ Vα] > 0 for any x 6= 0, the claim that P
[
Vα = {0}

]
>

0 follows from the FKG inequality applied to events {x /∈ Vα},
x ∈ B(R) together with

{
|Vα ∩ (Z2 \B(R))| = 0

}
.

As before, we postpone the proof of part (iii) and the rest of
part (ii) of Theorem 6.4. Let us remark that we believe that the
right-hand side of (6.12) gives the correct order of decay of the
above probability; we, however, do not have a rigorous argument
at the moment. Also, note that the question whether V1 is a.s.
finite or not, is open.

Let us now give a heuristic explanation about the unusual be-
haviour of the model for α ∈ (1, 2): in this non-trivial interval, the
vacant set is a.s. finite but its expected size is infinite. The reason
is the following: the number of Ŝ-walks that hit B(r) has Pois-
son law with rate of order ln r (recall (3.27)). Thus, decreasing
this number by a constant factor (with respect to the expecta-
tion) has only a polynomial cost. On the other hand, by doing so,
we increase the probability that a site x ∈ B(r) is vacant for all
x ∈ B(r) at once, which increases the expected size of Vα ∩ B(r)
by a polynomial factor. It turns out that this effect causes the
actual number of uncovered sites in B(r) to be typically of much
smaller order then the expected number of uncovered sites there.

..........................................

6.3 Proofs for random interlacements

6.3.1 Excursions and soft local times

In this section we will develop some tools for dealing with ex-
cursions of two-dimensional random interlacements and random
walks on tori; in particular, one of our goals is to construct a cou-
pling between the set of RI’s excursions and the set of excursions
of the simple random walk X on the torus Z2

n = Z2/nZ2.
First, if A ⊂ A′ are (finite) subsets of Z2 or Z2

n, then the excur-
sions between ∂A and ∂A′ are pieces of nearest-neighbour trajec-
tories that begin on ∂A and end on ∂A′, see Figure 6.4, which is,
hopefully, self-explanatory. We refer to Section 3.4 of [12] for for-
mal definitions. Here and in the sequel we denote by (Z(i), i ≥ 1)
the (complete) excursions of the walk X between ∂A and ∂A′, and

by (Ẑ(i), i ≥ 1) the RI’s excursions between ∂A and ∂A′ (depen-



6.3 Proofs for random interlacements 81

%(1)

%(2)

∂A ∂A

∂A′

∂A′

Figure 6.4 picture way too wide! Excursions (pictured
as bold pieces of trajectories) for simple random walk on the
torus (on the left), and random interlacements (on the
right). Note the walk “jumping” from right side of the
square to the left one, and from the bottom one to the top
one (the torus is pictured as a square). For random
interlacements, two trajectories, %1,2, intersect the set A;
the first trajectory produces two excursions, and the second
only one.

dence on n,A,A′ is not indicated in these notations when there is
no risk of confusion).

Now, assume that we want to construct the excursions of RI(α),
say, between ∂B(y0, n) and ∂B(y0, cn) for some c > 0 and y0 ∈ Z2.
Also, (let us identify the torus Z2

n1
with the square of size n1

centered in the origin of Z2) we want to construct the excursions
of the simple random walk on the torus Z2

n1
between ∂B(y0, n)

and ∂B(y0, cn), where n1 > n+ 1. It turns out that one may build
both sets of excursions simultaneously on the same probability
space, in such a way that, typically, most of the excursions are
present in both sets (obviously, after a translation by y0). This
is done using the soft local times method; we refer to Section 4
of [34] for the general theory (see also Figure 1 of [34] which gives
some quick insight on what is going on), and also to Section 2
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of [11]. Here, we describe the soft local times approach in a less
formal way. Assume, for definiteness, that we want to construct
the simple random walk’s excursions on Z2

n1
, between ∂A and ∂A′,

and suppose that the starting point x0 of the walk X does not
belong to A.

We first describe our approach for the case of the torus. For x /∈
A and y ∈ ∂A let us denote ϕ(x, y) = Px[Xτ1(A) = y]. For an excur-
sion Z let ι(Z) be the first point of this excursion, and `(Z) be the
last one; by definition, ι(Z) ∈ ∂A and `(Z) ∈ ∂A′. Clearly, for the
random walk on the torus, the sequence

(
(ι(Z(j)), `(Z(j))), j ≥ 1

)

is a Markov chain with transition probabilities

P(y,z),(y′,z′) = ϕ(z, y′)Py′ [Xτ1(∂A′) = z′].

Now, consider a marked Poisson point process on ∂A×R+ with
rate 1. The (independent) marks are the simple random walk tra-
jectories started from the first coordinate of the Poisson points
(i.e., started at the corresponding site of ∂A) and run until hit-
ting ∂A′. Then (see Figure 6.5; observe that A and A′ need not
be necessarily connected, as shown on the picture)

• let ξ1 be the a.s. unique positive number such that there is only
one point of the Poisson process on the graph of ξ1ϕ(x0, ·) and
nothing below;

• the mark of the chosen point is the first excursion (call it Z(1))
that we obtain;

• then, let ξ2 be the a.s. unique positive number such that the
graph of ξ1ϕ(x0, ·) + ξ2ϕ(`(Z(1)), ·) contains only one point of
the Poisson process, and there is nothing between this graph
and the previous one;

• the mark Z(2) of this point is our second excursion;

• and so on.

It is possible to show that the sequence of excursions obtained in
this way indeed has the same law as the simple random walk’s ex-
cursions (in particular, conditional on `(Z(k−1)), the starting point
of kth excursion is indeed distributed according to ϕ(`(Z(k−1)), ·));
moreover, the ξ’s are i.i.d. random variables with Exponential(1)
distribution.

So, let us denote by ξ1, ξ2, ξ3, . . . a sequence of i.i.d. random vari-
ables with Exponential distribution with parameter 1. According
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A1 A′
1

A′
2

A2

R+

∂A1 ∂A2

ξ1ϕ(x0, ·)

y1 = ι(Z(1))

Z2
n

y1

`(Z(1))

y2 = ι(Z(2))

y2

y3

y3 = ι(Z(3))

ξ1ϕ(x0, ·) + ξ2ϕ(`(Z
(1)), ·)

ξ1ϕ(x0, ·) + ξ2ϕ(`(Z
(1)), ·) + ξ3ϕ(`(Z

(2)), ·)

Z(1)

Z(2)

Z(3)

Figure 6.5 Construction of the first three excursions
between ∂A and ∂A′ on the torus Z2

n using the soft local
times (here, A = A1 ∪A2 and A′ = A′1 ∪A′2)

to the above informal description, the soft local time of kth ex-
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cursion is a random vector indexed by y ∈ ∂A, defined as follows:

Lk(y) = ξ1ϕ(x0, y) +
k∑

j=2

ξjϕ(`(Z(j−1)), y). (6.13)

For the random interlacements, the soft local times are defined

analogously. Recall that ĥmA defines the (normalized) harmonic

measure on A with respect to the Ŝ-walk. For x /∈ A and y ∈ ∂A
let

ϕ̂(x, y) = Px[Ŝτ̂1(A) = y, τ̂1(A) <∞] + Px[τ̂1(A) =∞] ĥmA(y).
(6.14)

Analogously, for the random interlacements, the sequence
(
(ι(Ẑ(j)), `(Ẑ(j))), j ≥

1
)

is also a Markov chain, with transition probabilities

P̂(y,z),(y′,z′) = ϕ̂(z, y′)Py′ [Ŝτ̂1(∂A′) = z′].

The process of picking the excursions for the random interlace-
ments is quite analogous: if the last excursion was Ẑ, we use the
probability distribution ϕ̂(`(Ẑ), ·) to choose the starting point of
the next excursion. Clearly, the last term in (6.14) is needed for ϕ̂

to have total mass 1; informally, if the Ŝ-walk from x does not
ever hit A, we just take the “next” trajectory of the random in-
terlacements that does hit A, and extract the excursion from it
(see also (4.10) of [43]). Again, let ξ̂1, ξ̂2, ξ̂3, . . . be a sequence of
i.i.d. random variables with Exponential distribution with param-
eter 1. Then, define the soft local time of random interlacement
of kth excursion as

L̂k(y) = ξ̂1ϕ̂(x0, y) +
k∑

j=2

ξ̂jϕ̂(`(Ẑ(j−1)), y). (6.15)

6.4 Exercises

add Lawler’s book, papers about RI (2dim, and more), Kendall-
Moran, Polya’s original paper



Hints and solutions to selected exercises

Exercise 2.3.

You may find it useful to look at [15].

Exercise 2.4.

Use the cycle criterion (Theorem 2.2) with e.g. the cycle (0, 0)→
(0, 1)→ (1, 1)→ (1, 0)→ (0, 0).

Exercise 2.5.

Fix an arbitrary x0 ∈ Σ, set A = {x0}, and

f(x) = Px[τx0
<∞] for x ∈ Σ

(so, in particular, f(x0) = 1). Then (2.8) holds with equality for
all x 6= x0, and, by transience, one can find y ∈ Σ such that
f(y) < 1 = f(x0).

Exercise 2.6.

Let p = p(n, n+1) (for all n), and assume for definiteness that p >
1
2
. Consider the function f(x) =

(
1−p
p

)x
and the set A = (−∞, 0];

then use Theorem 2.4.
Note also that, for proving that this random walk is transient,

one may also use Theorem 2.5.15 of [29] (which we did not consider
in this book) together with a simpler function f(x) = x. There
are many different Lyapunov function tools that one may use!

Exercise 2.7.

Quite analogously to (2.11)–(2.13), it is elementary to obtain for
f(x) = ‖x‖−α

E[f(Xn+1)−f(Xn) | Xn = x] = −α‖x‖−α−2
(1

2
−
(

1+
α

2

)1

d
+O

(
‖x‖−1

)))
.
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The inequality 1
2
−
(
1 + α

2

)
1
d
> 0 solves to α < d− 2, so any fixed

α ∈ (0, d− 2) will do the job.
By the way, what do you think, is it surprising that the “critical”

value for α is d− 2? Read Section 3.1 and think again about this
question!

Exercise 2.9.

Hint: being Xn the two-dimensional walk, define first its covaria-
tion matrix by M := E0

(
(X1)>X1

)
. Find a suitable linear trans-

formation1 of the process for which M will become the identity
matrix. Then use the same Lyapunov function that worked for the
simple random walk.

Exercise 2.11 (a).

Fix an arbitrary x0 ∈ Σ, and set A = {x0}. Observe that, for
x 6= x0,

Exτx0
=
∑

y∈Σ

p(x, y)Ey(1 + τx0
),

and that ∑

y∈Σ

p(x0, y)Eyτx0
= Ex0

τ+
x0
<∞,

so the function f(x) = Exτx0
satisfies (2.16)–(2.17) with ε = 1.

Exercise 2.12.

Note that the calculation (2.11) is dimension-independent, and (2.12)
remains valid as well, with obvious changes. Then obtaining (2.18)
is straightforward (use (2.11) with α = 1 and observe that the fac-
tor 1

4
in the next display after (2.11) will become 1

2d
in the general

case). As for (2.19), show first that

Ex(‖S(d)
1 ‖2 − ‖x‖2) = 1 for all x ∈ Zd,

and then use (2.18) together with the identity (b−a)2 = b2−a2−
2a(b− a) with a = ‖x‖, b = ‖S(d)

1 ‖.

Exercise 2.13.

Hint: try using the following Lyapunov functions: f(x) = x2 for
(a), f(x) = xα for some α > 0 for (b), and f(x) = x−α for (c).
Note that α will depend on ε in (b) and (c)!

1 why does it exist?
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Exercise 2.14.

Hint: use Exercise 2.12.

Exercise 3.1.

First, prove that

Px[Sn = y, τ1(∂A) > n] = Py[Sn = x, τ1(∂A) > n]

for any n (hint: which trajectories correspond to the two above
events?), and then deduce the desired result.

Exercise 5.1.

Unfortunately, only with what one sees on Figure 5.6, it is not
possible to find it. Think, for instance, that there may be a point
just slightly above the top of the biggest triangle, which (I mean,
the point) did not make it into the picture.

Exercise 5.2.

Due to Proposition 5.2, we can find a coupling Q between the
Markov chain (Xi) and an i.i.d. collection (Yi) (with law π), in
such a way that for any λ > 0 and t ≥ 0,

Q
[
{Y1, . . . , YR} ⊂ {X1, . . . , Xt}

]

≥ Pπ0

[
ξ0π0(x) +

t−1∑

j=1

ξjp(Xj, x) ≥ λπ(x), for all x ∈ Σ
]
,(6.16)

where ξi are i.i.d. Exp(1) random variables, independent of R,
a Poisson(λ)-distributed random variable. Then, obtain from a
simple calculation the fact that P[{Y1, . . . , YR}∩A = ∅] = e−λπ(A).

Exercise 5.3.

If you find one, please, let me know.

Exercise 5.5.

To the second one. See also [21] for a more complete discussion of
this.

Exercise 5.9.

Think, how one can generate the lines in the order corresponding

(a) to the distances from the origin to the lines;
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(b) to the distances from the origin points of intersection with the
horizontal axis.

Exercise 5.13.

Answer: 3/2. It is the last problem of the famous Mathematical
Trivium [1] of Vladimir Arnold. Clearly, the problem reduces to
finding the expected area of a projection of a square (note that
a.s. only three faces of the cube contribute to the projection),
and then one can calculate the answer doing a bit of integration.
There is another way to solve it, however, that does not require
any computations at all, and works for any convex body, not only
for the cube. One may reason in the following way:

• imagine the surface of a convex body to be composed of many
small plaquettes, and use the linearity of expectation to argue
that the expected area of the projection equals the surface area
of the body times a constant (that is, it does not depend on the
surface’s shape itself!);
• to obtain this constant, consider a certain special convex body

whose projections are the same in all directions.
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