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Abstract

The cDNA microarray technology allows us to estimate the expression of thousands of genes of a given tissue. It is

natural then to use such information to classify different cell states, like healthy or diseased, or one particular type of

cancer or another. However, usually the number of microarray samples is very small and leads to a classification prob-

lem with only tens of samples and thousands of features. Recently, Kim et al. proposed to use a parameterized distri-

bution based on the original sample set as a way to attenuate such difficulty. Genes that contribute to good classifiers in

such setting are called strong. In this paper, we investigate how to use feature selection techniques to speed up the quest

for strong genes. The idea is to use a feature selection algorithm to filter the gene set considered before the original

strong feature technique, that is based on a combinatorial search. The filtering helps us to find very good strong gene

sets, without resorting to super computers. We have tested several filter options and compared the strong genes

obtained with the ones got by the original full combinatorial search.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Feature selection; Strong genes; Gene expression analysis; High-dimensional problem; Small sample size
0167-8655/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.patrec.2004.11.017

* Corresponding author. Tel.: +55 11 3091 5178; fax: +55 11

3091 6134.

E-mail address: pjssilva@ime.usp.br (P.J.S. Silva).
1. Introduction

There are many ways to design a classifier from

sample data. The worth of such classifier depends

on the suitability of the particular classification rule

to the feature-label distribution and the amount of

sample data. Since we are in the context of very
ed.
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small sample size, the latter issue is our main con-

cern in this work. This lack of training data makes

it necessary to apply simple classification rules to

avoid overfitting. Here we are interested in the par-

ticular case in which the data are linear separable,
and therefore a linear classifier (perceptron model)

is suitable for classification. Although ordinarily

such an assumption might seem too strong, it has

proven to be the case in many real world applica-

tions coming from gene expression analysis of

cancer data (for instance see Kim et al., 2002a,b;

Morikawa et al., 2003; Luo et al., 2003; Bomprezzi

et al., 2003; Simon, 2003).
The error rate of designed classifiers over the

population of samples tends to have a large vari-

ance in a small-sample setting. Hence, the selection

of feature sets is problematic. Given a large set of

potential features, it is necessary to find a small

subset that provides good classification. Small fea-

ture sets are prudent because the complexity of the

classifier, and therefore the data requirement, typ-
ically grows with increasing numbers of features.

Even with small feature sets, if there are thousands

of features, then the number of possible feature

sets can be astronomical. Hence, even if the classes

are moderately separated, for small samples there

may be thousands of feature sets whose error esti-

mates are close to zero. It would be wrong to con-

clude that the true errors of all corresponding
classifiers are small. Low estimation of a classifier�s
population error can result from the peculiarity of

the particular sample and/or the large deviation

between the true error of the designed classifier

and its estimated error computed from the same

training data from which it has been designed. In

our application of direct interest, cancer classifica-

tion, cross-validation error estimation has been
very popular; however, there are serious questions

with regard to its application in the case of very

small settings (Braga-Neto et al., 2004; Braga-

Neto and Dougherty, 2004a,b).

To lower both the risks of overfitting and choos-

ing a feature set based on a low error estimate,

rather than design a classifier directly from a small

sample, Kim et al. (2002a) have recently proposed
to design a perceptron from a distribution based

on the sample and for which it is more difficult to

distinguish the labels. This is done in a parameter-
ized manner in which the parameter relates to the

difficulty of classification. The resulting features

are called ‘‘strong features.’’ In the case of percep-

trons, a strictly analytic approach is used to find

both the classifier and its error. Analytic design
and error estimation facilitate efficient computation

in the context of a large set of potential features;

nonetheless, the computation becomes quickly

impossible and the method has been applied using

a supercomputer. Here we consider the efficacy of

several different feature-selection methods in the

context of the strong-feature algorithm.

The immediate application of interest is classifi-
cation via cDNA microarrays, which provide

expression measurements for thousands of genes

simultaneously (DeRisi et al., 1997; Duggan

et al., 1999; Schena et al., 1995). A key goal for

the use of expression data is to perform classifica-

tion via different expression patterns. A successful

classifier provides a list of genes whose product

abundance is indicative of important differences
in cell state, such as healthy or diseased, or one

particular type of cancer or another. Two central

goals of molecular analysis of disease are to use

such information to directly diagnose the presence

or type of disease and to produce therapies based

on the disruption or correction of the aberrant

function of gene products whose activities are cen-

tral to the pathology of a disease. Correction
would be accomplished either by the use of drugs

already known to act on these gene products or

by developing new drugs targeting these gene

products. Achieving these goals requires designing

a classifier that takes a vector of gene expression

levels as input and outputs a class label, which pre-

dicts the class containing the input vector. Classifi-

cation can be between different kinds of cancer,
different stages of tumor development, or many

other such differences.

The inherent class-separating power of expres-

sion data has been clearly demonstrated (Ben-

Dor et al., 2001; Golub et al., 1999; Hedenfalk

et al., 2001; Khan et al., 2001; Kobayashi et al.,

2003). Going further, sufficient information must

be vested in sets of genes small enough to serve
as either convenient diagnostic panels or as candi-

dates for the very expensive and time-consuming

analysis required to determine if they could serve
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as useful targets for therapy. The problem at this

stage is that there is a very large set of gene-expres-

sion profiles (features) and typically a small num-

ber of microarrays (sample points), making it

difficult to find the best features from which to
construct a classifier. We require methods to find

gene sets that can perform accurate classification

in distributional settings whose dispersions are in

excess of the sample data. In this direction, the

strong-feature methodology has been used success-

fully to find feature sets in several oncogenomic

settings: breast cancer (Kim et al., 2002a), glioma

(Kim et al., 2002b), lymphoma (Kobayashi et al.,
2003), and leukemia (Morikawa et al., 2003). The

purpose of this paper is to examine the perfor-

mance of a number of feature-selection methods

for the strong-feature methodology.
2. Finding strong features: original algorithm

In this section, we review the strong-feature

algorithm. We denote random variables by capital

italic letters A,B, . . . ,Z. A random vector will be

denoted by a capital italic boldface letter. For

example X = (X1,X2, . . . ,Xd). A binary classifica-

tion involving the random feature vector X is

determined by a binary random variable Y taking

the values (class labels) 0 and 1. A classifier or filter
is a function of X which is an estimator of Y. For a

feature vector x = (x1,x2, . . . ,xd), a perceptron is

defined by T(hw,xi � c), where w 2 Rd , h Æ, Æi de-

notes the usual inner product, and T is a threshold

function, T(z) = 0 if z 6 0, and T(z) = 1 if z > 0.

That is, the perceptron splits Rd into two regions

separated by the hyperplane hw,xi = c. Hence, its

design requires estimating the normal to the hyper-
plane w and its displacement coefficient c.

In order to lower the risk of choosing a feature

set based on a low error estimate, rather than de-

sign a classifier (perceptron) directly from a small

sample, Kim et al. (2002a) propose in the original

strong feature paper to design the perceptron from

a distribution based on the sample. This is done by

spreading the sample data using an independent
random distribution parameterized by its variance

r2. The bigger r2, the more difficult is the classifi-

cation. Since the spread data are parameterized by
the variance r2, so is the resulting optimal percep-

tron, wr, which is called the r-perceptron. The

error, er, for wr is called the r-error and is com-

puted analytically from the defining hyperplane.

For r = 0, there is no spreading of the sample mass
and er is equal to the resubstitution error estimate

for the sample. The strength of the feature vector

X relative to the sample and spread distribution

is defined by fX(r) = 1 � er.
When designing a classifier from training data,

it is necessary to choose values of the spread r.
A simple approach is to set a threshold for the

r-error and push r as high as possible while keep-
ing the error below the threshold. A systematic

approach is to derive a dispersion value for the

sample data and use that value to arrive at normal-

ized spread values. For feature vector

X = (X1,X2, . . . ,Xd), let rk,C be the standard devia-

tion of Xk on the class C, and let rmax be the maxi-

mum over all rk,C for both classes. In practice, rk,C
is estimated from the training data. Choosing a
normalized spread, rnor, between 0 and 1, a corre-

sponding spread for the sample data is obtained by

r = rnorrmax. Using rmax for the normalization

maintains a conservative attitude towards estima-

tion of misclassification error. Other approaches

are possible. For instance, when the number of

points in a class is very small, decent estimation

of rk,C is not possible, so the variances might be
pooled in some way. The effects of different values

of rnor have been considered in the context of a

model problem, and in that context rnor = 0.6 pro-

vides a conservative estimate of the true error, with

values exceeding 0.6 providing more conservative

estimates (Kim et al., 2002a). Another approach

to find good values for rnor is presented in

(Braga-Neto and Dougherty, 2004a). There, the
authors show how to choose the parameter in

order to get nearly unbiased error estimates.

Henceforth, we will drop the subscript and in all

cases let r denote the normalized spread.

An exhaustive search to find strong feature sets

for increasing values of r is combinatorial. For

large gene sets in the thousands, the full search

can only be implemented using supercomputers
for d 6 3. For larger sets, or to decrease the com-

putational effort, Kim et al. (2002a) utilized a

guided random walk implementation. The algo-
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rithms discussed in the paper try to reduce the

amount of work needed to make it possible to

use an ordinary workstation for d = 3, and make

the method feasible for d > 3. We restrict our

attention to d = 3 for two reasons: first, it allows
comparison with the full search; second, given

the small samples involved, a maximum of 3-gene

classification is prudent, and this is what has been

done in the applications.
3. Short description of the feature selection methods

In order to save computational effort in the

exhaustive search to find strong feature sets, we

propose to use a feature selection algorithm to de-

crease the number of genes to a manageable

amount. After this first pre-selection phase, full

search should be attempted on the pre-selected

genes in order to recover the best strong gene sets.

Following this strategy, we hope to be able to find
many of the best sets, while decreasing consider-

ably the required computational resources.

We present below 5 feature selection algorithms

that may be used in the pre-selection phase. Two

algorithms come from the bioinformatics literature:

guided random walk and ranked gene list. The

guided random walk was proposed by Kim et al.

(2002a) in the original strong gene paper to save
computational resources. Ranked gene lists have

been used byHedenfalk et al. (2001) to find differen-

tially expressed genes. The next three methods come

from the feature selection literature. The first, prin-

cipal component analysis, is one of the most popu-

lar dimensionality reduction techniques. However,

as it builds artificial features from the original ones,

it may not be well suited for our application. Next,
we present the sequential floating search method

(SFFS) that is very popular in the feature selection

community (Jain and Zongker, 1997; Pudil et al.,

1994). Finally, there is the linear support vector

machine (SVM). It possesses a character akin to

the strong feature definition that we will explore.

3.1. Guided random walk

This method was proposed in the original

strong features paper (Kim et al., 2002a, Section
5). It uses probabilistic information build from a

previous full search considering a very small num-

ber of genes, typically 2. The main idea is based on

the assumption that if a feature is part of a small

good feature set, it will be more likely that the
same feature enters in a larger good set. Hence,

the algorithm gives a higher probability to accept

those features. Moreover, the method tries to ex-

plore different regions of the search space to find

many good solutions.
3.2. Ranked gene list

In this approach (Hedenfalk et al., 2001), each

gene is weighted based on its discriminative ability

for two distinct classes. This discriminative weight

is evaluated according to a gene�s impact on mini-

mizing its class cluster volume and maximizing

center-to-center inter-class distance. More for-

mally, let fx0;1; x0;2; . . . ; x0;n0g and fx1;1;x1;2;
. . . ; x1;n1g be the set of samples labelled 0 and 1
respectively. The weight for each feature is evalu-

ated by

dci :¼
Pn0

j¼1x
0;j
i

n0
�
Pn1

j¼1x
1;j
i

n1

�����
����� ð1Þ

md0
i :¼

X
j 6¼l

jx0;ji � x0;li j

md1
i :¼

X
j 6¼l

jx1;ji � x1;li j ð2Þ

mdi :¼
md0

i þ md1
i

n0
2

� �
þ

n1
2

� � ð3Þ

wi :¼
dci

mdi þ a
ð4Þ

where for a given gene i, dci is the distance between

the mean expressions of both classes; md0
i and md1

i

are accumulated distances between the expressions

of all pairs in the same class; mdi is the mean dis-

tance between the expressions of pairs in the same

class; and wi is the final weight associated to the

gene. The constant a > 0 should be small, and is

only used to avoid division by zero. It is easy to
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see that wi increases if the prototypes for both

classes are far from each other. On the other hand,

it decreases whenever the classes are not closely

packed.

3.3. Principal component analysis

Although the terms ‘‘feature selection’’ and

‘‘feature extraction’’ are often used interchange-

ably in the literature, it is important to make a dis-

tinction between them. The term ‘‘feature

selection’’ refers to algorithms that select the best

subset of the input feature set. Methods that create
new features based on transformations or combi-

nations of the original features are called ‘‘feature

extraction.’’

As in Section 2, let d denote the number of fea-

tures present in n sample vectors. One of the better

known linear feature extractors is the principal

component analysis (PCA), or the Karnhunen–

Loève expansion. It computes the m largest eigen-
vectors of the d · d covariance matrix of the

samples, and use them as a base for a m-dimen-

sional space that captures most of the variation

present in the original data. Hence, the PCA gen-

erates new features (linear combinations of given

features) that are the most expressive ones (eigen-

vectors with the largest eigenvalues). Although

these new features may possess discriminative abil-
ity, they may not have a clear physical meaning.

This is especially important in gene-expression-

based classification.

To go back to the original features, one may try

to identify the coordinates of the principal compo-

nents that have the most expressive values, that is,

the largest absolute values. Given a principal com-

ponent, this may be done as follows:

(1) Divide the interval between the minimum and

the maximum absolute values of the coordi-

nates of the given principal component in

100 parts. More formally, find s1, . . . ,s101
equally spaced such that s1 and s101 are the

minimum and the maximum absolute values

of the coordinates respectively.
(2) For each si compute the number of coordi-

nates whose absolute value is larger than si.
This number will be called li.
(3) Find the largest si such that li � li+1 is strictly
greater than a given lower bound. This lower

bound is certainly subjective and in our exper-

iments we have defined it to be 2.

(4) Select all the coordinates whose absolute value
is larger than si selected above.

Hence, for each principal component, we have a

feature subset. Then, the feature set for the full-

search step is the union of all those feature subsets.

3.4. Sequential forward floating method (SFFS)

Thismethodwas introduced by Pudil et al. (1994)

and it is very popular among the feature selection

community (Jain and Zongker, 1997). It starts with

an empty feature set and then it tries to improve the

set by adding a and removing features at each step

based on the new set quality. The method is a devel-

opment of previous efforts like the ‘‘Plus l––Take

away r’’ (Somol et al., 1999) where the number of
features that will be added and removed are dynam-

ically computed at each step.

The quality measure required by the SFFS was

defined to be the error given by the strong-feature

model for each gene set. Note that this error is easy

to compute since it is based on the solution of a

small linear equation, as described in (Kim et al.,

2002a, Section 4). Note that this implies that the
selected genes depend on the parameter r.

The SFFS is controlled by some parameters

that have to be supplied beforehand. First, we

need to choose the target size for the group of

genes that should be pre-selected. A naive ap-

proach would be to ask the SFFS to do all the

pre-selection in one step, i.e. ask it to search for

a group of approximately 100 genes. This is not
desirable, since the method takes too long to com-

plete with such large group sizes. On the other

hand, it is interesting to explore groups with many

genes, as we are particularly interested in genes

that combine with other genes to generate good

classifiers. After some computational experiments,

we have settled on running the SFFS to find

groups of 10 genes that work well together. We
run then the SFFS many times to gather the de-

sired number of genes in the pre-selection phase.

Another important choice is the d parameter that



P.J.S. Silva et al. / Pattern Recognition Letters 26 (2005) 1444–1453 1449
controls when the floating search may stop. We

have used d = 3. These parameters showed the best

compromise between the quality of the pre-

selected genes, considering the best triples that

could be found among them, and computational
time required by the pre-selection step.

3.5. Linear support vector machine (SVM)

If we consider the definition of feature strength

given in Section 2, we can observe that it is akin

to the idea of support vector machines (Vapnik,

1995). Given a classification hyperplane, the error
associated to each sample that is correctly classified

is negatively correlated to its distance to the hyper-

plane. Therefore, if we can find a hyperplane that

correctly classifies all the data and is far from both

sample sets, it should present high strength. Of

course, it may well be that it is possible to find suf-

ficiently strong classifiers when the sample data are

not linearly separable, and not find them when the
data are linearly separable. The point here is that

strong classification tends to be more achievable for

linearly separable data, and, for the gene-expression

data we are considering, there is typically a large

number of gene sets for which the data arising from

the different disease types are linearly separable.

To effectively use the SVM, we need to ensure

that it will select the best-separating features
(genes). The idea of using support vector machines

for feature selection was introduced by Bradley

et al. (1998). In order to induce feature selection

they have proposed to change the space norm:

instead of using the common Euclidean norm, they

suggest to use the infinity norm.

Let X0 2 Rn0�d be a real matrix that has as each

row the sample vectors x0;1; x0;2; . . . ; x0;n0 trans-
posed. Analogously, X1 2 Rn1�d is a matrix com-

posed by the samples labelled 1. As indicated in

(Bradley et al., 1998), to find the best separating

hyperplane with respect to the infinity norm we

must solve the following optimization problem:

min
Xd

k¼1

jwkj

s:t: X0w P ceþ e

X1w 6 ce� e

ð5Þ
where e denotes a vector of 1s of appropriate

dimension.

Moreover, to make problem 5 more effective to

find strong genes we must take into account the

way the spread increases with the standard devia-
tion of the selected features. As described in Sec-

tion 2, we should prefer features with small

inner-class standard deviation. We can use the

standard deviation as a penalty parameter in the

objective function to achieve this effect. Letting

rk,0 and rk,1 be the standard deviations of the

samples labelled 0 and 1, the problem we actually

solve is

min
Xd

k¼1

maxfrk;0; rk;1gjwkj

s:t: X0w P ceþ e

X1w 6 ce� e

ð6Þ

This problem may be effectively solved if we intro-

duce the change of variables wþ
k � wk

� :¼ wk, where

wþ
k P 0 and w�

k P 0 represent the positive and the

negative parts of wk. Then, 6 becomes

min
Xd

k¼1

maxfrk;0; rk;1gðwþ
k � w�

k Þ

s:t: X0wþ � X0w� P ceþ e

X1wþ � X1w�
6 ce� e

wþ;w� P 0

ð7Þ

This is a linear programming problem with 2d + 1

variables and only n constraints. Note that the

number of variables is quite large, since it is equal

to twice the number of genes in the array. On the

other hand, the number of constraints is small and

coincides with the number of array samples.
The small number of constraints have two inter-

esting consequences:

(1) A typical method to solve 7 should be very effi-

cient as the linear algebra will deal with n · n

matrices.

(2) The maximum number of genes that can be

selected by a simplex method is n, since this
is the size of a basic solution. This number is

usually very small when compared to the total
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number of genes in the array. In our tests, the

number of selected genes is even smaller, usu-

ally close to n/2.
4. Computational experiments

We have performed a number of computational

experiments based on the different proposed strat-

egies to find strong gene sets. In all experiments,

the full gene list has been reduced to approximately
100 genes using the methods described in Section 3,

after which a full search is employed to find the

best feature sets using the pre-selected genes. The

results are easily split in two: the guided random

walk and PCA do not succeed on finding good

gene sets; on the other hand, the other meth-

ods––ranked gene list, SFFS, and linear SVM––

perform very well even if compared to a full search
of all subsets. We consider two cancer–related

gene-expression data sets based on cDNA

microarrays.

The BRCA data set (Hedenfalk et al., 2001) has

also been used in the original strong-gene study

(Kim et al., 2002a). It involves expression profiles

of breast tumors from patients carrying mutations

in the predisposing genes, BRCA1 (7 samples) or
BRCA2 (8 samples), or from patients not expected

to carry a hereditary predisposing mutation (7 sam-

ples). Starting with 3226 genes we apply the strong-

feature algorithm with feature selection to subsets

of size 3 to find perceptrons for four classification

problems: (1) BRCA1 tumors versus the collection

of both BRCA2 and sporadic tumors; (2) BRCA2

tumors versus the collection of both BRCA1 and
sporadic tumors; (3) BRCA1 tumors versus the

BRCA2 tumors, ignoring the sporadic tumors;

and (4) BRCA1 tumors and a possibly misclassified

sporadic tumor versus the collection of both

BRCA2 and other sporadic tumors.

The second data set has been used to classify

childhood small, round blue cell tumors (SRBCTs)

into four cancer types: neuroblastoma (NB, 12
samples), rhabdomyosarcoma (RMS, 20 samples),

Burkitt�s lymphoma (BL, 8 samples), and the

Ewing tumor family (EWS, 23 samples) (Khan

et al., 2001). There are 6567 genes on each micro-

array, and omitting genes that do not satisfy a
threshold level of expression reduces the number

to 2308. We use the 63 microarrays used for train-

ing in the original study. We consider four classifi-

cation problems: (1) BL versus others; (2) NB

versus others; (3) EWS versus others; and (4)
RMS versus others.

The experiments have been run for different val-

ues of r: 0.4, 0.5, 0.6, and 0.7. The results are pre-

sented using graphics showing the error of the best

triples (triples with smallest r-error). In the graph-

ics, the vertical axis represent the error and the

horizontal axis the position of the best triples.

Therefore, if for a given method the error of the
triple in position 5 is 0.005, then 0.005 is the r-
error of the fifth best triple. All results, together

with related information, such as the pre-selected

genes and the best performing groups, are pre-

sented on the associated website at http://www.
vision.ime.usp.br/strong_features. For the sake of

completeness we present typical graphs for the re-

sults below.
As it can be seen in Fig. 1, pre-selection of the

genes using ranked gene list, SFFS, and linear

SVM is very successful on finding the best possible

triples. Actually, the result is surprisingly good if

we consider that the the amount of triples investi-

gated after the pre-selection is four orders of mag-

nitude smaller than the number of triples visited by

full search. We believe that for highly separable
data it is very convenient to try first one of these

pre-selection strategies.

On the other hand, as shown by Fig. 2, both

PCA and guided random walk fail to recover the

best triples. This result is somewhat expected for

the PCA, as it is a feature extraction method, in-

stead of a feature selection algorithm. However

the result for the guided random walk is unex-
pected since it was the method proposed by Kim

et al. (2002a) in the original strong gene paper to

save computational effort. We believe that both

methods should be avoided in the strong gene

search.

Another way to validate the quality of the genes

that are pre-selected by the above methods is to

compare them with the genes that are present more
often in the best triples found by full search. This is

done in Table 1 below. For each test case we have

selected the 25 genes that appear more often in the

http://www.vision.ime.usp.br/strong_features
http://www.vision.ime.usp.br/strong_features
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Fig. 1. Computational test comparing the performance of ranked list, SFFS, linear SVM, and full search (no pre-selection). The first

graph presents the result for the separation of the BRCA2 class from the others in the BRCA data. The second graph represents the

separation of NB class from the others in the SRBCT data. In both cases r = 0.6.
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100 best triples. At each entry we present the num-

ber of those 25 genes that were pre-selected by

each pre-selection method.

Once again, we can see that the SFFS, linear
SVM and ranked gene list are very successful on

finding the best genes. On the other hand, PCA

performance is very poor.

Finally, Table 2 below compares the computa-

tional times required by the best pre-selection
methods and full search. Full search was performed

using a Pentium III 800 MHz cluster node. All the

other tests were done in a Athlon 1.2 GHz desktop.

Both processors are roughly comparable, with the
Athlon based computer being a little faster, but cer-

tainly not more than 1.5 faster than the Pentium

computer. For each experiment we present three

time values. First the pre-selection time. Then,

the time required to explore with full search the
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Fig. 2. Computational test comparing the performance of ranked list, SFFS, linear SVM, and full search (no pre-selection). The data

are the same used to generate Fig. 1.

Table 1

Most common genes retrieved by the pre-selection

Test case SFFS Linear Ranked PCA

BRCA2 from others 20 22 20 0

NB from others 12 13 16 2

Table 2

Computational time for two test samples

Test case Full SFFS Linear Ranked

BRCA2 from others

Pre-selection 2.00 0.99 0.19

Comb. search 8654.38 0.10 0.07 0.07

Total 8654.38 2.10 1.16 0.26

NB from others

Pre-selection 5.45 2.36 1.30

Comb. search 2009.48 0.33 0.53 0.52

Total 2009.48 5.78 2.89 1.82
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pre-selected genes. Finally, we add up the times of

these two phases. Times are presented in minutes.

As expected, the computational saving for the

pre-selection algorithms are huge. They are
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roughly three orders of magnitude faster. This is a

direct result of pre-selection, where the search

space is drastically decreased. This fact, combined

with the quality of the results detailed above, indi-

cates that the pre-selection strategy may be a very
effective way to address strong gene finding.

As expected, the ranked gene list is the fastest.

However this method does not explore combina-

tions of genes and may face more difficulty if the

classes are less separable. The other methods, lin-

ear SVM and SFFS, are both very fast, exploring

many gene combinations in minutes.
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