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An Exact Algorithm for Optimal
MAE Stack Filter Design

Domingos Dellamonica, Jr., Paulo J. S. Silva, Carlos Humes, Jr., Nina S. T. Hirata, and Junior Barrera

Abstract—We propose a new algorithm for optimal MAE stack
filter design. It is based on three main ingredients. First, we show
that the dual of the integer programming formulation of the filter
design problem is a minimum cost network flow problem. Next,
we present a decomposition principle that can be used to break
this dual problem into smaller subproblems. Finally, we propose a
specialization of the network Simplex algorithm based on column
generation to solve these smaller subproblems. Using our method,
we were able to efficiently solve instances of the filter problem with
window size up to 25 pixels. To the best of our knowledge, this is the
largest dimension for which this problem was ever solved exactly.

Index Terms—Boolean lattice, column generation, filter design,
network flows, positive Boolean function, stack filter.

I. INTRODUCTION

THE interest in stack filters is quite clear from the large
amount of literature devoted to them [1]–[16]. Stack filters

are nonlinear filters that commute with thresholding, i.e., the ap-
plication of the filter directly on a gray-level (multilevel) signal
followed by thresholding at any level leads to the same signal
as the one obtained by first thresholding the gray-level signal at
level and then applying the filter to the corresponding binary
cross section [17]. The best known subclass of stack filters are
the median filters (see, e.g., [18] and [19]).

A stack filter with respect to a sliding window of size ,
when restricted to binary images, can be expressed as a Boolean
function on variables. For instance, the median filter on a
window of size 3 can be modeled as the Boolean function

on three binary variables
, and . It has been shown that the only filters that have

the property of commuting with thresholding are those that,
restricted to binary images, correspond to monotone (positive)
Boolean functions [1], [17].

The name “stack filters” refers to the fact that gray-level re-
sults can be obtained by stacking (summing) the binary signals
resulting from the application of the filter to the multiple level
cross sections [1]. Moreover, the mean absolute error (MAE) of
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stack filters can be modeled as a linear combination of the mean
absolute errors of the corresponding Boolean function with re-
spect to the multiple threshold levels [2]. These two facts re-
duce the problem of designing stack filters to the problem of
designing monotone Boolean functions.

Coyle et al. showed that the design of MAE optimal stack fil-
ters with respect to a sliding window of size can be formulated
as a zero-one integer linear program (IP), with variables and

constraints [2]. Even for moderate values of , this
formulation may not be feasible for practical purposes.

As a consequence, alternative approaches for the design of
stack filters have been proposed. Most methods follow two main
lines: adaptive search and graph search.

Adaptive search techniques use the number of patterns ob-
served in the input images and update the filter based on the
respective outputs in ideal images [3], [8]. Such algorithms en-
force monotonicity of the function only after a given amount of
data are processed. Recent improvements along this line appear
in [12].

Graph search techniques are also an important class of
methods for filter design [10], [11], [13], [14]. For example,
[16] presents a unifying view for such methods. They all exploit
the Boolean lattice representation of the window space. In the
context of morphological increasing set operator design, similar
algorithms to find optimal Boolean functions have also been
proposed [20]–[22].

Techniques in both lines rely on heuristics to overcome com-
putational limits. Thus, they compute suboptimal filters. The
most efficient algorithm reported so far is Yoo’s adaptive algo-
rithm [12], which we will call train. One of the main param-
eters in this algorithm is the number of iterations, how many
scans on the training data, it is allowed to do. As this value in-
creases, the resulting filter asymptotically converges to an op-
timal one. However, there are no results concerning either the
rate of convergence or its precision.

In this paper, we propose a new algorithm to find a minimum
MAE stack filter. Our method borrows ideas from the two ap-
proaches outlined above. The rest of the paper is organized as
follows. Section II introduces some notations and reviews basic
concepts of minimum MAE stack filters. Section III builds our
algorithm in many steps, emphasizing the role of each technique
employed. Finally, Section IV presents our computational re-
sults, followed by our conclusions in Section V.

To our knowledge, the algorithm proposed in this paper is the
first method that gives an exact solution to large instances of the
minimum MAE stack filter problem in an acceptable training
time.

1057-7149/$25.00 © 2007 IEEE
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II. BACKGROUND

A. Preliminaries and Notation

In this section, we briefly describe the notation used in this
text and recall some definitions.

We use lower case letters for vectors and upper case letters
for matrices. The identity matrix will be denoted by ,
or simply if is clear from the context. The all-zero vector on

coordinates is denoted , the all-one vector on coordinates
is denoted . Again, when is clear from the context, we may
drop the subscript.

Let and be vectors indexed by the same set of coor-
dinates, say and . We can define a
partial order between these vectors as follows:

for all (1)

Similarly, we define the partial order .
The Euclidean inner product of and will be denoted by

and is defined as .
1) Matrix Representation by Blocks: Given an matrix
and an matrix , we denote by the

matrix formed by joining the columns of and the columns
of . Similarly, if is an matrix and is an , we
denote by

the matrix formed by joining the rows of and
the rows of .

In this paper, we use the notion of a Boolean lattice. Let be
a positive integer and consider the set of all vectors in
with partial order given by (1). Denoting we
have that is a Boolean lattice of dimension . We denote
by the support of .

B. Minimum Mean Absolute Error Stack Filters

A translation-invariant binary image operator with respect to
a window of size can be modeled as a Boolean function

. A Boolean function is monotone
if and imply
(or, equivalently, and imply

). The idea of support comparison corresponds to the
natural extension [see (1)] of order defined on integers, by

.
The minimum mean absolute error (MMAE) stack filter with

respect to a window of size is the one that, among all stack
filters with respect to , possess the smallest mean absolute
error. In order to consider any notion of mean error, we have to
accept some statistical assumptions. Following [2], we suppose
that images to be filtered and their respective ideal desired im-
ages are realizations of a jointly stationary process.

In practice, the probabilities that determine the MAE of
a stack filter are estimated from the binary cross sections of
training images. Given sample pairs of observed-ideal images,
let be the number of times a pattern is observed in
the cross sections at level with ideal value .

Let denote the size of , let be the number of gray tones
in the images, and . Then, the

minimum MAE stack filter with respect to corresponds to a
monotone Boolean function that minimizes (see [2], [10], and
[16] for details)

As the first sum on the right side is constant, it is equivalent to
minimize

(2)

This minimization is trivial if we do not impose the mono-
tonicity of the function.

III. MINIMUM COST FLOW APPROACH

If we impose the monotonicity as a constraint for the design
of , we arrive at a large scale linear integer programming (IP)
problem. This formulation of the filter design problem is closely
related to flow models, as first suggested by Gabbouj and Coyle
in [23]. For such models, it is possible to drop the integrality
constraints and deal with ordinary linear programs (LPs).

In this section, we present the LP formulation in [2] and show
that its dual can be seen as a network flow problem that may be
efficiently solved by a network Simplex method.

However, as the window size grows, the number of variables
and constraints in the LP formulation grows exponentially to a
point that the naive use of the network Simplex method may not
be feasible anymore. To overcome this difficulty, we present a
technique that allow us to split the original problem in smaller
subproblems. We also show that it is possible to iteratively im-
prove a candidate filter without loading the complete formula-
tion in main memory.

For the sake of clarity, the conceptual introduction of the al-
gorithm is presented in six sections.

A. Associated LP

In order to formulate the optimization model of the filter de-
sign problem, we initially turn to the formulation given in [23],
i.e., for each element , we associate a variable

corresponding to the value of under the mapping of the
Boolean operator.

Considering the objective function given in (2) and, setting
, the design problem can be formulated as the

following integer linear program

subject to

is integral (3)

where is a matrix corresponding to (monotonicity) inequali-
ties for each pair and is the number of
rows of . More formally, the rows of are indexed by pairs
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with and the columns of are indexed by
. We have

if
if
otherwise

The identity matrix and the corresponding vector in (3)
ensure that for all .

Since the constraint matrix

is totally unimodular and is an integral vector, all
basic feasible solutions of (3) are integral. This fact allows us to
drop the integrality constraint in (3) (see, for instance, [24]).

We can also reduce the size of by considering transitivity,
i.e., we may associate a row corresponding to the pair
if and only if there is no such that . Al-
though this is a more compact representation, any attempt of
solving problem (3) directly (even when the window dimension
is modest) is impractical, despite the efficiency of current IP/LP
solvers.

B. Duality

Even though the LP formulation given by (3) is quite inter-
esting, in particular, due to unimodularity, more structure is un-
veiled when we look at its dual problem. Duality is a very impor-
tant tool in linear programming. It associates to an optimization
problem a dual problem that classically can give new insights
and interpretations to the original formulation [25]. Moreover,
in the case of LP, the solution of the dual problem allow us to
find a solution of the original problem.

In this section, we show that the dual of the LP relaxation
of (3) corresponds to a minimum cost network flow (MCNF)
problem. These problems are very important because they admit
a very efficient specialization of the original Simplex method,
called the network Simplex algorithm.

In order to start the discussion, let us recall the definition of
a MCNF problem.

Definition 1: Let be a directed graph. This
means that is a set of vertices and the arcs in are ordered
pairs with . It will be convenient to de-
note the arc by . Let be a vector such that
is the demand of the vertex . We will call the demand vector
of . A feasible flow in is a vector that satisfies the
demands, i.e., for every

Let be such that is the cost of passing one unit of
flow through the arc . We say that is the cost vector of .
The total cost of a flow is defined as .

The minimum cost network flow problem (MCNF) consists in
finding a feasible flow with minimum cost.

We proceed by showing that the dual problem associated to
the LP relaxation of (3) can be interpreted as a MCNF problem.
This dual problem is given by

subject to

(4)

where and is the number of rows in the
matrix .

After introducing slack variables, (4) becomes

subject to

(5)

It is easy to see that the componentwise sum of the rows of
the constraint matrix in (5) is the vector .
Hence, if we append as a new row in the constraint matrix
and extend the right-hand-side accordingly, we obtain

subject to

(6)

In (6), the constraint matrix can be seen as the incidence ma-
trix of a directed graph , in which the set of vertices
is (the node corresponds to the appended row,
that is, ) and the set of arcs is such that, for every con-
straint given by the lattice structure, we have an arc

. We also have arcs for every . Since
is connected to every other node of , we call it the root node.

Observe that (6) is a linear programming formulation for the
MCNF problem in the network defined by the directed graph
with demand vector . It also has a very particular
cost function. All the arcs having as the destination node have
unit cost and all others have zero cost. Hence, the cost vector
can be represented by , where is the Kronecker
delta.

C. Minimum Cost Network Flow Problems

MCNF problems are usually solved using a specialization of
the simplex method called the network Simplex algorithm. This
algorithm moves along tree solutions trying to decrease the ob-
jective value.1

Definition 2: A feasible flow is called a tree solution, or
basic tree, if there is a spanning tree such that
for every . An arc will be called basic if it is contained in
a basic tree.

Every MCNF problem has an optimal solution that is a tree
solution. Given an initial tree solution, the network simplex al-
gorithm moves among trees by adding a new arc to the tree and
eliminating a different arc of the (unique) cycle created by such

1A reference to network flows and combinatorial optimization is [24].
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new arc. This is done in such way that the cost never increases
and, eventually, decreases. The tree changes have a very low
computational cost as they are based on pivot operations (see
[24, Ch.4]).

The network Simplex converges in a finite number of itera-
tions to an optimal flow (dual optimal solution). Furthermore,
we may easily recover a basic solution of the original filter de-
sign problem from such optimal flow. In particular, its inte-
grality as assured by unimodularity.

D. Decomposition Principle

In the last section, we showed that the network Simplex algo-
rithm may be used in the design of monotone filters with optimal
MAE. However, the size of the network graph is still exponen-
tial in the window size, posing real challenges to its applica-
bility. This fact may be mitigated if we are able to find a way
to decompose the original problem in smaller subproblems that
are easier to solve. We show next how to use the Boolean lattice
structure present in the filter design problem to induce such a de-
composition. First, we need some definitions before presenting
the main result of this section.

Definition 3: An ideal is a set such that for all
we have .

Definition 4: Given a set of elements of the Boolean lattice
, we define the cost of a Boolean operator relative to as

If is minimum among all monotone Boolean operators
then is an optimal solution (or operator) relative to , and
we define the optimal cost of the set as .

Note that any monotone operator can be ex-
tended to a monotone operator on the whole lattice . Our main
decomposition principle is stated in the next theorem.

Theorem 5: (Decomposition Principle) Let and
be ideals. If , then there is an optimal operator
relative to such that . Furthermore, if is an

optimal solution relative to , then

is an ideal satisfying .
Proof: Let be an optimal solution relative to and

be an ideal such that . Define the operator as

if
if

Note that the above operator is monotone. Indeed, since is
an ideal, whenever and , we have
(hence, either and are not comparable or ). Since

, the monotonicity constraint is fulfilled. If
both and belong to the conclusion is trivial, and if both
and belong to then, by our assumption that is monotone,
the conclusion is again trivial.

Therefore, the cost must be the same as ;
otherwise, , a contradiction. This proves
the first assertion of the theorem.

Fig. 1. Simplified diagram of a tree solution. Notice that, in order to reduce the
cost of the solution, one must push flow in the direction of the cycle depicted
above.

In order to prove the second assertion, notice that, since is
monotone, must be an ideal. Now suppose that

. There must be a nontrivial solution that is
optimal relative to . Define

if
if

By our assumptions, it is clear that is a monotone operator
and its cost is given by

which is a contradiction.
Due to the symmetry of the Boolean lattice, one can easily

see that, with a symmetric definition of ideals, we can obtain
a symmetric version of Theorem 5. A set is called a
sup-ideal if, for every , we have .

Corollary 6: Let and be sup-ideals. If
, then there is an operator that is an op-

timal solution relative to such that . Furthermore,
if is an optimal solution relative to , then

is a sup-ideal satisfying .

E. Decomposition and the Network Simplex

The decomposition principle tells us that, after solving the
subproblem defined by some ideal, every element mapped to 0
in the optimal solution of this subproblem can be fixed to 0 in
a global optimal solution. We will use this idea in an algorithm
that iteratively solves subproblems using the network Simplex
as its basic tool.

In order to apply the decomposition in the development of
an algorithm, there must be a simple way to choose ideals from
the Boolean lattice. For instance, one can define a total order
on the Boolean lattice that respects the canonical partial order.
Given such total order, all elements of can be linearly ordered
so that any initial (final) segment in this order forms an ideal
(sup-ideal).

Here, we propose a total order based on the support of each
pattern. To break the ties, we use the associated costs and the
lexicographical order. Formally, let , and let

denote the lexicographic order. For any Boolean lattice
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TABLE I
COMPUTATIONAL TIME FOR WINDOW SIZE 25. THE COMPUTER IS BASED ON A 2.8-GHZ INTEL XEON AND HAS 4 GB OF MEMORY

and any cost function , we may define a total order,
denoted , by the following.

1) If , then .
2) If and , then .
3) If and , then .

Notice that this order respects the canonical partial order .
Given an ideal , we can solve the problem restricted to

and obtain an optimal operator . The method for finding such
restricted operators is described in the next section. The set

is a subset of . By the decomposition principle, there
exists an optimal operator for the whole lattice that maps every
element of to 0. Also, for every ideal , the set is
an ideal of . The decomposition principle also states
that, if we have an operator that is optimal restricted to the
ideal , and an operator that is optimal restricted to , we
can define

if
otherwise

as a global optimal operator.
Hence, the complete filter design problem may be solved it-

eratively by 1) starting with an ideal ; 2) solving the associated
MCNF problem; 3) fixing the values of those patterns in the
kernel of the optimal operator restricted to ; and 4) increasing
the ideal with new nodes following the total order given above.
The larger problem is not necessarily more difficult than the pre-
vious one, as many patterns may be already fixed.

This strategy would be particularly interesting if we knew
how to use the solution for a smaller ideal to find an initial fea-
sible tree needed by the network Simplex method when solving
some larger problem. To achieve this, let us show a feasible tree
solution for the whole network.

Let be a node corresponding to some pattern . If has pref-
erence for output 1 (that is, , in the notation
of Section III-A), then is selected as basic arc, otherwise (if

), is selected as basic (recall that is the root node of
the network, defined in Section III-B). This defines a tree solu-
tion where every node is connected directly to .
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Given a partial network, a corresponding tree solution and a
new node to be added, we extend the tree solution selecting
either or (the one belonging to ) as basic.

F. Column Generation

Finally, we show how to solve the problem restricted to a
given ideal. A naive approach would be to create an instance
of the respective MCNF problem and use the network Simplex
algorithm to solve it. Even though this is very effective for small
window sizes, it becomes more and more difficult as the window
size grows. In particular, the number of arcs in the network as-
sociated to each LP becomes huge. To alleviate this problem,
we propose a classical technique that allows us to keep in main
memory only the current tree solution and generate a new arc
only when it enters the next tree. Such techniques that keep in
memory only a minimal number of variables and generate a new
variable when needed are usually called column generation [25].

In order to do this in the optimal MAE filter design problem,
we start recalling an important definition:

Definition 7: Let be a directed graph. Let be a
rooted tree of with root . Suppose is a tree solution having

as its support and be such that, for every arc of ,
we have . We call the potential of node . It
will be convenient to set .

Recall the special structure of problem (6). Since
and is set to 0, the only possible potentials for nodes in the
graph are in . In order to calculate the potential of
some node , we may find the (unique) undirected path
connecting to the root . Let be the last node before in

. We set , if the directed arc is basic or
, if the directed arc is basic (clearly, one of these arcs

must be part of the basic tree).
The only interesting arcs to enter the current tree solution and

generate a new tree with smaller objective value are the arcs with
negative reduced costs. As noted in Section III-C, the arc costs
of our graph are always in and, as we saw above, the node
potentials are always in . This means that an arc has
negative reduced cost if and only if and
(see Fig. 1). This simple characterization allows us to identify
the candidate arcs to enter the tree solution and generate them
only when needed. Given an entering arc, the update of the tree
solution can be easily performed by a classical pivot operation.

G. Putting Everything Together

Let us now gather the ideas presented in this section in a full
outline of the proposed algorithm. Let be an integer used to
determine how large the subproblems might be. It is also useful
to define predicates head, and next for linked lists and its
elements (with obvious meaning). The sentinels of the linked
list are set to nil. Our algorithm is composed of the following
steps.

1) Sort the patterns according to the total order into a linked
list .

2) Create a network (graph) containing only the root node .
Set .

3) While the current network has nodes and
a) add a node to the network corresponding to ;
b) add arcs and to the network;

TABLE II
MAE, WINDOW SIZE 25

c) extend the tree solution by adding either the arc or
as described in Section III-E;

d) let .
4) Run the network Simplex using column (arc) generation

for the current network.
5) If is not empty then

a) for every node of the network with potential 0 we
remove the corresponding pattern from the list and
fix its final value as 0 (decomposition principle);

b) delete the current network and goto 2.
6) If is empty, we fix the final value of all the remaining

patterns.
The actual implementation can be obtained from the web-

site http://www.vision.ime.usp.br/nonlinear/stackfd. It is more
involved than the algorithm outlined above. In particular, it ex-
ploits the symmetry of the Boolean lattice, applying the decom-
position principle to both ends of the linked list.

In our tests, we have limited the number of nodes to

. This number corresponds to an upper bound on the

number of elements in the two middle levels of the Boolean
lattice. This value proved to be a good compromise between
speed and memory consumption.

IV. COMPUTATIONAL RESULTS

We have implemented the ideas described above and tested
them using binary and gray-level images. Due to space limita-
tion, we can only present part of these tests, in particular, just
a few images. The tests presented here were carefully chosen
to reflect the overall results in all tests. Many more details can
be seen on the website http://www.vision.ime.usp.br/nonlinear/
stackfd. We will refer to our implementation as stackfd.

Our main objective is to estimate the computational resources
needed by stackfd. We will also compare our results to a
borrowed implementation [26] of the train heuristic [27].
This suboptimal algorithm is very fast and can deal with large
window sizes. Other heuristics, like the ones presented in [14]
and [22] are not included, as their computational time is much
larger than the ones presented here.

With the default limitation on memory usage (see Sec-
tion III-G), we were able to train filters with window size 25.
Our program used 3 GB of memory for that dimension. In
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Fig. 2. Quality evolution with increasing window size. The testing image is equal to the training image, but with an independent realization of the noise. In the
top row are the results of train: (a) window size 15 (MAE 0.0046); (b) window size 21 (MAE 0.0109); (c) window size 25 (MAE 0.0296). In the bottom row
are the results of stackfd: (d) window size 15 (MAE 0.0041); (e) window size 21 (MAE 0.0028); (f) window size 25 (MAE 0.0027).

this respect, the train heuristic performs much better, using
around 256 MB.

On the other hand, regarding training time, our code out-
performed train in most of the tests. Table I presents the
training time for stackfd and train for different tests. The
difference can be up to twice as fast in simple data, like the
binary images. In gray-level images, the difference decreases,
with train taking around 40% more time in four tests and
about 9% in EinstenE. The train implementation is faster
only in EinsteinA, where it takes 85% of the time used by
stackfd. Remember that stackfd computes a filter with
minimum MAE, while train is suboptimal.

A. MAE and Visual Quality

Given that stackfd is usually faster than train, another
important variable is the difference between the MAE of an op-
timal filter and a suboptimal one.

For small window size, like 15, the train heuristic can ac-
tually find an almost optimal filter. However, as window size
grows, the gap in the MAE of the filter computed by train
and an optimal filter computed by stackfd increases, spe-
cially in binary images. Table II summarizes the MAE obtained
with window size 25 both on training and on independent testing
images. The testing images are the same used in the respective
training phase, only with an independent realization of the noise.

We can see that, for binary images, stackfd performs
much better than train. The MAE in both testing and training
images is at least half of the MAE obtained by the train
filter. The reason for this is that the suboptimality of the train
method is precluding it to find a better filter as window size
grows. Actually, in the first test, Binoise, the quality of filtered
image clearly decreases with the window size (see Fig. 2). On
the other hand, the stackfd method can better explore large

windows and, thus, the quality of the image improves with
window size up to 25 pixels. This may indicate that the number
of iterations for train is insufficient. Increasing this number
would allow it to find better filters. However, the computational
time would increase proportionally and the performance gap
with stackfd would increase.

For gray-level images, the differences between the MAE of
the filters computed by stackfd and train are relatively
smaller, but again stackfd consistently outperforms train
on test data. While on binary images the differences are easily
perceived visually, on gray-level images the visual differences
are more subtle. A careful visual examination shows that images
filtered by stackfd tend to keep more impulse noise in the fil-
tered image but look sharper than the ones obtained by a filter
computed by train, thus better preserving edge details (see
Figs. 3 and 4). Once again, we could increase the number of iter-
ations in train in order to improve the sharpness of the filtered
images. In this case, however, the resulting image would contain
more impulse noise as in the image obtained by stackfd.

We conjecture that the excess of noise in the stackfd image
is a consequence of the excess of freedom given to the optimal
method. For large window size, most of the possible patterns are
not present in the training data. For example, for window size
25, in the gray-level images we have tested, only about 5% of
the patterns were present in the training data. We believe that
this sparseness gives too much freedom to the optimal method
to choose the values of 95% of the patterns in a way that do not
affect the MAE value in the training process.

To test this conjecture we decided to preprocess the training
data. If a pattern is not present in it, we fill the pattern cost using
the mean cost of the neighbor patterns that were actually ob-
served in the original data. This process is repeated until there
is no pattern which contributes arbitrarily with zero in the ob-
jective function.



460 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 2, FEBRUARY 2007

Fig. 3. Visual comparison of gray-level images filtered by stackfd and train: (a) ideal image, (b) noisy image, (c) stackfd filtered (MAE 4.334580), and
(d) train filtered (MAE 4.716431). The training images used to obtain the filters are those contained in the EinsteinA test, described in Table I. The test image
is a completely different picture, “stream and bridge,” with an independent realization of the same type of noise. Note that the stackfd image in (c) contains
more noise; however, it is sharper. The train image in (d) also seems to increase the average gray-level intensity in some areas of the image, producing a slightly
brighter image than the ideal one.

Fig. 4. Detail of Fig. 3: (a) ideal image, (b) stackfd filtered, and (c) train filtered. The image computed using stackfd is sharper. Look at the three nails
in the bottom of the bridge to the left. The stackfd image in (b) still leaves traces of the tree nails, while train in (c) almost completely erases them.

The visual results using the optimal filter based on this
heuristic filling of missing costs are encouraging. They usually
keep the good properties of the original stackfd in binary

images while improving the noise reduction in gray-level
images without affecting sharpness too much (see Fig. 5). This
opens up the possibility of trying more sophisticated methods
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Fig. 5. stackfd with heuristic filling. The heuristic decreases the amount of noise in the resulting image, without decrease in sharpness as in (a) and in the
performance in binary images as in (b).

for the filling, for example, methods based on multiresolution
techniques. This is subject of ongoing research.

V. CONCLUDING REMARKS

In this paper, we have presented a new optimal algorithm to
find a minimum MAE stack filter. In our tests, the proposed
method is usually faster than the fastest heuristic to date. These
results show that the combination of the network Simplex
method with decomposition and column generation techniques
lead to a very efficient algorithm. On the other hand, our
solution is very memory demanding.

Our computational tests have also unveiled some problems
associated to the use of heuristics, where the quality of the com-
puted solution is not easily comparable to the optimum. In some
tests on binary images, the heuristic presented a poor perfor-
mance with large window size when compared to our optimal
method. In gray-level images, the optimal filter seems to better
preserve original characteristics of the image, like sharpness, at
the expense of leaving more visual noise in the filtered image.

We have also proposed a naive way to fill the costs of the pat-
terns that are not present in the training data. That helped to re-
duce noise in the filtered images while preserving the strengths
of our solution. We believe that the quest for a better strategy to
estimate the cost of the missing patterns, based on multiresolu-
tion ideas [28], is very promising and is the subject of ongoing
research.
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