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DIFFERENTIABLE EXACT PENALTY FUNCTIONS FOR
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Abstract. We propose a method for solving nonlinear second-order cone programs (SOCPs),
based on a continuously differentiable exact penalty function. The construction of the penalty
function is given by incorporating a multipliers estimate in the augmented Lagrangian for SOCPs.
Under the nondegeneracy assumption and the strong second-order sufficient condition, we show
that a generalized Newton method has global and superlinear convergence. We also present some
preliminary numerical experiments.
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1. Introduction. We consider the following nonlinear second-order cone pro-
gram (nonlinear SOCP):

min fx)
(SOCP) subject to g(z) € K,
h(z) =0,

where f: R® - R, g: R® — R™, and h: R” — RP? are twice continuously differentiable
functions, and K = Ky x --- x K, is a Cartesian product of second-order cones (or
Lorentz cones),

Ki={(yo,y) ERXR™ sy > |y} CR™, i=1,...,r,

with || - || denoting the Euclidean norm and mj + -+ - + m, = m.

There are many problems that can be formulated as SOCPs in such diverse fields
as engineering, finance, robust optimization, and combinatorial optimization [1, 28].
Although the SOCP can be viewed as a special case of the semidefinite programming
problem, from the computational point of view, it is desirable to treat it directly,
because of its particular structure [1]. If the functions f, g, and h are linear, the above
problem is the linear SOCP, which has many efficient methods in the literature [1, 9,
28]. The treatment of nonlinear SOCPs, where the involved functions (especially the
objective function f) are nonlinear, is more recent. Some works deal with theoretical
properties or associated reformulations [7, 10, 18], but there have not been many
efficient methods developed until now.
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Among the existing methods, we mention a sequential quadratic programming—
type method from Kato and Fukushima [25], a primal-dual interior point method from
Yamashita and Yabe [39], and an augmented Lagrangian method from Liu and Zhang
[26, 27]. Each of these methods has some drawbacks and open questions. For example,
there is no proof for the convergence rate in [39], the convergence is slow in [26, 27],
the strict complementarity assumption for the convergence results is required in [26],
and the treatment of the nonlinear SOCP is not direct in [25], because it replaces
the original nonlinear SOCP with a sequence of linear SOCPs. Recently, Kanzow,
Ferenczi, and Fukushima [24] proposed a method that deals with the nonlinear SOCP
directly, with a fast convergence rate result, without using the strict complementarity
condition. Basically, they construct a reformulation of the KKT system associated to
the nonlinear SOCP, using a characterization of the projection mapping onto second-
order cones [18]. Their reformulation is semismooth and a generalized Newton method
applied to it converges locally with a superlinear rate. However, their analysis was
done for a particular case of (SOCP), with g(z) = x and h being a linear mapping.
Furthermore, a way to globalize the method was also not suggested.

In this work, we propose another method for solving general nonlinear SOCPs.
More precisely, we construct a continuously differentiable exact penalty function for
the nonlinear SOCP, which is actually an extension of differentiable exact penalty
functions for nonlinear programming. The gradient mapping of this penalty function
is semismooth, which makes it an SC! function (i.e., a continuously differentiable
function whose gradient mapping is semismooth). This allows the use of a generalized
Newton method. As in [24], we can prove that the convergence rate is superlinear
(or quadratic) without the strict complementarity condition. Here we also suggest an
implementable algorithm with global and superlinear convergence.

The literature of exact penalty functions for nonlinear programming is vast, but it
is still an ongoing topic of research. Roughly speaking, a function w.: R — R, that
depends on a positive parameter ¢ € R, is an exact penalty function for the original
problem if there is an appropriate choice of the penalty coefficient ¢ such that a single
minimization of w, recovers a solution of the original problem. For nonlinear program-
ming problems, Zangwill [40] proposed a nondifferentiable exact penalty function.
Since it demands special methods to solve the unconstrained problem, many authors
have developed continuously differentiable exact penalty functions afterward [5, 17,
19, 30]. In particular, in [11, 12], Di Pillo and Grippo proposed a differentiable exact
penalty function based on a Lagrange multipliers estimate presented by Glad and
Polak [19]. Their idea is to incorporate such an estimate in to the classical augmented
Lagrangian function for nonlinear programming [22, 33, 36]. More recently, André and
Silva [3] extended their idea for solving variational inequalities, incorporating the same
multipliers estimate in to the augmented Lagrangian for this kind of problems [4].

The idea of the latter works [3, 11, 12] was further used by Andreani, Fukuda, and
Silva [2] to solve nonlinear programming problems with both equality and inequality
constraints. One advantage of the exact penalty method developed in [2] is that it does
not deal with third-order derivatives, which is clearly important from the numerical
point of view. Other ways to avoid third-order derivatives were also proposed in [13,
14]. Here, we take the ideas from the aforementioned works [3, 2, 11, 12, 19] to
construct a continuously differentiable exact penalty function. We also extend Lucidi’s
idea [29] to construct a multipliers estimate that does not require a strong regularity
assumption.

Throughout the paper, the following notation will be used. We denote by || - ||
and (-, -) the Euclidean norm and inner product, respectively. The notation R, is
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used to represent the positive real numbers. The identity matrix with dimension £ is
denoted by I, and for any matrix Z, its transpose is denoted by Z'. For functions
p: R® — R and ¢: R® — R’, the gradient of p and the Jacobian matrix of ¢ at = € R®
are given by Vp(z) € R® and Jq(z) € R***, respectively. For a second-order cone
K; C R™: its interior, boundary, and boundary excluding the origin are denoted by
int(K;), bd(K;), and bd ™ (K;), respectively.

The paper is organized as follows. In section 2, we begin with some necessary
notation and results associated to second-order cones and semismooth functions. The
construction of the Lagrange multipliers estimate and the continuously differentiable
exact penalty function are given in section 3. In section 4, we present the exactness
results. In section 5, we show that a generalized Newton method converges super-
linearly, under the strong second-order sufficient condition. In section 6, we present
an implementable method that has global and superlinear convergence. Finally, in
section 7, we show some preliminary numerical experiments.

2. Preliminaries. In this section we introduce some notation and results that
will be used in this work. For any vector y € R, we consider the block notation
y = (y0,7) € R x R‘~1. Moreover, the Jordan product of y, z € R’ is defined by

(y,2) } .

oz = S _
Y [yoz—i—zoy

For the sake of completeness, we state some relations involving the Jordan product [1,
section 4]. For any vectors w,y, z € RY, the following properties hold:

(a) yoz=zoy; (commutativity 1)
(b) yo (y?o0z2)=y%0(yoz), where y? = yoy; (commutativity 2)
(c) eoy =yoe =y, wheree = (1,0,...,0) € R (identity)
() (wy)oz = (wox)+(yo2). (distributivity)

We recall that the Jordan product is not associative in general. Besides, for any
y € R?, if we define the symmetric matrix

-T
Arw(y) = { yﬂo yoyfe—1 ] ’

then y o z = Arw(y)z for all z € R. The matrix Arw(y) is called the arrow matriz
of y. It is positive definite if and only if y € int(K). Also, if y € K, then Arw(y) is
singular if and only if y € bd(K). Let us now give a result that will be used later.

LEMMA 2.1. Let p,q: R® — R? be differentiable mappings. Then the Jacobian of
the mapping (po q): R® — RY at x € R® is given by

J(poq)(z) = Arw(p(z))Jq(z) + Arw(q(x))Jp(x).

Proof. We omit the proof since it follows easily from the product rule associated
with the Jordan product. o

For simplicity, let us now consider the ¢-dimensional second-order cone K =
{(y0,9) € R x R*"1: 9y > ||g]|}. This cone is self-dual, which means that K is
equal to its dual cone K* = {z € R’: (z,) > 0 for all y € K}.

LEMMA 2.2. Lety,z € RY, and let K C RY be a second-order cone. Then, the
following are equivalent: (a) y,z € K and yoz =0 (b) y,z € K and (y,z) =0 and
(¢) y — Pc(y — z) =0, where P denotes the orthogonal projection onto K.

Proof. See [18, Propositions 2.1 and 4.1]. O
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Concerning the projection operator Px, we also have the following useful results.

LEMMA 2.3. Let y,z € RY, and let K C RY be a second-order cone. Then, the
following statements hold:

(a) Px(z) = Pc(—2) + z;

(b) (Px(2), Pc(=2)) = 0;

(c) 1Px(y —2) —yl = [[Pc(=2)]|-

Proof. (a) It is straightforward from [23, section 3.2].

(b) The inequality (Px(2), Pc(—2)) > 0 holds because K is self-dual. Also, from a
variational inequality characterization of projections, we have (z— Px(2), y— Px(2)) <
0 for all y € IC, which along with (a) implies (Px(—z2),y — Px(z)) > 0. Taking y = 0,
we obtain (Px(z), Pc(—z)) <0 and the proof is complete.

(¢) From (a), Pc(y — 2) = Pc(z —y) — 2z +y and Px(—2) = Px(z) — 2. Thus,
the inequality (c) is equivalent to ||Pc(z —y) — z|| > || Pc(z) — z||. But this inequality
holds because, from the definition of projection, ||Pc(z) — z|| = minyex ||u — 2| O

Now, let W: R® — R be a locally Lipschitz continuous function, and let Dy C R®
be the set of points where W is differentiable. Then, the set

opW (z) = {V ER™: V= lim JW(a:k)}
Dwozk—z

is nonempty and called the B-subdifferential of W at x € R®. Its convex hull OW (z) =
convOpW (x) is called the generalized Jacobian (of Clarke). These definitions show
that OW (z) = 0pW(x) = {JW(z)} when W is continuously differentiable at x.
Moreover, W is said to be semismooth at x € R*® if W is directionally differentiable
at © and W(x +d) — W(x) — Vd = o(||d||) for any V € OW (x + d) with d — 0. If W
is semismooth at x and W (z + d) — W(x) — Vd = O(||d||?) for any V € OW (x + d)
with d — 0, then W is said to be strongly semismooth. We refer to [15, 34] for details
about (strongly) semismooth functions.

3. Construction of exact penalty function. The construction of an exact
penalty function for the SOCP is based on those for nonlinear programming [2, 11, 12]
and variational inequalities [3]. It consists in incorporating a Lagrange multipliers
estimate in an augmented Lagrangian function. Let us recall that a triple (x, A\, u) €
R™ x R™ x RP satisfies the Karush—-Kuhn—Tucker (KKT) conditions associated to
(SOCP) if

sz(ZIJ,)\,‘u) = 07

h(z) = 0,
3 {gi(z),\i) =0, i=1,...,m
gi(x),\i € Ky, i=1,...,m

where A = (A1,...,A\) and g = (¢1,...,9r), with A; € R™ and g;: R" — R™: for all
1=1,...,r,

L(z, A, p) = f(x) = (g(), A) + (h(x), 1)

is the Lagrangian function associated to (SOCP), and V,L(z, A, 1) denotes its gradi-
ent with respect to z. Note that, from Lemma 2.2, the third condition in (3.1), which
is called the complementarity condition, can be replaced by g;(z)oX\; =0,i=1,...,7.

For a given x € R™, we consider the following unconstrained problem in order to
estimate the value of the multipliers:
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(3.2)  min [VoL(2, A I+ G ZHArW i@l + Ga@) (1M + [1?),

=1

where (q,(2 > 0 and

(33) afa) = 5 <|h e +Z B (- |2)

The idea underlying problem (3.2) is to force the KKT conditions (3.1) to hold,
in particular, V,L(z,A,1) = 0 and the complementarity condition g;(z) o A\; = 0,
i = 1,...,7. Moreover, note that « is continuously differentiable and, for each x,
a(z) is a nonnegative number that represents a measure for the feasibility of z. In
fact, a(z) = 0 if and only if z is feasible for (SOCP).

We point out that problem (3.2) is an extension of the multipliers estimate for
nonlinear programming introduced in [19]. The employment of a feasibility measure—
type function was also given in [29] in order to weaken the conditions for a unique
solution of (3.2). In practice, the value of (3 should be small. Otherwise, unfavorable
dependence among the multipliers could appear [2, section 6]. Furthermore, note that
problem (3.2) can be rewritten as

2

: ;JgEx%T)) Jh(z)" —Vf(x)

1ATwW(g(x 0 A 0

COE Y | it A B R | B
0 Coa(z) /21, 0

where Arw(g(x)) = diag(Arw(g;(z))) is a block diagonal matrix with Arw(g;(x)) as

its entries. Thus, (3.2) is actually a linear least squares problem. Let us present now

some properties associated to this estimate, under the following assumption [7].
Assumption 3.1. Every x € R" feasible for (SOCP) is nondegenerate, that is,

(3.5) [ ot ]R" i { inTe(y(a) ] B { R } |

where Tic(g(z)) is the tangent cone of K at g(x) and lin stands for the linearity space.

The condition (3.5) extends the well-known linear independence constraint qual-
ification (LICQ) in nonlinear programming. We observe that, in the literature of
exact penalty functions [12, 29], the assumption that LICQ holds in the feasible set
(or in the whole space) is usually required. Therefore, Assumption 3.1 should also be
reasonable in the context of SOCP. The next lemma shows that the nondegeneracy
condition (3.5) can be rewritten as a “linear independence-type” condition. We define
the following sets of indices, for each x € R™ feasible for (SOCP):

Ir(z) = {ie{1,...,r}: gi(z) € int(K;)},
(3.6) Ip(x) = }z e{l,...,r}: gi(z) € bd+(/Ci)},
Ip(x) = {ie{l,...,r}: gi(z) = 0}.

To clarify this notation, we point out that the subscripts I, B, and 0 mean, respec-
tively, the interior, the boundary excluding the origin, and the origin itself. Besides,
observe that x is feasible if and only if Iy (x) U Ig(x) U lp(z) = {1,...,7}.
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LEMMA 3.2. Let x € R™ be feasible for (SOCP). Then, x is nondegenerate if
and only if Vh;(z),j=1,...,p, Vg, j(x),i € Iy(x),j=1,...,m;, and

1 or

Jai(@)"| 9i(z), i€ Ip(z),
o

_Imi—l
are linearly independent, where Vg, j(x) is the gradient of the jth entry of g; at x.
Proof. See [38, Lemma 3.1] and [8, section 4.6]. O
The next proposition shows that, under the nondegeneracy condition (3.5), prob-
lem (3.2) has a unique solution. Also, it recovers the Lagrange multipliers associated
to a KKT point, which is crucial for the definition of multipliers estimate.
ProrosITION 3.3. Suppose that Assumption 3.1 holds, and define the matriz
N(z) € R(m+p)x(m+p) py

X X T I™w X — X xX T
(3.7) N(z)= { 7l )Jg(J;L(;fjé)r(g( 2 J{i;)%z(fﬂ } + Ga(@) ntp.

Then, the following statements are true:
(a) N(-) is continuously differentiable and N (x) is positive definite for all x € R™.
(b) For a given x € R™, the solution of (3.2) (or, equivalently, (3.4)) is unique
and is given by

(3.8) [ 2%3 } — N(2)"! [ _}’Zgg } V().

(c) If (z*, \*, u*) € R*"xR"™xRP satisfies the KKT conditions (3.1), then A(z*) =
A" and p(x*) = p*.
(d) The mappings A(-) and u(-) are continuously differentiable. Moreover, the

Jacobian matrices of A(+) and p(-) at x are given by

JAz) | _ Ri(x)
|: Ju(a:) ] —N(fﬂ) ! |: —Rg(x) :|7
with

+ Jg(x) Vi, Lz, A(z), p(z))

=1

Ry() = [Z'e;mm(a:,A(m%u(x)fv?gi,j(a:)

j=1

— (Zdiag [Arw(gi(x))Arw()\i(a:)) + Arw(gi(x) o )\1(33))} Jg(x)
— G () Va(z) T,

Ro(z) = PV, Lz, (@), () T V?hy(x) + Th(z) V3, Lz, A(@), p(x))
j=1

+ G ) Va(z) ",

where e}”i and e? are the jth elements of the canonical bases of R™ and RP,

respectively, V2g; j(x) and V?h;(z) represent the Hessian of the jth compo-
nent of g; and the Hessian of h; at x, respectively, and

va(xa A({E), /J,(CE)) = va(fE, A’””A:A(r),y:u(z)’

VimL(CE, /\(:E), [J,(:E)) = virL(xﬂ /\’ M) |)\:)\(z)alt:#(f)'
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Proof. (a) Observe that N(-) is continuously differentiable because all the func-
tions involved in the formula (3.7) are continuously differentiable. Now, let A(x) €
R(n+2m+p)x(m+p) he the matrix associated to the linear least squares problem (3.4),
that is,

;Jg(x) Jh(z)T
R
0 C2a(x)1/21p

If = is infeasible, then A(z) has full column rank because a(z) # 0. Now, suppose
that = is feasible, i.e., a(x) = 0. Using the notation given in (3.6), we can write,
without loss of generality, Jg(z)" = [Jgr,(x)", Jg1,(2) ", Jg1,(x) " |, where Jgp, (z)
corresponds to the submatrix of Jg(z) consisting of Jg;(x) with ¢ € Ir(x). In a similar
way, we define Jgy, (x), Jg1,(x), Arw(gr, (z)), Arw(gr, (z)), and Arw(gy,(z)). Thus,

we have

—Jgr,(@)"  —Jgr(@)T  —Jgr,(x)" Jh(z)"

G Arw(gr, (x)) 0 0 0

A(z) = 0 GArw(gr, (z)) 0 0
0 0 GArw(gr(x)) 0

0 0 0 0

Note that Arw(gy, (z)) = 0 and that Arw(gy, (z)) is nonsingular because Arw(g;(x))
is positive definite for all i € I7(z). To conclude that A(x) has full column rank, we
have only to show that the submatrix

Jgr@)T —Jgn(@) T Jhx)T
(3.10) GATW(r (@) O 0 }

has full column rank. For any ¢ € I(z), notice that!

(3.11) ge(x) = [Arw ge(x ggi; ArW (ge(x ))L

where [Arw(g¢(z))]; is the jth column of Arw(gg(x)) and g¢ j(z) is the jth entry
of g¢(x). It means that the first column of Arw(ge(z)) is a linear combination of
the other columns (which are linearly independent) using coefficients g ;(z)/geo(z),
j=2,...,me. Now, let us assume, for the purpose of contradiction, that (3.10) does
not have full column rank. Then, there exist ¢y ; € R, £ € Ig(x), j = 1,...,my,
0i;eRielp(z),j=1,...,m;,and v; €R, j=1,...,p, not all zero, such that
(3.12)

p
S (we,lwo +zwﬂm ) S S 0, Vo) 43 0y Ty o) —
lelp(z) i€lo(x) j=1 j=1

and Ciebe,1ge(z) + G 22Ty Y [Arw(gg(x))}j =0 for all £ € Ig(z). Recalling equal-

ity (3.11), we can write ¢y ; = —(wmgg,j(x )/ggo(x) forall ¢ € Ig(x), j =2,...,my.
Using these coefficients in (3.12) yields

Lelp(z )gj“;0 iely(z) j=1

'Note that g¢(z) = (ge0(@), ge(2)) = (9,1(2), - -, 9e,m, (), i-e., geo(x) = go,1 ().



1614 ELLEN H. FUKUDA, PAULO J.S. SILVA, AND MASAO FUKUSHIMA

From Lemma 3.2, this yields a contradiction, and hence the matrix (3.10) has full
column rank. We can then conclude that A(z) has full column rank. The result
follows because, for any z € R", N(z) = A(z) T A(z).

(b) Differentiating the objective function of (3.4) and setting the result to zero
give

V@)
AwTAE | A0 <@ )|
0

where A(z) is defined as in (3.9). The result then holds because N(z) = A(x) " A(x)
is nonsingular from (a).

(¢) From the complementarity condition, Arw(g;(x*))Af =0 for alli=1,...,7.
Also, since V, L(z*, \*, u*) = 0 and a(z*) = 0, the objective function of problem (3.2)
at (A", u*) is equal to zero. Since this objective function is always greater than or
equal to zero, (A*, u*) is a solution of the problem, and the result follows.

(d) The mappings A(+) and pu(-) are continuously differentiable from (a) and equal-
ity (3.8). Thus, once again from (3.8), we obtain

(3:13) 0= —Jg(x)VoL(z,\(x), u(x)) + (FArw(g(2))*M(z) + Ga(z)A(z),
(3.14) 0= Jh(x)VyL(z, A(x), p(x)) + Gala)u().
First, observe that Arw(g(z))?\(x) = [Arw(gi(x))?Xi(z)]i_,, that is, it is a block

vector with Arw(g;(x))2)\;(x) as its entries, and Arw(g;(x))?X\i(x) = g:(z) o (gi() o
Ai(x)) for each i = 1,...,r. Differentiating this expression using Lemma 2.1, we get

J(gi © (g0 Ni))(x)
= Arw(g;(z))*J\i(z) + Arw(g; (z))Arw (N (2)) T gi(z) + Arw(g;(z) o Ai(z)) Jgi(z)
for all i. Moreover, since

Jg(@)Va L(w, M), () = [Jg:(@) Va L, Ma), ()],

T

B [2e}nivgi’j(gc)TVwL(%/\(w)vu(x))] :
j=1

i=1
differentiating the whole expression (3.13) yields
~Ra(2)+ [Ta(@)To(@) T+ Gae) L+ G Arwlg(a))?]| TA() — Ta(a) Th(z) T Tu(z) = 0.
Analogously, from (3.14), we obtain
Ra(w) = Jh(z)Jg(x) IN@) + [Jh(2)h(z) T + Gala) L] Tu(z) = 0.
These two equations give the result. O
Now let us show precisely the idea for building a continuously differentiable exact

penalty function for SOCP. The main idea was given by Di Pillo and Grippo [11, 12]
for nonlinear programming and it consists in incorporating a multipliers estimate in
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an augmented Lagrangian function. In the case of the nonlinear SOCP, the augmented
Lagrangian [26, 37] is given by

T

Le(e, ) = F(@) + (), 1) + S+ 5 3 (1P (e = ei@)I? = Inil?].
i=1

where ¢ > 0 is a penalty parameter. It is not difficult to see that this function is
actually an extension of the classical augmented Lagrangian for nonlinear program-
ming [22, 33, 36]. We define the incorporation of the estimates A(x), u(z), given
in (3.8), in the augmented Lagrangian as

(3.15)  we(w) = Le(w, M), p(x)) = f (@) + (h(x), u(x)) + g”h(x)nz
+ 2% ) [”PIQ(/\i(x) —cgi(@))|” — ||/\i(x)||2]

i=1

Note that the function w.: R™ — R is continuously differentiable because all
functions involved in its formula are continuously differentiable, in particular A(-) and
u(-) from Proposition 3.3(d). Besides, since Px,(¢y) = ¢Px,(y) for all ¢ > 0 and
y € R™ we can write its gradient as follows:

Vwe(z) = Vf(x) + Jh(z) " p(x) + Ju(x) "hz) + cTh(z) Th(z)
r T
(3.16) + Z (%J/\l(x) - Jgi(x)) Pic, (Ni(z) — cgi(x)) — %J/\(x)T/\(x)
1=1
=V, L(2, \2), 1)) + (Ju(x) + eTh(@))  h(z) + (JAx) — cTg(z) ye (),

where

(3.17) ye(z) = [Pm (# _gi(x))y _A@)

i=1 ¢

Recall that g;: R® — R™, i = 1,...,r, and so Jg(z)" = [Jgi(z)",..., g, (2)"].
The function y.: R® — R™ has, in turn, the following property.

PROPOSITION 3.4. For each x € R™, y.(z) = 0 if and only if \i(x),g:(x) € K;,
and Ni(z) o gi(z) =0 fori=1,...,r.

Proof. Tt follows directly from Lemma 2.2 and the fact that ¢ > 0. d

In section 4, we will actually prove that, under some reasonable assumptions, w, is
an exact penalty function for (SOCP). Moreover, since Py, is (strongly) semismooth
(see [10, Proposition 7] or [21, Proposition 4.5]), Vw, is also semismooth. Thus, w. is
an SC! function. This fact allows the use of a generalized Newton method [16, 15, 31].

4. Exactness results. In this section, we prove that the function w. defined
in (3.15) is an ezxact penalty function for (SOCP), which means that a solution of the
unconstrained problem

(4.1) min we(x)

recovers a solution of (SOCP) when c is greater than a threshold value. Following the
structure presented in [3, 2, 12], we show first that KKT conditions of (SOCP) are
equivalent, under some reasonable conditions, to the system of equations Vw,(z) = 0.
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In the remainder of the paper, we suppose that Assumption 3.1 holds. The first half
of the equivalence is given below.

PROPOSITION 4.1. If (x*, \*, u*) is a KKT triple for (SOCP), then Vw(z*) =0
for all ¢ > 0.

Proof. From Proposition 3.3(c), we have \* = A(z*). Also, from Proposition 3.4,
we obtain y.(x*) = 0. This result, along with the KKT conditions (3.1) and the
formula of Vw, in (3.16), gives

VoL@ N, 1) + (Ju(a®) + eTh(@z*) "hz*) + (JA@*) — eJg(a™)) ye(z™) =0

for all ¢ > 0, and the result follows. O

As to the converse, we will see that it may hold when the penalty parameter c is
large enough. If it does not hold, then, instead of a KKT point, we find an infeasible
point that is stationary for the function «, defined in (3.3). We recall that « is actually
a feasibility measure for (SOCP).

PROPOSITION 4.2. Let {z*} C R", and let {c1.} C Ry be sequences such that
% = &, cp — 00, and Vw,, (x¥) = 0 for all k. Then, & is a stationary point of the
feasibility measure «, defined in (3.3). In other words,

Va(#) = Jh(#) 'h(&) — Jg(#) " [Px,(=gi(#))],_, = 0.

Proof. Using (3.16) and dividing the equation Vuw,, (z¥) = 0 by ¢, we have

Vo L(a*, Na*), p(a*)) n <JM(9Ck
Ck Ck

-
) + Jh(:ck)> h(z")

& T
R )
Ck
Since all the functions involved in the above equality are continuous, we can take
the limit & — oo, and, taking into account the definition (3.17) of y.(x), we obtain
Jh(2)Th(z) — Jg(fc)T[P;ci(—gi(i))]::l = 0. Thus, the proof is complete. O
Before presenting the next result, we observe that the following inequality holds:

2
(4.2) lu—v|* > @ —|jv||* for all u,wv.
In fact, for all u, v,
[lul|® [Ju]? [lu — 20|12
= vl = FEE 4 ol = - + 20jel® — 2w, v) = 20 > 0.

PROPOSITION 4.3. Let & € R™ be a feasible point for (SOCP). Then, there exist
¢,6 > 0 such that if ||z — || <6, ¢ > ¢ and Vw.(x) = 0, then (z, \(z), u(z)) is a
KKT triple associated to (SOCP).

Proof. For any ¢ > 0, let us define

Jo() = [P;gi (—@ +gi($)>]:_l

Recalling the definition (3.17) of y.(x) and Lemma 2.3(a), we have
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Foralli=1,..., r, from Lemma 2.3(b), we have (Px, (Ai(z)/c — gi(2)), [Jc(x)];) = 0.
Since both Py, (A;(x)/c — gi(x)) and [g.(z)]; belong to K;, it follows from Lemma 2.2
that [gc(2)]; o Pic,(Ai(x)/c—gi(z)) =0foralli=1,..., r. That is,

c

~ )\i x "
Al | P (- )| o
i=1
where Arw(g.(z)) = diag(Arw([g.(2)];)) is a block diagonal matrix with Arw([g.(z)];)
as its entries. This, along with the definition of y.(x) in (3.17), implies that

A(x)

c .

(4.4) Arw(ge(®))ye(2) = —Arw(ge(x))

Moreover, observe that

—~ Arwlg(@)*Az) = © Arw(g(a)) (Arw(i()) — Arw(g())Az)

— %AI‘W(Q(ZII))AI‘W(QC(m)))\('x)'

From (4.3) and (4.4), we obtain
2 Arw(g() P A(s) = ~ Arw(g(e) Arw(ye(2))A(z) + Arw(g()) Arw () (@)

(15) — (FAr(gloDArv (@) + Arw(g(e) Arw(7() ).

where the last equality holds from the commutativity of the Jordan product.
Now, from the formula (3.16) of Vw.(z) and the equality (3.13), we have

]
=00 V(o) = = 1190V Ll M) ) — o) (P45 i) ) i)

ZC)y

T Jg(a) (Jg<a:> - ye()

.
_ _%ngrw(g(x))z/\(x) — Jg(x) <JMT(JC) + Jh(x)) h(x)

J(x)

)
+ag(a) (gat0) - X)) - et

Using equality (4.5), we have

(4.6)
]
~L4(0) Vuelo) = Fuloele) ~ Jota) (P45 1 anie) ) wio) - LGt
where
- JA(z)

T 2
Kite) = a9(0) (a(a) = ) 4 Lrwlgla) w3 (o)

+ (P Arw(g(x)) Arw(ge(x)).
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In a similar way, from equality (3.14), we obtain

J(x)

- Jg(a:>)Tyc<x>
(2

%Jh(x)Vwc(x) = Jh(x) (

i 1
(4.7) + Jh(x) + Jh(x )) h(z) — Egga(x)u(x).

The above equalities (4.6) and (4.7) can be rewritten as
w9 L T | e = | 0 | - eew L6 ]
where

Ne(z) = Ve(2) . —Jg(x)(Ju(x)/c—th(x)): |
Th(z) (INz)/e~ Tg(x))"  Th(z) (Ju(z) /e + Th(x))

Now, denoting o,,+,(N.(z)) as the smallest singular value of N.(z), we have
2

o [ 2 )2 et | [ 58 |

(4.9) = Omtp(Ne(2))? (lye(@) 1 + 17 (2)]%).

Furthermore, from the definition of y.(z) in (3.17) and Lemma 2.3(c), we obtain

2

410 afa) = 5 (InGa? + Z 1P o) < 5 (lne(@P + IIP).
Thus, taking the square of the norm in (4.8) and using the inequality (4.2), we have
(4.11)
LI —Tg() ’
£ [ Th(o) ] Viwe(z)
2 4
> 5 | | 5 ||| - Lar (p@ie + )
4
> |3om Ve = sEa@ (NI + 1)) (e + Ir)1?)

where the second inequality comes from (4.9) and (4.10).

Observe that if ¢ — oo, then §.(&) — [P, (9:(£))]i—, = g(&) because 7 is feasible.
Then, taking ¢ — oo and recalling that «(&) = 0, we have N (&) — N(&), with N (&)
defined as in (3.7). Since N(Z) is nonsingular from Proposition 3.3(a), there exist
6,¢ p > 0 such that, for any z € R" with ||z — 2| < and ¢ > ¢,

L (Nel))? <—20z( )(IIM@) 1 + u(@)]1?) = 5> 0.

(4.12) :

Now, consider any # € R” and ¢ € R, such that ||z—2|| < §, ¢ > ¢, and Vw.(z) = 0.
We conclude from (4.11) and (4.12) that y.(x) = 0 and h(x) = 0. So, by Propo-
sition 3.4, z is feasible and the complementarity condition holds. Plugging these
equalities into Vw.(z) gives V,L(x, A(z), u(z)) = 0, and the proof is complete. O
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Now we are ready to state the main result concerning the system of equations
Vwe(xz) =0 and KKT points of (SOCP).

THEOREM 4.4. Let {2*} C R" and {cr} C Ry; be sequences with c; — oo and
Vwe, (#F) = 0 for all k. Suppose that there is a subsequence {z%:} of {x*} such that
2% — & for some & € R™. Then, either there exists k such that (%, X(x¥7), p(x*7))
is a KKT triple associated to (SOCP) for all k; > k, or & is a stationary point of a
that is infeasible for (SOCP).

Proof. Observe that Proposition 4.2 guarantees that & is a stationary point of «.
Considering the case that & is feasible, we can use Proposition 4.3 to conclude that
there exists k such that (2%, A(2%), u(z%7)) is a KKT triple for all k; > k. O

Let us consider now two additional results concerning the values of the objective
function f and the function w,. at feasible points and KKT points.

LEMMA 4.5. If (x, A\, ) is a KKT triple for (SOCP), then w.(x) = f(x) for all
c>0.

Proof. From Proposition 3.3(c), we have A\;(x) = A; for all ¢. Then, the result
follows because h(x) = 0 and, from Lemma 2.2, \; = Pi, (A\; — cg;(z)) for all i. O

LEMMA 4.6. If x € R™ is feasible for (SOCP), then w.(z) < f(x) for all ¢ > 0.

Proof. Since h(x) = 0, we have only to prove that || Pic, (\;i(z) —cg:(x))]| < || Mi(z)]]
for i =1,...,r. Recalling that Px, is nonexpansive, we obtain

1Pic; (Ni(z) = cgi(@)) — Prci (—egi(0))| < [[(Milz) = cgi(@)) + cgi(2)] -

Since g;(z) € K; for all ¢ and ¢ > 0, we have Px,(—cg;(z)) = 0, and the proof is
complete. a

Let us prove now that w, is an exact penalty function for (SOCP). The definition
considered here is the same as the one given in [2] for nonlinear programming, which
in turn is the same as the one studied in [12] without its extra compact set.

DEFINITION 4.7. Let Gy (Lf) and Gy (c) (Lw(c)) be the sets of global (local)
minimizers of (SOCP) and (4.1), respectively. The function w.: R® — R is an
exact penalty function for (SOCP) if there exists ¢ > 0 such that Gy = Gy (c) and
L(c) C Ly for all ¢ > é.

First, we proceed with the equivalence of the sets of global minimizers.

PROPOSITION 4.8. Assume that Gy # 0 and let {z*} C R", and let {cx} C Ryy
be sequences such that ¥ — & for some £ € R", ¢, — o0, and ke Gu(ck) for all k.
Then, there exists k such that ¥ € Gy for all k > k.

Proof. Let € Gy. Since % is a KKT point, from Lemma 4.5, w.(Z) = f(&) for all
¢ > 0. Thus, since z* € G, (cx), we obtain w,, (%) < w,, (¥) = f(Z) for all k. Taking
the supremum limit in this inequality yields

(4.13) lim sup w,, (%) < f(&).

k—o0 o

Recall that, by (3.15), we have

we, (2%) = f(a*) + (h(a*), p(a)) + S ()]

23 (M - o)

i=1

/\Z(l‘k)

Ck

|

Then, it follows from (4.13) and the continuity of the involved functions that h(Z) = 0
and Py, (—g;(Z)) = 0 for all ¢, which in turn implies that ¢;(Z) € K; for all 4. In other
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words, Z is feasible for (SOCP). Moreover, since ¢, > 0 and the norm is nonnegative,
we have w,, (z%) > f(z%) + (h(z®), u(z*)) — | A(z*)||?/(2ck) for all k. Once again,
taking the supremum limit, we obtain f(#) < limsup w,, (z¥). Thus, recalling (4.13),
we have f(&) < f(&), and hence we conclude that & € Gy.

Now, take 6,5 > 0 as in Proposition 4.3, which exist because of the feasibility of
#. Let k be large enough so that ||z% — 2|| <4, cx > ¢, and 2* € G, (c) for all k > k.
Since Vwck( ) = 0 and using Proposition 4.3, we have that 2* is a KKT point for
all k > k. Thus, once again from Lemma 4.5, we obtain f(2*) = w,, (2¥) < f(¥) for
all k > k, which means that z* € G s for all k > k, as desired. O

PROPOSITION 4.9. Assume that Gy # 0 and that there exists ¢ > 0 such that
S = U,>sGuwl(c) is bounded. Then, there exists some ¢ > 0 such that G, (c) = Gy for
all ¢ > ¢.

Proof Let {z*} ¢ S and {ex} € Ry be sequences such that ¢, > ¢, ¢ — oo,
and 2% € G,,(cx) for all k. Since S is bounded, we can also assume that {xk} converges
to some accumulation point. Then, Proposition 4.8 shows that there exists k such
that z* € Gy for all k > I%, and so G, (c) C Gy for all ¢ > ¢;. Now, let ¢ > ¢; and take
Z € Gw(c) C Gf. From Lemma 4.5, we have w.(Z) = f(Z). Choose & € Gy arbitrarily.
Then, once again from Lemma 4.5, we have w.(Z) = f(Z) = f(Z) = wc(&). Therefore,
& € Gy(c) for all ¢ > ¢;. Since & € Gy is arbitrary, we have Gy C G, (c) for all ¢ > ¢;.
Hence, we conclude that w, is a weakly exact penalty function for (SOCP). O

For local minimizers, the inclusion £, (c) € L¢ is not generally guaranteed, be-
cause a local minimum of (4.1) is not necessarily feasible for (SOCP). Here, we
establish the results as in [2], which admit that we may end up with a stationary
point of the feasibility measure « that is infeasible for (SOCP).

THEOREM 4.10. Let {z*} c R™ and {c;} C Ry be sequences such that c; — oo
and 2% € Ly (ck) for all k. Suppose that there is a subsequence {xF J} of {x*} such
that 2% — & for some @ € R™. Then, either there exists k such that a* € Ly for all
k>k, oriisa stationary point of o that is infeasible.

Proof. In view of Theorem 4.4, there exists k such that 2% is a KKT point for all
kj > k or # is a stationary point of o that is infeasible. Consider the first assertion
and fix k; > k. From Lemma 4.5 and the fact that %/ Ly (ck;), there exists a
neighborhood N (z*7) of z*i such that

(4.14) fzhi) = We,, (zFi) < we,, (x) forall v € N (z).

Now take an arbitrary € N'(z*/) that is feasible for (SOCP). Then, Lemma 4.6 guar-
antees that we, (z) < f(z), which, together with (4.14), shows that f(z*/) < f(z).
Since = € N(x¥7) is arbitrary, we have z¥i € £ ¢- Thus, the proof is complete. O
5. Generalized newton method. As we mentioned in the last paragraph of
section 3, w, is an SC' function. So, a generalized Newton method with line search
strategy [16, 31, 34] can be used to solve the unconstrained problem (4.1). Let ¢ >0

be fixed and sufficiently large. We recall that the method is iterative and generates a
sequence {z*} by

M= ok 4ty d”,
(5.1) d* =~V 'Vw.(z¥), Vi € 95Vw.(z"),

where d* is the search direction and ¢, is the step-size determined, for example, by
an Armijo-type rule. We note that a convergence theorem of the generalized Newton
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method [35] shows that if all the elements of the B-subdifferential g Vw.(z*) of Vw,
at a KKT point x* are positive definite (with large enough ¢), then the method, with
unit step-size t; = 1 converges locally with a superlinear rate. If, in addition, V2f,
V2gi,j, and V2hj are locally Lipschitz continuous, then Vw, is strongly semismooth
and the convergence rate is quadratic.

Before establishing the conditions that guarantee the positive definiteness of the
elements of O Vw,.(z*), let us first recall a couple of results and definitions. Recalling
the notation Ij(x), Ip(z), and Ip(x) given in (3.6), for a KKT triple (z*, \*, u*), we
define the following sets of indices:

Iy, ={i€Ir(z*): X\ =0}

IS[ = {Z S IQ(QJ*) : /\;k S 1nt(IC1)}
Iyp = {i € Ip(x*): \f € bdt(K;)}
Iy = {i € Ip(z*): \f =0}

Lp = {i€Io(xz*) : \f € bd ¥ (K)}
by = {i€Iy(z*) : \f =0}

satisfies

strict complementarity,
(5.2)
does not satisfy

strict complementarity.

Note that the above sets of indices constitute a partition for {1,...,r}. Also, if the
strict complementarity condition holds, that is, if g;(z*) + Af € int(K;), i =1,...,r,
then I, = Ijp = I, = 0. The following result gives us a characterization of the
KKT points of (SOCP).

LEMMA 5.1. Let (z*,X*, pu*) be a KKT triple for (SOCP). Then, for each i =
1,...,7, one of the following conditions holds: (a) g;(z*) = 0, (b) A¥ =0, or (c)
A=K (gio(x*), —gi(x*)), where ki = Ny/gio(x*).

Proof. See [1, Lemma 15]. a

Now, we consider the formula of the B-subdifferential of the projection mapping
onto second-order cones. It will be used further to characterize the elements of the
B-subdifferential of Vw.,.

LEMMA 5.2. For eachi=1,...,r, let M;: R x R™~1 — R™X™ be defined as

11 u’
M;(&,u) = ) { u (148, — Euu’ } '

Then, for each i =1,...,r, the B- subdiﬁerential OB Px,(2) is given as follows:

(a) If z0 < —||zH then 3BP;¢ = {0}.

(b) If zo > ||Z||, then OpPx,(z {Iml}

(©) I -2l < 20 < |12l then aBch ()= {0 (. )}
() If z0 = ||Z]| # 0, then 9P, (= { ( % }
() If 20 = —||Z]| £ 0, then dp P, (z) = { ( |—)

(f) If 20 =0 and Z = 0, then dpPx,(2) = {0, I,, } U {M, ) 1€l <1, |lu] = 1}

Proof. See [32, Lemma 14] or [21, Proposition 4.8]. EI

Notice that M;(§,u), defined in the above lemma, is symmetric and positive
semidefinite whenever || < 1 and |lul]| = 1 [24, Lemma 2.8].

LEMMA 5.3. Let (x*, A", u*) be a KKT triple for (SOCP) and ¢ > 0. For each
i=1,...,r, the B-subdifferential Op P, (/\Z —cgi(x *)) is given as follows:

(a) Ifz € I}y, then P, (A — cgi(z*)) = {0}.

(b) Ifi € I3, then OpPc, (A — cgi(z*)) = {Im, }-
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(c) Ifi € I}, then Op Py, (Nf — cgi(z*)) = {Ml (';jri, HA*H)}’ where k; is de-
fined as in Lemma 5.1.

(d) Ifi € Ip, then OpPr, (A} — cgi(z*)) = {Imi,M (1 Al )}

5]
() Ifi € Iy, then dpPe, (A = egs(a®)) = {0,M; (=1, — £ 1,
(f) Ifi € Iy, then Op Pic, (A} — egi(@™)) = {0, L, }U{M;(&,u): [€] < L, [Jul| = 1}
Proof. The results follow from Lemma 5.2 and Lemma 5.1 (for item (c)). O

The next proposition and corollary give a characterization of the B-subdifferential
of Vw, at an arbitrary point and a KKT point, respectively.

PROPOSITION 5.4. Let x € R" and ¢ > 0. Then, any V € OpVw(z) is expressed
as V=V + ¢.(x), where V is given by

V = V2 Lz, A=), u(z)) + Jh(z) " (Ju(z) + eJh(x)) + Ju(z) T Th(z)
(5.3) — %J)\(x)TJ)\(x) + % Z (JXi(z) — chi(x))T(J/\i(x) —cJgi(x))

€Ly

+% 3 (INile) — edgilx) M, un) (Thi(e) — edgilx)

i€ln
for some sets of indices Iy, Ipr C {1,...,7}, some & € R and u; € R™ 1 satisfying
€] <1 and ||u;|| =1 for each i € Iy, and
(5.4)
r P
ZZ Ye(@)]i; (V2Xij (@) = eV2gi () + > hyi() (V2i(x) + V2 (x)),
=1 j=1 Jj=1

with V2g; j(z) and V2, j(x) denoting the Hessians of the jth component of g; and
i at x, respectively, and [y.(x)];; denoting the jth entry of [y.(x)];.

Proof. Let V € 0pVw.(z) be arbitrarily given. Then, from the first equality
n (3.16), there exist R; € dpPx, (Ai(z) — cgi(z)), i =1,...,r, such that

vV =V2f( +Zuj ) + Jh(z) Tz +Zh )V u(x) + Jpu(x) T Th(z)

+th ) + cJh(z)  Th(z ——iz/\” 2)V2N; j(x)

=1 j=1
_ _J)\ TJ/\ _|_ ZZ PIC — ng( ))]j <%V2)‘i7j($) — V2gi,j($)>
i=1 j= .
+Z< g )) Ri(IN(x) — egi(a)).

where [Px, (Ai(z) — cg; (x))L and A; j(x) are the jth entries of P, (A;i(z) —cgi(x)) and
Ai(x), respectively. From definition (3.17) of y.(z), we obtain

V = V2, L(z, A(z), u(z)) + Jh(z) T (Ju(z) + cJh(z)) + Ju(z) " Th(z)

T

LN TIA) + 3 (D) — eTi(e) R (TAula) — elai(e) + oele),

=1
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where ¢.(z) is defined as in (5.4). Now, define Zy,Z)s,Zy as the sets of indices

Iy ={ie{l,....;r}: Ri=1I,.},

o ={ie{l,....,r}: Ry =0},

Iy = {ie{l,....r}: R = M;(& u) for some £ € R and u € R™ 1
with [£| <1 and |juf = 1}.

(5.5)

From Lemma 5.2, Ty UZy U Zy; = {1,...,r}, and the result follows. d
From the above result, we observe that V' € 0 Vw,(z) contains sz\m» and Vzum
in its formula, which in turn contain third-order derivatives of f, g;;, and h; (see
Proposition 3.3(d)). When these functions are only twice continuously differentiable,
a way to avoid such computation is required. This will be discussed in section 6.
COROLLARY 5.5. Let (x*, A", u*) be a KKT triple for (SOCP) and let ¢ > 0.
Then, any let V € 0pVw.(z*) is expressed as

V = V2, L(z*, X, 1*) + Jh(z*) " (Ju(x*) + eJh(z*)) + Jpu(z*) T Th(z*)

- %J/\(a:*)TJ)\(x*) + % Z (JXi(z*) — chi(a:*))T(J/\i(a:*) —cJgi(z*))

€Ly

+ é Z (J/\z(x*) — CJgi(ﬁ*))TMi(fi, ul) (J/\l(;v*) — chi(x*))

1€

for some sets of indices Iy, Ipyy € {1,...,7}, and some & € R and u; € R™i—1
satisfying |&;| < 1 and ||u;|| =1 for each i € Tpy.

Proof. From Proposition 3.3(c), A(z*) = A* and p(z*) = p*. Moreover, the
KKT conditions give h(z*) = 0 and y.(z*) = 0 (see Proposition 3.4). Thus, by (5.4),
¢c(z*) = 0. Hence, the formula of V' € dpVw,(z*) follows from Proposition 5.4. O

We are now ready to show that the generalized Newton method (5.1), with unit
step-size t;, = 1, results in superlinear convergence, under the following assumption [7].

Assumption 5.6. Let (z*,\*,u*) be a KKT triple for (SOCP). The strong
second-order sufficient condition holds, that is,

<(V$L@ﬂkﬂﬁﬁ+§:ﬂxfwvodﬂ>>ndﬂf

i=1

for all d € aff(C(x*)), where o > 0,

Jh(z*)d =0,
o n, Jgia*)d =0, L€ oy
aff(C27)) = §d R 70 a0 =0, i€lpp,

Jgi(z*)d € {v(\p, =A}): v €RY, i € [ip
is the affine hull of the critical cone at z*, and

o1 0T o
(5.6) H;(z",\") = —kiJgi(z )T[ 0 —Im,1 }Jgi(x ) ifielfg,

0 otherwise,

with k; defined as in Lemma 5.1.

THEOREM 5.7. Let 2* € R™ be a KKT point for (SOCP) and suppose that
Assumption 5.6 holds. Then, all matrices in the B-subdifferential 0gVw.(z*) are
positive definite for any ¢ > 0 sufficiently large.
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Proof. Let us assume for the purpose of contradiction that there are sequences
{ct} € Ryt and {Vi} € R™*™ such that ¢ — 400 and Vi, € 9pVw,, (*) is not
positive definite for all k. Then, there exists {d*} C R" such that ||d*|| = 1 and
(Ved®, d*) < 0 for all k. Without loss of generality, suppose that {d*} converges to
some vector d* € R™ such that ||d*|| = 1. Then, from Corollary 5.5, for each k, there
exist sets of indices ZF, Z¥, such that

(Vid¥,d"y = <<meL(x*, AL+ Hi(a, /\*)) dr, dk>

=1
— 3" (Hi(a*, A)dF,d) + 2(Th(a)db, Tp(a)d®) + cil| Th(z*)d" |

i€lgp
2 1 9
ok Y < Jgi(a:*)) d"| = —[|TA)d"|
k
ieZh
* 2
(5.7) + ¢, HM (&, u) 2 <M — ng-(x*)) d*
€IV \I% g Ck

L (o

i€l p
Ki —Clk  Af \\ 7k
M; JN\; Jg; d® ),

<m+ck ||A*||>( (@) = erJgifa’)) >

where & € R and u; € R™ 1 satisfy |¢] < 1 and ||u;]| = 1 for each i € Z¥, \ I}p,
H;(xz*, \*) is defined by (5.6), and the fact that H;(z*, \*) = 0 for all ¢ ¢ I} is used.
Also, recalling (5.5) and Lemma 5.3, we notice that for i € Z¥, \ Iz, M;(&,u;) is
symmetric positive semidefinite and M;(&;, u;) = M;(&;, ui)1/2Mi (&, ui)1/2.

For simplicity, for each 7 € I, define 8;: Ry x R" — R with

Bile:d) = B0 () + B e, d) + B (e, d) + 7 (e, d),
where ﬁi(l) : R™ = R and ﬁi@), Bl-(g),ﬁl@) : Ryt x R™ = R are given by

BY(d) = — (Hy(x*, \")d, d),

ﬁ(z) d) = Jg z*)d M A )\* J : d>

i (C) ) c < ’L( ) ’ Ki C ||A*|| ( ) ’

/3»(3) d) =—2( Jgi(z*)d, M; i i\: JXi(z* d>
7 (Ca ) < gl( ) ) 7 Ki C7 ||Af|| Z( ) )

89 (¢, d) i% <J)\i( *)d, M; (—_c ”;:”> J)\i(:c*)d>.

Since there are only finitely many subsets Z} and Zf;, we may assume that Z} = Z; and
I¥; = Iy for all k. Then, observing that the matrix M; ((r; — c&)/(ki + c&), A/ AL])
is symmetric, we can rewrite (5.7) as
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(Vid®,d") = <<V§wL(Jc*, X))+ Hila®, A*))dk, dk>
=1

+2(Jh(a*)d", Ju(x*)dk> + o || Th(@)d¥||* — Ci||JA(x*)dk\|2
k

(5.8) ter Y ( Jgi(x*)> d*

€Ly

+toer Y HMi(fi,ui)lm <M - ng-(a:*)) d*

. Ck
1€Zm\I5p

2

2
+ > Biler,d")

i€l

Let us fix ¢ € I} and analyze the expression of f5;(c, d) for any ¢ € Ry and d € R”.
For simplicity, we also define s; = Jg;(x*)d and u; = J\;(z*)d. Observe that, by (5.6),

.
@ =r(o o g, |5) =G0 lsI)

For the term Bl-(Q) (¢,d), recall that \* € bd™ (K;) (i.e., \iy = [|A\f]| > 0) and note that

(5.9) (s, X0)% = (O, 307 + 2|3 [|sio (N, 50) + || 25112 (s00)

Thus, we have

N 2

2) _Cla L 280 e o 25; > 2 (c—m> (A}, 50)

e d 2S“+nwn““z>+(c+m I+ () e

_CK; =12 _ <;\:;§i>2 C|.2 25,0 /v4 - </\’k 7>

10 = |l S| g [ e+ s
— Chi . 2 <X:’§i>2 c . *\ 2
pzrl Ll e P e I R

where the last equality follows from (5.9). Finally, we have

A7)
26 \ c—wi\ (A58 (AF )
i (CJH%) (Furta) (C+/€i> IAF12 ’

and, analogously to ﬁi@) (¢c,d) (see line (5.10)), we obtain

(5.11)
B AL U 1
o) = 'WM2‘<wﬂ@] %

6(3 (C d) |f‘zO&O + = H)\*” </\;k, 71> + %—0<;\f,al>

Rg

cle+ ki) iy +

oy 8]

AL AT

Let us go back to (5.8). Note that (Vid*,d*) < 0 for all k. Thus, we divide (5.8) by
¢ and take the limit kK — oo to conclude that

(a) Jh(z*)d* =0, (b) M;(&,ui)Y?Tgi(x*)d* =0, i € Ipr \ I,

(512) () Jgia)d* = 0, € Tr, (d) (Jgi(a)d*, A7) =0, i e Ty
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We notice that (5.12)(d) comes from the last term of ﬁi@)(ck,dk). Now, let us
show that d* € aff(C(z*)). Observe that we have only to prove that for each
i € Iig, Jgi(x*)d* = v(X\j, —A;) for some v € R. First, note that I C Z; U Ty
from Lemma 5.3. If i € Ijz NZ;, then (5.12)(c) shows that Jg;(z*)d* = 0 =

v(Ajy, —Af) with v = 0. Consider now the case i € Ij5 N Za. It is easy to show

that M, (1, X5 /| AFIDY2 = Mi(1, X1 /|| Af]]). Therefore, defining sf = Jg;(z*)d*, and

(3 (3

from (5.12)(b), we have

o, s
2 L ot TN )
Mi(1, X /[AG 1) 77 si = 5 * Y gry = 0.
2 ( Si0 _<)‘i58i>))\»f+2$>f
I
This implies that s}, = —(\f,57) /|| A and
S;‘O <x;,k) Sr>> g * —* 28;0 3 —x
< - N Az+281: T )\’L+2SZ:0
<||Af|| IAT2 A7
Since i € Iz (A = [|[Af]| > 0), the above equality shows that §7 = —(s,/Aj)Ar-

Thus, s} = Jgi(z*)d* = v(\ly, —A), with v = s},/\},. Consequently, we conclude
that d* € aff (C'(z*)).

We now claim that for every d sufficiently close to d* and for ¢y large enough, we
have (Vi.d, d) > 0, which will be a contradiction to the hypothesis (V3.d*, d*) < 0 with
d* — d*. Let i € I} and define s} = Jg;(x*)d* and u} = J\;(z*)d*. Observe that
Ny = ||IAf]| > 0 and that (s}, AY) = 0 implies (5}, A\}) = —si;Al. Also, note that

1) (3

BY () + B2 (cx, d*)

2 2
N PR ST CLKj =2 _ (Sfo) ()‘fo)
(5.13) = Hz[(sio) HSzH } + r + Fos HSzH ||;\:||2
K2 N2 (k|2
- cr + Ki [(Sio) - | & }
and

ﬁz(B) (Cka d*)

(T _ s* _
2|k st + = (N EEY 4 0Nk
[ 10270 ||)\r||< i z> ||)\;¢<||< 7 z>

2k s ek — i\ (A58 (A ap)
- (Ck +f<:i> (s, ai) + <Ck +m> [ A7]|2

(514) :—2[HS;S”<A:,U:>+( - )<s:,ur>—(ck_“i)Wfffﬁf;m]

cx + K Ck + K

2'%1' S;FO Nk =k 2’%1' —% =k
(ckm) DAREIA <ck+m) <“>]
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So, since d* € aff(C(z*)) (and satisfies (5.12)), in a similar way to (5.8), we can write

(Vid*,d*) = <<v§mL(x*, Nou) + Y Hia®, /\*)) d, d*>

i=1

1 N ) ' *
—aHJ/\ )d*||” +—Z||J)\ DT+ D Bile,d”)

lGII i€lyp
= <<V§zL(x*,)\*,u*) + ZHZ-(:C*,/\*)) d*,d*> — Ci SN |
i=1 b igTy

=3 [F (8@ + 8P e a)) - B er,dt) = B (e )]

i€lgp

Let 79 > 0 be a constant as specified in Assumption 5.6. Recalling (5.11) (with ¢ = ¢
and d = d*), (5.13), and (5.14), when ¢ is sufficiently large, we have

(B0 @) + B er, d)) = B (ep,d*) = B (e, d") <
3155

for any ¢ € I, and
w7 || 2
A
Ck 3L, ...,r}\ Iy

for any ¢ ¢ Z;. Recall that ||d*|| = 1. These inequalities, together with the strong
second-order sufficient condition, give

* g Mo Mo _ Mo
<de d>>n0 3 3—3>0

for all ¢ large enough. It then follows from continuity that (Vid,d) > 0 for all d
sufficiently close to d*. This gives the desired contradiction. d

We point out that the above result can be established if we replace the strong
second-order sufficient condition by the strict complementarity, together with the
second-order sufficient condition [7]. In such a case, from (5.2), (5.5), and Corol-
lary 5.5, O Vw,(z*) is a singleton, and the proof is analogous to the one above.

6. The algorithm. Let us now present a way to choose the penalty parameter c.
The idea was given in [19] and also used in [3, 2]. Observe that Vw.(z) = 0 is actually
a reformulation of the KKT system (3.1) from Proposition 4.1 and Theorem 4.4. Then,
we introduce a function, called a test function, that measures the risk of computing a
zero of Vw, that is not a KKT point. We define the function 7.: R” — R by

(6.1) Te(z) = [ Vwe(@)|* + C%(Hyc(ﬂc)ll2 + [ h(@)I?),

where v is an arbitrary positive number (e.g., v = 2). The following result shows that
7. is in fact a test function.

PROPOSITION 6.1. The following statements are equivalent: (a) x is a KKT
point of (SOCP); (b) Vw.(z) = 0, y.(x) = 0, and h(z) = 0; (¢) Vw.(z) = 0 and
To(z) < 0.

Proof. 1t follows directly from expression (3.16) of Vw.(z) and the definitions
(3.17) and (6.1) of y.(z) and T.(x), respectively, along with Proposition 3.4. O
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Since the results associated to 7. and their proofs are similar to the ones presented
in [3, section 3] and [2, section 4], we just state here the main result.

PROPOSITION 6.2. For any & € R™, either & is a stationary point of the feasibility
measure o that is infeasible for (SOCP), or there exist ¢,6 > 0 such that ifc> ¢ and
[l —Z|| <0, then To(x) <0

This result shows a way to update the parameter c¢. More precisely, from Propo-
sition 6.1, while we approximately compute a zero of Vw,, we increase the value of ¢
if the test function 7, at a point is greater than zero.

ALGORITHM 6.3 (dynamical update of the penalty parameter).

1. Let A.(z) be the iteration function of an algorithm that computes a zero of
Vwe(z). Initialize 2° € R™, ¢ >0, 0 > 1, and v > 0. Set k = 0.
If % is an approzimate KKT point of the problem, stop.
If T, (%) <0, then go to step 5.
Set ¢, = Tc, and go to step 3.
Compute x*+t = A, («F), set k =k + 1, and go to step 2.

THEOREM 6.4. Let {z*} C R™ be a sequence computed by Algorithm 6.3. If {z*}
is bounded and infinite, then for each one of its accumulation points, either it is a
KKT point, or it is a stationary point of the measure o that is infeasible for (SOCP).

The above theorem, along with Propositions 6.1 and 6.2, shows that when the
sequence computed by Algorithm 6.3 converges to a KKT point, then ¢ stays constant
for large enough k. Now, consider the case when {z*} converges to a KKT point,
and let ¢, = c for large enough k. Observe that at each iteration of the generalized
Newton method (5.1), an element Vj of the B-subdifferential 95 Vw,(2¥) is needed.
But Propositions 5.4 and 3.3(d) show that V}, contains third-order derivatives of the
problem functions f, g; j, and h;. From the numerical point of view, it is desirable
to replace Vi, by another matrix that does not contain third-order derivatives. Here,
following the idea given in [14], we choose a matrix Vj with the following property:
If {x*} converges to a KKT point, then

T o

(6.2) lim {mln ||Vk — Vk” Vi € 0pVwe(x )} =0.

k—o0
We suggest using matrix Vi given in (5.3) with = = 2*. Note that Vi satisfies
Vi = Vi — d)c(xk) for some V}, € GBVwC(xk),

where ¢.(z) is defined as in (5.4). From continuity, it follows that limy_, ¢(z¥) =0
when {2} converges to a KKT point. Then, condition (6.2) holds.

The algorithm is stated as follows.

ALGORITHM 6.5 (a generalized Newton method for nonlinear SOCP based on an
exact penalty function).

1. Choose 2° € R", ¢ > 0, 7 > 1, 1 > 0, e2,e3 € (0,1), o € (0,1/2). Set
kE=0.
1f |V we, (a*)]| < 21, stop.
If Te, (x%) < 0, then go to step 5.
Set ¢, = Tci, and go to step 3.
Choose Vi, satisfying (6.2) and compute d* such that Vid* = —Vw,, (z¥).
If we, (2% + d¥) < we, (z%), then set t;, = 1 and go to step 9.
If (Vi (%), d%) > —&|d ||V, ()] or [ld¥]] < e5]|Vawe, (2¥)]], then set
k= —Vw,, (z%).

oot N
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8. Find t € (0,1] such that we, (z* + tpd*) < we, (2%) + oti (Vw,, (z%), d¥) with
a backtracking strategy.
9. SetaFtl =2k 4 t1.d*, k =k +1, and go to step 2.

Some comments about this algorithm are in order. In step 7, the steepest descent
direction is taken instead of the Newton direction if the latter is not a sufficient
descent direction or if the norm condition is not satisfied. In step 8, an Armijo-type
line search is used in order to find a step-size t;. At every backtracking step of the line
search, the evaluation of w,, (z* +t4d*) requires the computation of A\(z* +#,d*) and
p(xF+td¥), which means that a linear least squares problem has to be solved. Since it
is computationally expensive, another strategy that can obviate frequent evaluations
of we, is desired. We leave this question as a future topic of research.

From Theorem 6.4, any accumulation point of a sequence produced by Algo-
rithm 6.5 is a KKT point of (SOCP), or it is a stationary point of « that is infeasible.
The next theorem states that the proposed method achieves superlinear convergence.

THEOREM 6.6. Let {xF} C R™ be a sequence produced by Algorithm 6.5. Assume
that {z*} converges to a KK T point of (SOCP) that satisfies the strong second-order
sufficient condition. Then, eventually, only the Newton direction is taken as the search
direction, and t,, = 1 satisfies the condition in step 8, implying that the convergence
rate is superlinear.

Proof. The result follows from Theorem 5.7, the property (6.2), and [14, Propo-
sition 8.1]. See also the results given in [16]. 0O

7. Numerical experiments. In this section, we present some simple numerical
experiments to validate the results described above. Our main objective is to ver-
ify that the superlinear convergence rate is actually attained numerically. We have
implemented Algorithm 6.5 in Python using the scientific library Scipy. Whenever
the Newton direction is rejected in step 7, the Cauchy direction with the spectral
step-size described in [6] is used. Moreover, the code employs a nonmonotone Armijo
line search, more specifically the variation due to Grippo, Lapariello, and Lucidi [20],
which is essential to ensure the effectiveness of the spectral step-size and is known to
improve the behavior of a Newton-type method.

To obtain a multipliers estimate in (3.2), we used ¢; = 2 and kept (3 = 10~*
small as suggested in [2]. To define the test function in (6.1), we set v = 2. In
Algorithm 6.5, we set ¢cg = 100, 7 = 10, 1 = ¢35 = €3 = 1078, and ¢ = 1074
The Armijo search decreases the step-size by a factor of 0.5 whenever needed. The
memory parameter in the nonmonotone search was 10, and the maximum num-
ber of iterations is 500. The experiments were carried out on a Dell E6410 lap-
top with a core i5 M250 processor running at 2.4GHz and 4GB of RAM. The
operating system was Linux (Ubuntu 11.04). We have borrowed our test problems
from [24, 25].

Table 7.1 shows the performance of the method when solving Example 4.1 from
[24]. This is a simple problem with a nonconvex quadratic objective function and the
constraint x € K2, where K3 denotes? the second-order cone in R2. It is easy to observe
that superlinear, probably quadratic, convergence was attained. The (supremum)
norm of Vw,, goes from the order of 1073 to 107! in the last three iterations. It is
also interesting to point out that the method did converge to the global solution of
the problem given in [24] and not to an arbitrary KKT point. Observe also that the

2Note the difference between K¢ and Ky. The first denotes the second-order cone in R¢, and the
second means the fth second-order cone in the Cartesian product K = K1 X - -+ X ICp.
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Numerical results for Example 4.1 from [24].

TABLE 7.1

[Vwe, [loo

Wey,

OO Uk WN — O

3.914233e+-01
6.027272e-01
6.434275e+00
9.356229e-02
1.230339e+4-00
6.824498e-03
4.673036e-03
2.065192e-07
4.220489e-12

1.845668e-+01
1.179886e+00
1.442102e+00
1.010681e+00
1.015349e+00
1.000047e+00
1.000000e+00
1.000000e+00
1.000000e+00

TABLE 7.2

Numerical results for Examples 4.2 (left) and 4.3 (right) from [24].

[Vwe, [loo

Wey,

6.642553e+-03
3.411402e+-01
5.233446e+01
6.830832e4-00
9.349042¢-01
6.022119e-01
5.004713e-01
1.373289e-01
1.554650e-02
1.374576e-04

9.538828e+03
3.756326e+00
2.976846e+-01
3.373946e+00
3.331225e+00
3.325817e+00
3.317168e+00
3.305990e+00
3.304765e+00
3.304749e4-00

[Vwe, [loo

Wey,

DU WN = O

2.217257e+02
2.898601e4-01
2.097331e+4-01
6.844309e-01
2.825392e-03
7.474542e-04
4.770868e-09

8.048864e+-02
1.271508e+01
7.505792e+00
2.836546e+00
2.828442e+00
2.828427e+00
2.828427e+00

= © 00 O Ul W~ Ol x

0 | 4.485237e-09

3.304749e+00

value of w, increases in iterations 2 and 4. This is allowed due to the nonmonotone
nature of the line search employed in the algorithm.

Next, we turn our attention to Examples 4.2 and 4.3 of [24]; both problems are
convex. Example 4.2 has a highly nonlinear objective function containing exponentials
and polynomials of order up to 4. It is a problem in R®, with constraints x € K3 x
2. Example 4.3 is a linear SOCP problem of finding the point that minimizes the
maximal Euclidean distance to three points fixed in the plane. This last example is
particularly interesting because strict complementarity does not hold [24]. The results
are presented in Table 7.2. Both problems have only linear constraints. Once again
the superlinear convergence takes place in the final iterations.

In all these first tests, the globalization strategy did not have an important role
in convergence. The pure Newton method, i.e., the method without the globalization
strategy, was also able to find the same solutions in almost the same number of steps.
We then turn to Experiment 2 in [25]. This problem has highly nonlinear constraints
that can easily lead a pure Newton method to diverge. This problem allows for
variable dimensions and a number of second-order cone constraints. As in [25], we
solved problems with I = K° x K?, K = K° x K® x K29, and K = K5 x K5 x K2 x K2V,
For each KC, 10 random problems with random starting points were generated and
solved. The results are shown in Table 7.3.

Observe that the pure Newton method failed in almost all instances, solving
only two problems of the smallest dimension. The globalized Newton method (Algo-
rithm 6.5) was able to solve 27 problems out of 30, failing only in three of the largest
ones. The main difficulty for the pure Newton method is that it diverges to points
with very large objective values. This is a direct result of the lack of globalization.
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TABLE 7.3
Numerical results for Ezperiment 2 from [25]. It shows the median, mazimum, and minimum
number of iterations needed to solve the problems when trials were successful, and the number of
failures.

Globalized Newton Pure Newton
K Median Max Min Fail Median Max Min  Fail
K% x K5 29 110 15 0 67 82 52 8
K5 x K% x K20 105 357 35 0 - . . 10
K5 x KB x K20 x k20 141 495 70 3 - - - 10

Anyhow, the globalization strategy still failed, although not often, suggesting that
such a naive globalization scheme may not be robust enough to deal with difficult,
highly nonlinear problems. Moreover, we point out that convergence to infeasible
points, but stationary to the feasibility measure «, did not occur in all these tests.

Finally we would like to stress that, whenever convergence occurred, the New-
ton direction with unit step-size was accepted in the last few iterations, resulting in
superlinear convergence. Actually, in many instances, the typical behavior was slow
progress with frequent rejections of the Newton direction until the Newton conver-
gence basin was achieved. In a few cases, this was possible only after updating the
penalty parameter from 100 to 1000, which was the largest ¢ value used (step 4 of
Algorithm 6.5). Such slow progress in the early stage of iterations also suggests that
better globalization strategies, together with improved criteria to update the penalty
parameter sooner, must be investigated.

8. Conclusions. We have proposed a method for solving nonlinear SOCPs that
uses a continuously differentiable exact penalty function as a base. Under the nonde-
generacy assumption and the strong second-order sufficient condition, we have proved
that the method has global and superlinear convergence. Preliminary numerical ex-
periments have been carried out to confirm the theoretical properties. Some investi-
gations should be done in future research, including comparison with other methods.

Acknowledgments. We would like to thank Roberto Andreani and the referees
for their helpful comments and suggestions.
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