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Abstract. This paper presents a convergence proof technique for a broad class of proximal
algorithms in which the perturbation term is separable and may contain barriers enforcing interval
constraints. There are two key ingredients in the analysis: a mild regularity condition on the dif-
ferential behavior of the barrier as one approaches an interval boundary and a lower stepsize limit
that takes into account the curvature of the proximal term. We give two applications of our ap-
proach. First, we prove subsequential convergence of a very broad class of proximal minimization
algorithms for convex optimization, where different stepsizes can be used for each coordinate. Ap-
plying these methods to the dual of a convex program, we obtain a wide class of multiplier methods
with subsequential convergence of both primal and dual iterates and independent adjustment of the
penalty parameter for each constraint. The adjustment rules for the penalty parameters generalize
a well-established scheme for the exponential method of multipliers. The results may also be viewed
as a generalization of recent work by Ben-Tal and Zibulevsky [SIAM J. Optim, 7 (1997), pp. 347–
366] and Auslender, Teboulle, and Ben-Tiba [Comput. Optim. Appl., 12 (1999), pp. 31–40; Math.
Oper. Res., 24 (1999), pp. 645–668] on methods derived from ϕ-divergences. The second application
established full convergence, under a novel stepsize condition, of Bregman-function-based proximal
methods for general monotone operator problems over a box. Prior results in this area required
strong restrictive assumptions on the monotone operator.
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1. Introduction. Let B ⊆ R
n denote the possibly unbounded n-dimensional

“box” ([a1, b1] × · · · × [an, bn]) ∩ R
n, where −∞ ≤ ai < bi ≤ +∞ for all i = 1, . . . , n.

This paper considers two closely related problems: the minimization problem

min
x∈B

f(x),(1.1)

where f : R
n → (−∞,+∞] is a closed proper convex function, and the variational

inequality

0 ∈ T (x) + NB(x),(1.2)

where T is a (possibly set-valued) maximal monotone operator and NB(x) denotes the
cone of vectors normal to the set B at x. It is well known that, under mild regularity
conditions, (1.1) is the special case of (1.2) for which T = ∂f , the subgradient mapping
of f .
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RESCALING GENERALIZED PROXIMAL METHODS 239

The last decade has seen considerable progress in the theory of proximal point
methods based on generalized distances [11, 13, 19, 5, 21, 31, 14, 2, 3, 17]. Such
methods use a scalar-valued regularization function to derive better-behaved versions
of problems (1.1) and (1.2). In this article, we consider separable regularization terms
of the form

D(x, y) =

n∑
i=1

di(xi, yi),

where d1, . . . , dn are scalar functions conforming to very general assumptions (see
Assumption 2.1 below). In particular, we assume that as x ∈ intB approaches the
boundary of B, ‖∇1D(x, y)‖ → ∞, where ∇1 denotes the gradient with respect to the
first vector argument. The distance-like measure D can be, for example, the squared
Euclidean distance, a Bregman distance [8], or a ϕ-divergence [19] (see section 2.2
below).

Using these regularization terms, proximal methods for (1.1) take the form

xk+1 = arg min
x

{
f(x) +

n∑
i=1

1

αk
i

di(xi, x
k
i )

}
,(1.3)

where αk is a positive n-dimensional vector whose elements are called stepsizes. Note
that we allow different stepsizes for each coordinate, as suggested by a variety of
computational and theoretical studies [32, 5, 2, 3]. Moreover, since ‖∇1D(x, xk)‖ →
∞ as x approaches the boundary of B, the regularization acts not only as a stabilizing
proximal term but also as a kind of barrier function keeping the iterates within intB.

In the case of the variational inequality (1.2), (1.3) generalizes to finding xk+1

satisfying the recursion

0 ∈ T (xk+1) + diag(αk)
−1∇1D(xk+1, xk).(1.4)

We derive some general results for these types of algorithms in section 2, assuming
that the stepsizes conform to a special rule that takes into account the curvature of
the proximal term. This rule, although restrictive, appears to cover cases of the
greatest practical interest; as we shall see, it covers the stepsize/penalty selection
rules proposed in [32, 5, 2, 3].

Section 3 uses the results of section 2 to obtain subsequential convergence results
for the generalized proximal minimization algorithm (1.3).

A critical application of (1.3), considered in section 3.2, is when f is minus the
dual function of a convex program such as

min g0(y)
such that (s.t.) gi(y) ≤ 0, i = 1, . . . , n,

(1.5)

where g0, . . . , gn : R
m → R are differentiable convex functions.1 We also assume

that this problem is feasible; i.e., there is a ȳ ∈ R
m such that gi(ȳ) ≤ 0, i = 1, . . . , n.

Choosing B to be any box containing the nonnegative orthant and f to be the negative
of the dual function of (1.5), we may implement (1.3) via a multiplier method in

1Actually, the results of section 3.2 continue to hold [28] if one supposes only that g0, . . . , gn :
R
m → (−∞,∞] are closed proper convex and assumes appropriate conditions on the effective do-

mains of the objective and constraints, as in [24, Chapter 28]. However, this further generality makes
the proofs more convoluted and is dropped for the sake of simplicity in the exposition.
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240 P. J. DA SILVA E SILVA, J. ECKSTEIN, AND C. HUMES, JR.

which a sequence of unconstrained penalized versions of (1.5) must be solved. This
construction leads to a class of multiplier methods that is extremely broad, subsuming
both the classical quadratic augmented Lagrangian and the exponential method of
multipliers [32, 6].

For these multiplier methods, our stepsize choice ensures that for indices i with
xki → 0 the corresponding penalty term is augmented so that it does not become
so “flat” as to permit infeasibility of primal limit points. Empirically, the technique
speeds convergence, and it also appears in a convergence rate analysis in [32] for the
exponential method of multipliers case. Ben-Tal and Zibulevsky [5] have proved the
optimality of the accumulation points of the exponential method, together with a class
of proximal terms closely related to ϕ-divergences, and their results are extended in [3].
Section 3 places such results in a broader context that includes Bregman distances.

In section 4, we restrict our attention to Bregman distances. It has been known
for the better part of a decade that, when D(·, ·) is any Bregman distance and the
stepsizes do not vary by coordinate, the recursion (1.4) converges to a solution of the
variational inequality (1.2) in various special cases: when T = ∂f , the subdifferen-
tial of a closed proper convex function f , or when domT ⊆ intB, meaning that all
constraints must already be embedded in the operator T . In [9], these results were
extended to “paramonotone” operators T , a category which includes T = ∂f as a spe-
cial case. Unfortunately, many interesting practical cases, such as the subdifferential
maps of saddle functions, are not paramonotone. More recently, Auslender, Teboulle,
and Ben-Tiba [2] have obtained strong results for general maximal monotone T , but
only for a specific ϕ-divergence choice of D(·, ·). As noted in [4], these results can be
extended to the (generally non-Bregman) case in which D(·, ·) is obtained by adding
a quadratic to any member of the class Φ2 of [3].

Section 4 shows convergence, for general maximal monotone T , of the proximal
method (1.4), where D(·, ·) is a Bregman distance, to a solution of (1.2). We do impose
some additional assumptions, derived from those of section 2. First, we assume that
the Bregman function used to construct the distance is twice-differentiable, which
is not part of the standard Bregman function setup. Second, in addition to our
general stepsize rule, we also require that the stepsizes do not vary by coordinate,
that is, αk

1 = · · · = αk
n for all k. The resulting condition is stronger than the usual

requirement that the stepsize is simply bounded away from zero, but is crucial to the
analysis, which blends the techniques of section 2 with traditional Fejér monotonicity
arguments. Still, we have managed to substitute conditions on D(·, ·) and αk, which
are parts of the algorithm, for conditions on T , which is part of the problem to be
solved.

Finally, we allow the calculations required for the recursions (1.3) and (1.4) to
be performed approximately, as is likely to be necessary in practice. For the rescal-
ing minimization case of section 3, we adopt a constructive approximation criterion
inspired by [17] and [29]. However, our criterion, which is tailored to the proximal
minimization case, appears to be new. In the variational inequality analysis of sec-
tion 4, we use the simple, verifiable criterion of [14], although extension to the more
sophisticated criterion of [29] may well be possible.

In summary, the primary contributions of this paper are

• a novel convergence proof framework for a broad class of proximal algorithms;
• using this framework to establish subsequential convergence of a wide range

of proximal minimization algorithms (1.3) with differing stepsize parameters
for each coordinate—this result in turn leads to subsequential convergence
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RESCALING GENERALIZED PROXIMAL METHODS 241

of a broad class of multiplier methods with differing penalty parameters for
each constraint;

• using the framework to show convergence of “interior” Bregman proximal
point algorithms for maximal monotone operators, with a novel stepsize con-
dition, but without the usual restrictive assumptions on the operator T .

The new proximal minimization approximation criterion of section 3 constitutes
an additional contribution.

2. Fundamental analysis. This section develops the fundamental analysis nec-
essary for our results. We concentrate our attention on the variational problem (1.2),
since it subsumes the minimization problem (1.1) under mild assumptions.

In order to simplify the notation, we denote, for i = 1, . . . , n,

d′i(xi, yi)
def
=

∂di
∂xi

(xi, yi),

d′′i (xi, yi)
def
=

∂2di
∂x2

i

(xi, yi).

We are now able to present the necessary assumptions on the functions di.
Assumption 2.1. For i = 1, . . . , n, the function di : R × (ai, bi) → (−∞,∞] has

the following properties:
2.1.1. For all yi ∈ (ai, bi), di(·, yi) is closed and strictly convex, with its minimum

at yi. Moreover, int dom di(·, yi) = (ai, bi).
2.1.2. di is continuously differentiable over (ai, bi)×(ai, bi), and, for all yi ∈ (ai, bi),

d′′i (yi, yi) exists and is strictly positive.
2.1.3. For all yi ∈ (ai, bi), di(·, yi) is essentially smooth [24, Chapter 26].
2.1.4. There exist ρ, ε > 0 such that if either −∞ < ai < yi ≤ xi < ai + ε or

bi − ε < xi ≤ yi < bi < +∞, then ρ |d′i(xi, yi)| ≤ d′′i (yi, yi) |xi − yi|.
The assumption of strict convexity is standard in generalized proximal methods.

The assumption of twice-differentiability is also quite common, although many exist-
ing results require only a once-differentiable di. The essential smoothness assumption
makes the distance D act like a barrier function, forcing the iterates defined by the
recursion (1.4), and hence its approximate version (2.1) below, to remain in the in-
terior of the box B. In section 2.2, we specialize these assumptions to the case of
Bregman distances and ϕ-divergences, where similar comments can be made.

Finally, the fourth part of the assumption is new to the theory of generalized
proximal methods, but is not very restrictive in practice. In particular, we show
in section 2.2 that, for Bregman distances and ϕ-divergences, this condition can be
written in terms of the kernels used to obtain the regularizations, and that it holds
for most of the examples of which we are aware.

In addition, we make the following standard regularity assumption which, in view
of the barrier function properties of di, is required for any sensible application of (1.4).

Assumption 2.2. domT ∩ intB �= ∅.
We are now able to present the proximal minimization algorithm.
Rescaling Proximal Method for Variational Inequality (RPMVI).
1. Initialization: Let k = 0. Choose a scalar c > 0 and an initial iterate

x0 ∈ intB.
2. Iteration:

(a) Choose αk ∈ R
n
++ such that αk

i ≥ cmax
{

1, d′′i (xki , x
k
i )
}
for i = 1, . . . , n.

(b) Find xk+1 and ek+1 such that

ek+1 ∈ T (xk+1) + diag(αk)
−1∇1D(xk+1, xk).(2.1)
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242 P. J. DA SILVA E SILVA, J. ECKSTEIN, AND C. HUMES, JR.

(c) Let k = k + 1, and repeat the iteration.
To guarantee the convergence of the RPMVI, we need additional assumptions on

the stepsizes {αk
i } and the error sequence {ek}; see Assumption 2.3 below.

We define

γk
def
= ek − diag(αk−1)

−1∇1D(xk, xk−1),(2.2)

whence it is clear from (2.1) that γk ∈ T (xk) for all k ≥ 1.
Assumption 2.3. Let {βk} be a real sequence converging to zero. The error

sequence {ek}, the regularization functions d1, . . . , dn, and the stepsizes {αk
i }, i =

1, . . . , n, must be chosen in order to guarantee the following:
2.3.1.

∣∣eki ∣∣ ≤ 1

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣+ βk.

2.3.2. If x̄ is an accumulation point of {xk}, i.e., there is an infinite set K ⊆ N

such that xk →K x̄, then, for each i = 1, . . . , n, either γki →K 0 or there is an
infinite set K′ ⊆ K such that xk−1

i →K′ x̄i.
Assumption 2.3 may seem artificial at this point, but sections 3 and 4 will describe

settings in which it is easily verifiable.

2.1. Convergence analysis. We assume throughout this section that Assump-
tions 2.1 and 2.2 hold and that sequences {αk}, {xk}, and {ek} conforming to the
recursions of the RPMVI algorithm and Assumption 2.3 exist. In sections 3 and 4
we will present conditions which, in more specific settings, guarantee the existence of
such sequences.

Lemma 2.4. Let x̄ ∈ R
n be a limit point of {xk}, i.e., xk →K x̄ for some infinite

set K ⊆ N. Then for i = 1, . . . , n,

lim
k→K∞

γki = 0 if x̄i ∈ (ai, bi),

lim inf
k→K∞

γki ≥ 0 if x̄i = ai,

lim sup
k→K∞

γki ≤ 0 if x̄i = bi.

(2.3)

Proof. For each i, we consider the three possible cases.
First, suppose i is such that x̄i ∈ (ai, bi). For the sake of a contradiction, assume

that γki �→K 0. Then, using Assumption 2.3.2, there is an infinite set K′ ⊆ K and a
ζ > 0 such that for all k ∈ K′, |γki | ≥ ζ and xk−1

i →K′ x̄i. Therefore

∣∣γki ∣∣ =

∣∣∣∣∣eki − 1

αk−1
i

d′i(x
k
i , x

k−1
i )

∣∣∣∣∣
≤ 1

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣+
∣∣eki ∣∣

≤ 2

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣+ βk (Assumption 2.3.1)

≤ (2/c)
∣∣d′i(xki , xk−1

i )
∣∣+ βk (choice of αk

i )

→
K′

(2/c) |d′i(x̄i, x̄i)| + 0

= 0 (the minimum of di(·, x̄i) is x̄i).

This result contradicts
∣∣γki ∣∣ > ζ, k ∈ K′.
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RESCALING GENERALIZED PROXIMAL METHODS 243

Next, consider the case x̄i = ai, and suppose that lim infk→K∞ γki < 0. Then,
using Assumption 2.3.2, there must be a ζ > 0 and an infinite set K′ ⊆ K such that
for all k ∈ K′, γki ≤ −ζ and xk−1

i →K′ x̄i. Then

ζ ≤ ∣∣γki ∣∣
=

∣∣∣∣∣eki − 1

αk−1
i

d′i(x
k
i , x

k−1
i )

∣∣∣∣∣
≤ 2

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣+ βk

≤ 2

cd′′i (xk−1
i , xk−1

i )

∣∣d′i(xki , xk−1
i )

∣∣+ βk.

Let ε be as in Assumption 2.1.4. If there is an infinite set K′′ ⊆ K′ such that xk−1
i ≤

xki ≤ ai + ε for all k ∈ K′′, we can conclude from the assumption that

ζ ≤ 2

cd′′i (xk−1
i , xk−1

i )

∣∣d′i(xki , xk−1
i )

∣∣+ βk

≤ 2d′′i (xk−1
i , xk−1

i )

ρcd′′i (xk−1
i , xk−1

i )

∣∣xki − xk−1
i

∣∣+ βk

=
2

ρc

∣∣xki − xk−1
i

∣∣+ βk

→
K′′

0,

since xk−1 →K′ x̄i and βk → 0; but this conclusion contradicts ζ > 0. Therefore,
xki ≤ xk−1

i for sufficiently large k ∈ K′.
As di(·, xk−1

i ) achieves its minimum at xk−1
i , having xki ≤ xk−1

i implies that
d′i(x

k
i , x

k−1
i ) ≤ 0. Hence

γki = eki − 1

αk−1
i

d′i(x
k
i , x

k−1
i )

≥ 1

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣− ∣∣eki ∣∣
≥ −βk
> −ζ

for sufficiently large k ∈ K′, a contradiction with γki ≤ −ζ < 0, k ∈ K′.
Finally, the case of x̄i = bi is analogous to the case of x̄i = ai.
Lemma 2.5. Let x̄ be a limit point of {xk}, i.e., xk →K x̄ for some infinite set

K ⊆ N. Then, {γk}K is bounded.
Proof. By Assumption 2.2, there must exist some x̃ ∈ domT ∩ intB. Let γ̃ ∈

T (x̃). The monotonicity of T implies that, for all k ≥ 0,

0 ≤ 〈xk − x̃, γk − γ̃〉 =

n∑
i=1

(xki − x̃i)(γ
k
i − γ̃i).(2.4)

We will show that unboundedness of {γk}K would contradict this inequality for some
sufficiently large k.
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244 P. J. DA SILVA E SILVA, J. ECKSTEIN, AND C. HUMES, JR.

If {γk}K is unbounded, there must exist an infinite K′ ⊆ K such that {γk}K′

converges in [−∞,∞]
n
, with at least one {γki }K′ unbounded. Lemma 2.4 implies that

for each unbounded coordinate i, either

γki →K′ +∞ and x̄i = ai

or

γki →K′ −∞ and x̄i = bi.

Therefore, for each unbounded coordinate of {γk}K′ , we have

(xki − x̃i)(γ
k
i − γ̃i) →K′ (ai − x̃i)(+∞) = −∞

or

(xki − x̃i)(γ
k
i − γ̃i) →K′ (bi − x̃i)(−∞) = −∞.

On the other hand, for coordinates such that {γki }K′ is bounded, (xki −x̃i)(γ
k
i −γ̃i)

is also bounded. Thus, for sufficiently large k ∈ K′ ⊆ K, 〈xk − x̃, γk − γ̃〉 must be
negative, contradicting (2.4).

Finally, the main convergence theorem for the RPMVI follows.
Theorem 2.6. If {xk} is a sequence generated by the RPMVI algorithm with

Assumptions 2.1, 2.2, and 2.3 holding, then all the limit points of {xk} are solutions
to the variational inequality problem (1.2).

Proof. Let x̄ be any limit point of {xk}, i.e., xk →K x̄, for some infinite set K ⊆ N.
From Lemma 2.5, we know that the corresponding sequence γk ∈ T (xk) is bounded.
Then, there must exist some K′ ⊆ K with γk →K′ γ̄ ∈ R

n. Since T must be outer
semicontinuous [27, Exercise 12.8(b)], it follows that γ̄ ∈ T (x̄). Lemma 2.4 implies
that

γ̄i = 0 if x̄i ∈ (ai, bi),
γ̄i ≥ 0 if x̄i = ai,
γ̄i ≤ 0 if x̄i = bi,

and these conditions are equivalent to 0 ∈ T (x̄) + NB(x̄).
Incidentally, it is possible to eliminate the requirement of twice-differentiability of

di(·, yi), at the cost of some additional complexity in the description of the method.
Specifically, consider replacing Assumption 2.1.4 with the condition that there exist
δ, ε > 0 and functions Li : (ai, bi) → (δ,+∞) such that if either −∞ < ai < yi ≤ xi <
ai + ε or bi − ε < xi ≤ yi < bi < +∞, then

|d′i(xi, yi)| ≤ Li(yi) |xi − yi| .

If the stepsizes are now selected so that for some scalar c > 0, we have for all i =
1, . . . , n and k ≥ 0 that αk

i ≥ cLi(x
k
i ), then the conclusions of Theorem 2.6 continue

to hold. We may examine this variation of the analysis in subsequent research. The
present approach is equivalent to taking Li(yi) = (1/ρ)d′′(yi, yi), a natural choice
since d′′(yi, yi) measures the rate of change of d′(·, yi) around yi.

2.2. Some examples of di functions. We present some examples of di func-
tions that conform with Assumption 2.1. In particular, we show that two classes
of regularizations widely studied in the literature, Bregman distances [11, 13] and
ϕ-divergences [19], conform to the assumption under very mild restrictions.
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RESCALING GENERALIZED PROXIMAL METHODS 245

2.2.1. Bregman distances. Bregman distances were introduced in [8] and have
been studied in the context of proximal methods in [11, 12, 13], as well as many sub-
sequent works. To construct each regularization di(·, ·), one uses an auxiliary convex
function hi and defines di(xi, yi) = hi(xi) − hi(yi) − h′i(yi)(xi − yi). Nonseparable
distances can also be constructed in a similar way, but the separable case is the most
common.

The following properties guarantee that Assumption 2.1 holds for such di.
Assumption 2.7. For i = 1, . . . , n, the function hi : R → (−∞,∞] has the

following properties:
2.7.1. hi is closed, int domh = (ai, bi), and hi is twice continuously differentiable,

with a strictly positive second derivative throughout (ai, bi).
2.7.2. hi is essentially smooth.
2.7.3. There exist ρ > 0 and ε > 0 such that if either −∞ < ai < yi ≤ xi < ai + ε

or bi − ε < xi ≤ yi < bi < +∞, then ρ |h′i(xi) − h′i(yi)| ≤ h′′i (yi) |xi − yi|.
Note that Assumption 2.7.1 implies that each hi is strictly convex. Assump-

tion 2.7.3 corresponds to Assumption 2.1.4, since d′′i (xi, yi) = h′′i (xi). Fortunately, it
is not very restrictive. Consider the case of finite ai. Since limxi↘ai

h′i(xi) = −∞, we
know that h′′i (xi) must be unbounded above as xi ↘ ai. To violate the assumption,
h′′i (xi) would have to oscillate unboundedly as xi ↘ ai. As far as we are aware, every
separable Bregman function proposed so far conforms not only to Assumption 2.7.3
but to a more stringent, easier-to-verify condition, as follows.

Lemma 2.8. If there is an ε > 0 such that for all xi ∈ (ai, ai + ε)∩R, h′′i is non-
increasing, and for all x ∈ (bi− ε, bi)∩R, h′′i is nondecreasing, then Assumption 2.7.3
holds.

Proof. Suppose that ai > −∞ and let xi, yi ∈ (ai, ai + ε) and yi < xi. Then

|h′i(xi) − h′i(yi)| =

∫ xi

yi

h′′i (z) dz ≤ h′′(yi) |xi − yi| .

Therefore, Assumption 2.7.3 holds with ρ = 1. The case bi < ∞ is analogous.
Examples of functions hi for which all of these assumptions hold are
• hi(x) = 1

2x
2, with ai = −∞, bi = +∞,

• hi(x) = − log x, with ai = 0, bi = +∞,
• hi(x) = x log x, with ai = 0, bi = +∞,
• hi(x) = x log(ex − 1), with ai = 0, bi = +∞,
• hi(x) = xα − xβ , for α ∈ [1, 2] and β ∈ (0, 1), with ai = 0, bi = +∞.

Finally, we note that for finite ai we do not yet assume that hi(xi) must approach
a finite limit as xi ↘ ai, nor similarly for xi ↗ bi < +∞. Such an assumption is quite
common in the theory of Bregman distances [11, 13, 9, 29], but, similarly to [21],
it is not needed for the results of section 3 below. We will use it, however, in the
variational inequality analysis of section 4.

2.2.2. ϕ-divergences. The ϕ-divergence regularizations have been studied in
the context of proximal methods, for example, in [19], and more recently in [5, 3]. In
these works, the box considered is the positive orthant, i.e., B = R

n
+. An auxiliary

strictly convex scalar function ϕ is used to define the distance di, but this time by

di(xi, yi) = yiϕ

(
xi
yi

)
.(2.5)

The following hypotheses can be used to guarantee Assumption 2.1 when B = R
n
+.

Assumption 2.9. The function ϕ : R → (−∞,+∞] is such that
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246 P. J. DA SILVA E SILVA, J. ECKSTEIN, AND C. HUMES, JR.

2.9.1. ϕ is closed and convex, with int domϕ = (0,+∞);
2.9.2. ϕ is twice differentiable on (0,+∞), with ϕ′′(t) > 0 for all t > 0;
2.9.3. ϕ(1) = ϕ′(1) = 0;
2.9.4. ϕ is essentially smooth;
2.9.5. There exists a ρ > 0 such that ρϕ′(t) ≤ ϕ′′(1)(t− 1) for all t ≥ 1.

Slight variations on these assumptions appear, for example, in [5, 3], together
with the following examples:

• ϕ(t) = t log t− t + 1;
• ϕ(t) = − log t + t− 1;
• ϕ(t) = 2(

√
t− 1)2.

The next lemma states that Assumption 2.9.5 above implies Assumption 2.1.4.
Lemma 2.10. Let (ai, bi) = (0,+∞) and di be defined as in (2.5). Then Assump-

tion 2.1.4 is equivalent to the existence of a ρ > 0 such that ρϕ′(t) ≤ ϕ′′(1)(t− 1) for
all t ≥ 1.

Proof. First we observe that

d′i(xi, yi) = ϕ′
(
xi
yi

)
,

d′′i (xi, yi) =
1

yi
ϕ′′
(
xi
yi

)
,

and thus

d′′i (yi, yi) =
1

yi
ϕ′′(1).

Therefore, Assumption 2.1.4 reduces to

∃ρ, ε > 0 : 0 < yi ≤ xi < ε ⇒ ρϕ′
(
xi
yi

)
≤ 1

yi
ϕ′′(1)(xi − yi).(2.6)

Taking xi ∈ (0, ε), letting yi range over (0, xi], and setting t = xi/yi, we obtain

∃ρ > 0 : ρϕ′(t) ≤ ϕ′′(1)(t− 1) ∀t ≥ 1.(2.7)

Conversely, if (2.7) is true, then (2.6) holds for an arbitrary choice of ε > 0.
We note that in [5], one assumes that the iterations are of the form

0 ∈ ∂f(xk+1) + diag(αk)−1∇1D(xk+1, xk),

for which each αk
i is greater than c/xki , c being a positive constant. In [2, 3], this

property is guaranteed by redefining the distance measure to be

d̃i(xi, yi) = yidi(xi, yi) = y2
i ϕ

(
xi
yi

)
, D̃(x, y) =

n∑
i=1

d̃i(xi, yi)

and assuming stepsizes bounded away from zero. In this case, the iteration is

0 ∈ ∂f(xk+1) + diag(α̃k)−1∇1D̃(xk+1, xk),

with lim infk→∞ α̃k
i > 0 for all i. Defining αk

i = α̃k
i /x

k
i and rewriting the iteration

with respect to D instead of D̃, we recover the rule from [5].
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RESCALING GENERALIZED PROXIMAL METHODS 247

It turns out that these techniques are a special case of our stepsize choice rule,
which gives in the case of a ϕ-divergence that

αk
i ≥ cd′′i (xki , x

k
i ) =

cϕ′′(1)

xki
,

which is identical if one redefines the constant factor c.
Thus, the reader should note that the class of ϕ-divergences described by As-

sumption 2.9 encompasses the regularizations studied in [5, 2, 3]. In particular, it
includes the classes Φ1 and Φ2 described in [3].

However, the stepsize rule in the RPMVI is more stringent than the one in [5, 2, 3],
as it also assumes that the stepsize is bounded away from zero. To overcome this slight
restriction, we point out that the assumption αk

i > c is used here only in the first part
of the proof of Lemma 2.4, and it can be replaced by the assumption that d′′i (yi, yi) is
continuous and strictly positive over (ai, bi). This condition holds for ϕ-divergences,
since d′′i (yi, yi) = (1/yi)ϕ

′′(1) > 0 for all yi > 0.
In this sense, the results here can be seen as extensions of those in [5, 2, 3].

3. Proximal minimization methods with rescaling. This section applies
the analysis of the RPMVI method to the minimization problem (1.1). We leave
Assumption 2.1 as a standing assumption; we also make the following standard reg-
ularity assumption, which in view of the barrier function properties of D, is required
for any sensible application of (1.3).

Assumption 3.1. dom f ∩ intB �= ∅.
Note that, since intB is open, this assumption implies that ri dom f ∩ intB �= ∅,

which implies that dom ∂f ∩ intB �= ∅. Then, using [24, Theorem 23.8], one can
show that the minimization problem (1.1) is equivalent to the variational inequality
problem (1.2) with T = ∂f . Moreover, Assumption 2.2 holds.

Then, we specialize the RPMVI to the following algorithm.
Rescaling Proximal Minimization Method (RPMM).
1. Initialization: Choose c > 0 and σ ∈ [0, 1]. Choose nonnegative scalar
sequences {sk} and {zk} with

∑∞
k=1 sk < ∞ and zk → 0. Let k = 0 and

x0 ∈ intB.
2. Iteration:

(a) Choose αk ∈ R
n
++ such that αk

i ≥ cmax
{

1, d′′i (xki , x
k
i )
}
for i = 1, . . . , n.

(b) Find xk+1, ek+1 ∈ R
n such that

ek+1 ∈ ∂f(xk+1) + diag(αk)−1∇1D(xk+1, xk),(3.1) ∣∣ek+1
i

∣∣ ≤ σ

αk
i

∣∣d′i(xk+1
i , xki )

∣∣+ min

{
sk+1

‖xk+1 − xk‖ , zk+1

}
, i = 1, . . . , n,(3.2)

with the standing convention that min
{
sk+1/‖xk+1 − xk‖, zk+1

}
is zk+1

whenever xk+1 = xk.
(c) Let k = k + 1, and repeat the iteration.

Note that if one chooses sk, zk = 0 for all k, then (3.2) reduces to the “construc-
tive” criterion ∣∣ek+1

i

∣∣ ≤ σ

αk
i

∣∣d′i(xk+1
i , xki )

∣∣ ,
reminiscent of [29].
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248 P. J. DA SILVA E SILVA, J. ECKSTEIN, AND C. HUMES, JR.

3.1. Convergence analysis. We start by showing that the iteration step is well
defined if f is bounded below on B.

Lemma 3.2. If f is bounded below on B, then there is a unique point that solves
the iteration step of the RPMM with ek+1 = 0. Thus, a solution to (3.1)–(3.2) exists
if f is bounded below on B.

Proof. Let % be a lower bound of f on B. Given ζ ∈ R, the level set{
x ∈ B

∣∣∣∣∣ f(x) +
n∑

i=1

1

αk
i

di(xi, x
k
i ) ≤ ζ

}
⊆
{
x ∈ B

∣∣∣∣∣
n∑

i=1

1

αk
i

di(xi, x
k
i ) ≤ ζ − %

}
.

This last set is a level set of
∑n

i=1(1/αk
i )di(·, xki ) on B, which must be bounded, since

by Assumption 2.1.1 this function attains its minimum at the unique point xk [24,
Corollary 8.7.1]. Therefore, f(·) +

∑n
i=1(1/αk

i )di(·, xki ) attains a minimum on B. The
uniqueness of the minimum follows from the strict convexity of D(·, xk).

To apply the convergence analysis of the previous section to the sequence {xk}
computed by the RPMM, it suffices to show that Assumption 2.3 holds. Verification
of Assumption 2.3.1 is straightforward.

Lemma 3.3. With the definition

βk
def
= min

{
sk

‖xk − xk−1‖ , zk
}

for all k ≥ 1, Assumption 2.3.1 holds for the RPMM.

Proof. From the nonnegativity of {sk} and {zk}, it follows that {βk} is also
nonnegative. Since zk → 0, one also has βk → 0. Moreover, since σ ∈ [0, 1],

∣∣eki ∣∣ ≤ σ

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣+ βk ≤ 1

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣+ βk

for all k, so Assumption 2.3.1 holds.

As in (2.2), we define for all k ≥ 0 and i = 1, . . . , n,

γki = eki − 1

αk−1
i

d′i(x
k
i , x

k−1
i ),

and let γk ∈ R
n be the vector with elements γki .

Lemma 3.4. γk ∈ ∂f(xk) and γki (xk−1
i − xki ) ≥ −sk for all k ≥ 0 and i =

1, . . . , n.

Proof. The claim that γk ∈ ∂f(xk) follows from the definition of γk. For the
second claim, we have, using the convexity of di(·, xk−1

i ),

γki (xk−1
i − xki ) =

(
eki − 1

αk−1
i

d′i(x
k
i , x

k−1
i )

)
(xk−1

i − xki )

≥ − 1

αk−1
i

d′i(x
k
i , x

k−1
i )(xk−1

i − xki )︸ ︷︷ ︸
≤0

− ∣∣eki ∣∣ ∣∣xk−1
i − xki

∣∣
=

(
1

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣− ∣∣eki ∣∣
) ∣∣xk−1

i − xki
∣∣ .D
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RESCALING GENERALIZED PROXIMAL METHODS 249

Using (3.2), it then follows that

γki (xk−1
i − xki ) ≥

(
1 − σ

αk−1
i

∣∣d′i(xki , xk−1
i )

∣∣− min

{
sk

‖xk − xk−1‖ , zk
}) ∣∣xk−1

i − xki
∣∣

≥ −min

{
sk

‖xk − xk−1‖ , zk
} ∣∣xk−1

i − xki
∣∣

≥ −min

{
sk

‖xk − xk−1‖ , zk
}∥∥xk−1 − xk

∥∥
≥ −sk.

Before proving the next result, we state a helpful technical lemma.

Lemma 3.5 (see [22, section 2.2]). Suppose that {ak}, {γk} ⊂ R are sequences
such that {ak} is bounded below,∑∞

i=1 γk exists and is finite, and the recursion ak+1 ≤
ak + γk holds for all k. Then, {ak} is convergent.

It is now possible to establish that Assumption 2.3.2 also holds.

Lemma 3.6. If f is bounded below on B, then {f(xk)} is convergent and∣∣γki ∣∣ ∣∣xk−1
i − xki

∣∣→ 0 ∀i = 1, . . . , n.

Hence Assumption 2.3.2 holds for the RPMM.

Proof. Using Lemma 3.4,

f(xk−1) ≥ f(xk) + 〈γk, xk−1 − xk〉
≥ f(xk) − nsk.

Then, recalling that {sk} is summable, Lemma 3.5 implies that {f(xk)} is a convergent
sequence. For i = 1, . . . , n, we also have

f(xk−1) ≥ f(xk) + 〈γk, xk−1 − xk〉
≥ f(xk) − (n− 1)sk + γki (xk−1

i − xki ).

Using Lemma 3.4 once again, it follows that

f(xk−1) − f(xk) + (n− 1)sk ≥ γki (xk−1
i − xki ) ≥ −sk.

Taking limits, we conclude that γki (xk−1
i − xki ) → 0.

Thus, Theorem 2.6 implies the optimality of all accumulation points of the se-
quence {xk}. We strengthen this observation below.

Theorem 3.7. Suppose that Assumptions 2.1 and 3.1 hold and that f is bounded
below on B. If {xk} has a limit point, then {f(xk)} converges to the infimum of f
on B, and all limit points of {xk} will be minimizers of f on B. A condition that
guarantees the existence of limit points of {xk} is the boundedness of the solution set,
or any other level set of f .

Proof. As just noted, Lemma 3.6 implies that Assumption 2.3.2 holds, and so As-
sumption 2.3 holds in its entirety. Assumption 2.1 holds by hypothesis, and, setting
T = ∂f , Assumption 3.1 implies Assumption 2.2. Thus, the conclusions of Theo-
rem 2.6 apply. Let x̄ be a limit point of {xk}, i.e., xk →K x̄, for some infinite set
K ⊆ N. Theorem 2.6 asserts that 0 ∈ ∂f(x̄) + NB(x̄); by Assumption 3.1, x̄ is a
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minimizer of f on B. Moreover, since Lemma 2.5 states that {γk}K is bounded, and
since {f(xk)} is convergent by Lemma 3.6,

min
x∈B

f(x) = f(x̄) ≥ f(xk) +

n∑
i=1

γki (x̄i − xki ) →
K

lim
k→∞

f(xk) ≥ f(x̄).

Therefore, limk→∞ f(xk) = f(x̄).
Finally, the boundedness of any level set of a proper closed convex function implies

boundedness of all level sets [24, Corollary 8.7.1], and Lemma 3.6 states that {f(xk)}
is convergent; consequently it is bounded. Thus, {xk} is also bounded and has limit
points.

3.2. Multiplier methods. We now discuss applying the RPMM to the dual of
the convex program (1.5) to obtain multiplier methods. The use of proximal methods
to derive multiplier methods for constrained convex optimization is a now-classical
subject and may be traced to the seminal paper [26]. In the context of generalized
proximal methods, applications can be found, for example, in [30, 13, 19, 21, 31, 3, 17].
In this section, we consider only the case in which the proximal step is done exactly,
i.e., we will let ek = 0 for all k, as in [30, 13, 19, 17]. Unfortunately, our approximate-
step acceptance rule for the RPMM does not translate directly to an easily verifiable
acceptance criterion for an approximate solution of the penalized problem (3.5) below.
However, partial results in this direction may be obtained under stringent assumptions
on the original problem (1.5); see Appendix B. A criterion in the spirit of (3.2)
that does not depend on such assumptions is the subject of ongoing research [15].
We further observe that the approximation criteria of [17, 29] also do not translate
readily to a multiplier method setting. On the other hand, under the assumption that
the primal objective function g0 is strongly convex, [26, 21, 3] present some inexact
multiplier methods based on a rather different acceptance rule involving optimizing
the augmented Lagrangian function to within some tolerance ε of its minimum value.

Consider the convex problem (1.5), and let δC denote the indicator function of a
convex set C. Then we define f to be minus the dual function associated with (1.5),
plus δR

n
+

:

f(x)
def
= − inf

y∈Rm

{
g0(y) +

n∑
i=1

xigi(y)

}
+ δR

n
+

(x).(3.3)

The dual problem to (1.5) is then equivalent to the minimization of f . Furthermore,
we assume the following.

Assumption 3.8.
3.8.1. The primal problem (1.5) has a finite optimal value, and it conforms to the

Slater condition.
3.8.2. For all i = 1, . . . , n, the generalized distances di conform to Assumption 2.1

for ai ≤ 0, bi = +∞.2
3.8.3. There is an x̄ > 0 such that x̄ ∈ dom f , where f is as defined in (3.3).

This assumption has the following consequences: Assumption 3.8.1 implies that
the dual solution set is nonempty and bounded [16] and that there is no duality gap.
Assumption 3.8.3 implies that Assumption 3.1 holds for f as defined by (3.3).

2The case ai = −∞ is of interest because it includes the classical method of multipliers for
problems with inequality constraints [26], along with various extensions described in [13, 20].
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RESCALING GENERALIZED PROXIMAL METHODS 251

Under Assumption 3.8, if we fix ek = 0 for all k, then each iterate xk+1 of the
RPMM applied to the negative dual functional f may be calculated by the following
multiplier method whenever the unconstrained problems (3.5) have solutions:

αk
i ≥ cmax

{
1, d′′i (xki , x

k
i )
}
, i = 1, . . . , n,(3.4)

yk+1 ∈ Arg min
y∈Rm

{
g0(y) +

n∑
i=1

1

αk
i

d⊕i
(
αk
i gi(y), xki

)}
,(3.5)

xk+1
i = ∇1d

⊕
i

(
αk
i gi(y

k+1), xki
)
, i = 1, . . . , n.(3.6)

Here, “⊕” denotes the monotone conjugate [24, p. 111] with respect to the first ar-
gument, that is, d⊕i (ui, wi) = supxi≥0{uixi − di(xi, wi)}.3 Theorem 3.10 below gives

conditions guaranteeing that a yk+1 satisfying (3.5) exists.
We relegate to Appendix A the technical aspects of the proof of the equivalence of

(3.4)–(3.6) to the RPMM applied to the f defined in (3.3), since they are very similar
to earlier proofs for various special cases of (3.5)–(3.6), for example in [30, 13, 19, 21,
17]. In particular, Corollary A.4 establishes the equivalence of the two calculations.

Given this equivalence, Theorem 3.7 asserts the subsequential convergence of
the sequence {xk} to a dual solution of (1.5). For the primal sequence, however,
it has historically been harder to prove good behavior. For example, in the case of
Bregman distances, a guarantee of feasibility of primal accumulation points has relied
on stringent assumptions like R

n
+ ⊂ intB, as in [13], or strict complementarity [18].

In the case of the RPMM, with its strong stepsize restrictions, the feasibility, and
therefore optimality, of accumulation points of {yk} is easily demonstrated.

Theorem 3.9. Suppose that Assumption 3.8 holds. Pick a scalar c > 0, let
x0 ∈ R

n
++, and suppose that it is possible to obtain a sequence {(αk, xk, yk)} that

obeys the recursions (3.4)–(3.6). Then, {xk} is bounded and all its accumulation
points are solutions of the dual of (1.5). Moreover,

lim sup
k→∞

gi(y
k) ≤ 0, i = 1, . . . , n,(3.7)

lim
k→∞

n∑
i=1

xki gi(y
k) = 0,(3.8)

and {g0(yk)} converges to the optimal value of the primal problem (1.5). Therefore,
any accumulation point of {yk} solves the primal problem.

Proof. As shown in Corollary A.4, the sequence {xk} is the same as would be
computed by using the RPMM to solve the dual problem, that is, to minimize f . In
particular, {xk} and all its limit points must be nonnegative. Moreover, the Slater
condition implies that the dual function has bounded level sets. Then, the bounded-
ness of {xk} and the optimality of its limit points follow from Theorem 3.7.

Let us analyze the primal sequence. For each i = 1, . . . , n, (3.6) implies that

gi(y
k) =

1

αk−1
i

d′i(x
k
i , x

k−1
i ) + ζki ,

where ζki ∈ ∂δR+
(xki ). Hence, ζki − gi(y

k) plays the same role as γki in (2.2), with
eki = 0.

3The classical conjugate ψ∗ of a function ψ is defined [24, Chapter 12] via ψ∗(y) =
supx∈Rn {〈x, y〉 − ψ(x)} for any ψ : R

n → (∞,+∞]. The monotone conjugate of ψ is then the
classical conjugate of ψ + δR

n
+
, that is, ψ⊕(y) = supx≥0 {〈x, y〉 − ψ(x)}.
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252 P. J. DA SILVA E SILVA, J. ECKSTEIN, AND C. HUMES, JR.

Let {xk}K be any convergent subsequence of {xk}, and x̄ the respective accumu-
lation point, xk →K x̄. Lemma 2.4 implies that

0 = lim
k→K∞

gi(y
k) − ζki = lim

k→K∞
gi(y

k) if x̄i > 0,

0 ≥ lim sup
k→K∞

gi(y
k) − ζki ≥ lim sup

k→K∞
gi(y

k) if x̄i = 0.
(3.9)

As {xk} is bounded, the above relations imply that

0 ≥ lim sup
k→∞

gi(y
k), i = 1, . . . , n.(3.10)

Now, suppose for the purposes of contradiction that (3.8) does not hold. Then, for
some i = 1, . . . , n, there must be an infinite set K ⊂ N and an ε > 0 such that

∀k ∈ K, ∣∣xki gi(yk)
∣∣ ≥ ε.(3.11)

Since {xk} is bounded, there exists a refined subsequence K′ ⊆ K such that {xk}K′

is convergent, with limit x̄ ≥ 0. If x̄i > 0, then (3.11) contradicts (3.9). If x̄i = 0,
then (3.11) and (3.9) imply that gi(y

k) →K′ −∞. Since Lemma 2.5 asserts that
{ζki −gi(y

k)} is bounded, we can conclude that ζki →K′ −∞. However, this divergence
would imply that xki should be 0 for infinitely many k ∈ K′ ⊆ K, once again a
contradiction of (3.11). Therefore,

lim
k→∞

xki gi(y
k) = 0, i = 1, . . . , n,(3.12)

and (3.8) holds.
Finally, we prove that {g0(yk)} converges to the optimal value. We may use (3.5),

(3.6), and the chain rule to see that yk minimizes the Lagrangian corresponding to
the primal problem with the fixed multiplier xk. Hence,

g0(yk) +

n∑
i=1

xki gi(y
k) = −f(xk).(3.13)

Let −f∗ denote the dual optimal value, which is equal to the primal optimal value
since there is no duality gap. Theorem 3.7 states that f(xk) → f∗. Taking limits in
(3.13) and using (3.12), it follows that

lim
k→∞

g0(yk) = −f∗.(3.14)

The feasibility and optimality of the accumulation points of {yk} are then conse-
quences of the continuity of gi, i = 0, . . . , n, (3.10), and (3.14).

Finally, it is natural to seek conditions under which the penalized subprob-
lems (3.5) must have solutions and the primal sequence {yk} is bounded. The following
result addresses these questions under the standard assumption of a bounded solution
set.

Theorem 3.10. Suppose that the primal solution set is bounded. Given any
αk > 0 and (xk, yk), there exist (xk+1, yk+1) satisfying the recursions (3.5)–(3.6).
Moreover, the primal sequence {yk} is bounded.

Proof. For the first assertion, it suffices to show that the penalized problems (3.5)
have solutions. Given any closed proper convex function ψ, we define its recession
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RESCALING GENERALIZED PROXIMAL METHODS 253

function ψ∞ via ψ∞(d) = limλ→∞ (ψ(z + λd) − ψ(z)) /λ, where z ∈ domψ may be
chosen arbitrarily [24, Theorem 8.5]. The boundedness of the primal solution set is
equivalent [7, section 5.3] to

(gi)∞(d) ≤ 0 ∀ i = 1, . . . , n ⇒ (g0)∞(d) > 0.(3.15)

Thus, the existence of a solution to (3.5) is a corollary of Lemma A.5 in the appendix,
along with the sum rule for recession functions [24, Theorem 9.3].

We now prove that {yk} is bounded. Theorem 3.9 shows that the sequences
{gi(yk)}, i = 1, . . . , n, are bounded above. From (3.15), unboundedness of {yk}
would imply that g0(yk) →K ∞ for some infinite K ⊆ N . But such unboundedness
would contradict g0(yk)’s convergence to the optimal value.

We remark that the penalty parameter adjustment rule (3.4), as discussed in
section 2.2.2, essentially subsumes, in a context broader than ϕ-divergences, the
corresponding rules described in [32] for the exponential method of multipliers and
in [5, 3, 4] for a general ϕ-divergence setting.

We end this section by giving some examples of d⊕i functions that may be de-
rived from separable Bregman distances (see section 2.2.1). Further examples may
be obtained from [21, 18, 28]. For a Bregman-derived distance, we have di(xi, wi) =
hi(xi) − hi(wi) − h′(wi)(xi − wi), whence

d⊕i (ui, wi) = sup
xi≥0

{uixi − (hi(xi) − hi(wi) − h′(wi)(xi − wi))}

= sup
xi≥0

{(ui + h′(wi))xi − hi(xi)} + hi(wi) − wih
′(wi)

= h⊕(h′(wi) + ui) + hi(wi) − wih
′(wi),

where h⊕ denotes the standard monotone conjugate of h. Note that when such a
d⊕i (ui, wi) is used in the minimization operation in (3.5), the additive terms hi(wi)−
wih

′(wi) are constant and may be discarded. The following examples may now be
easily verified:

• If hi(xi) = 1
2x

2
i , then d⊕i (ui, wi) = 1

2 (max{ui + wi, 0}2 −w2
i ), where the −w2

i

term may be disregarded; this choice gives the classical quadratic method of
multipliers for inequality constraints.

• If hi(xi) = xi log xi − xi, then d⊕i (ui, wi) = wie
ui − wi, where the −wi term

may be disregarded, yielding the exponentional method of multipliers.
• If hi(xi) = − log xi, then d⊕i (ui, wi) = − log(1 − wiui).

4. Bregman interior point proximal methods for variational inequali-
ties. We now turn our attention to the box-constrained variational inequality problem
(1.2), where T : R

n ⇒ R
n is a (possibly set-valued) maximal monotone operator. In

this section, we confine ourselves to Bregman distances, as defined in section 2.2.
We augment Assumption 2.2 as follows.
Assumption 4.1. T is maximal monotone, the solution set of (1.2) is nonempty,

and there exists some x̃ ∈ domT ∩ intB.
Our goal is to show convergence of an approximate version of the iteration (1.4),

without further conditions on T . We modify and extend Assumption 2.7 as follows.
Assumption 4.2. For i = 1, . . . , n, the functions hi : R → (−∞,∞] have the

same properties specified in Assumption 2.7, and furthermore, hi is continuous on
[ai, bi] ∩ R. Moreover, defining h(x) =

∑n
i=1 hi(xi) and Dh(x, y) =

∑n
i=1 hi(xi) −

hi(yi) + h′i(yi)(xi − yi),
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254 P. J. DA SILVA E SILVA, J. ECKSTEIN, AND C. HUMES, JR.

4.2.1. for all x ∈ B and α ∈ R, the level set {y ∈ intB | Dh(x, y) ≤ α} is bounded;
4.2.2. if {xk} ⊂ intB converges to x ∈ R

n, then limk→∞Dh(x, xk) = 0;
4.2.3. rgeh′ = R.

Note that at finite ai’s and bi’s, the corresponding hi is now required to take a
finite value. The algorithm can now be stated.

Box Interior Proximal Point Algorithm (BIPPA).
1. Initialization: Let k = 0, and fix some scalar c > 0. Let x0 ∈ intB.
2. Iteration: Choose αk such that αk ≥ cmax{1, h′′1(xk1), . . . , h′′n(xkn)}. Find
vectors xk+1, ek+1 ∈ R

n such that

ek+1 ∈ T (xk+1) +
1

αk
∇1Dh(xk+1, xk)(4.1)

= T (xk+1) +
1

αk

(∇h(xk+1) −∇h(xk)
)
.

Let k = k + 1 and repeat the iteration.

4.1. Convergence analysis. First, we cite a result showing that the iteration
step of BIPPA is well defined.

Lemma 4.3 (See [13, Theorem 4(i)]). Under Assumption 4.2, there is a unique
point xk+1 that solves the iteration step (4.1) of the BIPPA with ek+1 = 0.

We note that it is shown in the unpublished dissertation [28] that (4.1) has a
unique exact solution even if Assumption 4.2.3 does not hold. This result permits one
to dispense completely with Assumption 4.2.3. However, the proof, while essentially
a minor modificiation of that of [1, Theorem A.1], is quite involved, so we do not
include it here.

To guarantee the convergence of the BIPPA, we must assume some vanishing
behavior for {ek}; we will use the assumptions of [14]. Although not as general as
the criterion used in RPMM, these conditions are better suited to our analysis, since
they will permit us to use properties associated with Fejér monotonicity, and are still
feasible to enforce computationally.

Assumption 4.4 (See [14]). The error sequence {ek} conforms to
∞∑
k=0

αk

∥∥ek+1
∥∥ < +∞;

∞∑
k=0

αk〈ek+1, xk+1〉 exists and is finite.

Note that this assumption implies that ‖ek‖ → 0, and therefore Assumption 2.3.1
holds with βk = ‖ek‖∞. We now state some necessary lemmas.

Lemma 4.5 (See [14, Lemma 2]). Let z ∈ (T + NB)−1(0). Then, for all k ≥ 0,

Dh(z, xk+1) ≤ Dh(z, xk) −Dh(xk+1, xk) + αk〈ek+1, xk+1 − z〉.(4.2)

Lemma 4.6. If Assumption 4.4 holds, then the sequence {xk} is bounded and
Dh(xk+1, xk) → 0.

Proof. The result will follow from [14, Lemma 3] once we show that, for z ∈
(T + NB)−1(0),

E(z)
def
=

∞∑
i=0

αk〈ek+1, xk+1 − z〉
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RESCALING GENERALIZED PROXIMAL METHODS 255

exists and is finite. But

∞∑
i=0

∣∣αk〈ek+1, z〉∣∣ ≤ ∞∑
i=0

αk‖ek+1‖‖z‖,

and Assumption 4.4 implies that the right-hand side of this relation is finite. Hence,∑∞
i=0 αk〈ek+1, z〉 exists and is finite. Using Assumption 4.4 once more, we conclude

that E(z) exists and is finite.
We also use a key result from Solodov and Svaiter [29].
Theorem 4.7 (See [29, Theorem 2.4]). Let hi satisfy Assumption 4.2. Given

two sequences {xk} ⊂ B and {yk} ⊂ intB, either one of which is convergent, with
limk→∞Dh(xk, yk) = 0, then the other sequence also converges to the same limit.

This theorem implies that h(x) =
∑n

i=1 hi(xi) is a Bregman function in the clas-
sical sense [8, 10]. Using Theorem 4.7 and Lemma 4.6, we derive the following.

Corollary 4.8. Under Assumptions 4.1, 4.2, and 4.4, {xk} has at least one limit
point. Moreover, if for some infinite set K ⊆ N we have xk →K x̄, then xk−1 →K x̄.
Therefore, Assumption 2.3.2 holds.

Before presenting the main convergence theorem for the BIPPA, we present a
final technical lemma that will help us to prove the uniqueness of the accumulation
points of {xk}.

Lemma 4.9. Under Assumption 4.4, for all z ∈ (T + NB)−1(0), Dh(z, xk) con-
verges to a value in [0,+∞) which we will denote by d(z).

Proof. Consider any z ∈ (T + NB)−1(0). Then Lemma 4.5 implies that (4.2)
holds. Using Assumption 4.4 and Dh(xk+1, xk) ≥ 0, the hypotheses of Lemma 3.5 are
satisfied with ak = Dh(z, xk) and γk = αk〈ek+1, xk+1 − z〉. Therefore, {Dh(z, xk)}
converges, necessarily to a nonnegative value.

Now, the main convergence theorem follows.
Theorem 4.10. Under Assumptions 4.1, 4.2, and 4.4, {xk} converges to a solu-

tion of 0 ∈ T (x) + NB(x).
Proof. Let x̄ be an accumulation point of {xk}, i.e., xk →K x̄, for some infinite

set K ⊆ N. Such a point exists by Lemma 4.6. From Theorem 2.6, 0 ∈ T (x̄) +NB(x̄).
We now prove the uniqueness of the limit point: from Assumption 4.2.2, we

know that Dh(x̄, xk) →K 0. Then, d(x̄), as defined in Lemma 4.9, is zero. Suppose
that {xk} has another accumulation point xk →K′ x′ for some infinite set K′ ⊆ N.
We then have that Dh(x̄, xk) →K′ d(x̄) = 0, and it follows from Theorem 4.7 that
x′ = x̄.

Another possible application of our fundamental analysis is to try to generalize to
solutions of (1.2) the idea of adding the square of the Euclidean norm and an arbitrary
generalized distance to obtain Fejér monotonicity, as in [2, 3] for the special case of
ϕ-divergences. The difficulty here is to generalize the condition that defines the class
Φ2 in [3]. This topic is the subject of ongoing research.

Appendix A. Relationship between multiplier and proximal methods.
This appendix proves that the RPMM may be applied to minus the dual functional
associated with (1.5) via the multiplier method (3.5)–(3.6).

The proof is very similar to the derivation of a special case presented in [17,
section 4.2]. Therefore, we will follow the steps in [17], changing notation whenever
necessary to suit the present setting.

In particular, as in (1.5), g0 : R
m → R is the primal objective and g : R

m → R
n

is the constraint function, with components gi, i = 1, . . . , n. We assume that the
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256 P. J. DA SILVA E SILVA, J. ECKSTEIN, AND C. HUMES, JR.

gi, i = 0, . . . , n, are differentiable convex functions and that (1.5) is feasible. Let
f be the negative dual function defined in (3.3), which we assume to be somewhere
finite. Note that, since f is the pointwise supremum of a nonempty collection of affine
functions, it cannot take the value −∞, and is therefore proper. Let v(·) denote the
right-hand-side perturbation function associated with the optimization problem (1.5):

∀u ∈ R
n, v(u)

def
= inf {g0(y) | y ∈ R

m, g(y) ≤ u} .
It is well known that for all x ∈ R

n, f(x) = v∗(−x); see [25, Example 1 and Theo-
rem 7].

We also assume the following throughout this section.
Assumption A.1. D : R

n → (−∞,+∞] is a closed, proper, and strictly convex
function such that ri(domD ∩ R

n
++) ∩ ri dom f �= ∅.

D⊕ denotes the monotone conjugate of D, that is, the convex conjugate of D+δR
n
+

,

and D⊕(g(·)) denotes the usual composition of D⊕ and g.
We start by proving a slight modification of [6, equation (4.41)] which plays a

fundamental role in our analysis.
Lemma A.2. If Assumption A.1 holds, then

inf
y∈Rm

{
g0(y) + D⊕(g(y))

}
= inf

u∈Rn

{
v(u) + D⊕(u)

}
= sup

x≥0

{− f(x) −D(x)
}
.

Proof. The definition of D⊕ implies that if a ≥ b, then D⊕(a) ≥ D⊕(b), i.e., it is
nondecreasing.4 Therefore,

inf
y∈Rm

{
g0(y) + D⊕(g(y))

}
= inf

y∈Rm

{
g0(y) + D⊕(g(y))

}
= inf

u∈Rn
inf

y∈R
m

g(y)≤u

{
g0(y) + D⊕(g(y))

}
≤ inf

u∈Rn
inf

y∈R
m

g(y)≤u

{
g0(y) + D⊕(u)

}
= inf

u∈Rn

{
v(u) + D⊕(u)}.

On the other hand,

inf
y∈Rm

{
g0(y) + D⊕(g(y))

} ≥ inf
y∈Rm

{
v(g(y)) + D⊕(g(y))}

≥ inf
u∈Rn

{
v(u) + D⊕(u)}.

Hence, the first equality is proved.
Finally, we use Fenchel’s duality theorem [24, Theorem 31.1] and the fact that

for all x ∈ R
n, −f(x) = −v∗(−x), to assert that

inf
u∈Rn

{
v(u)+D⊕(u)

}
= sup

x∈Rn

{−f(x)−D(x)−δR
n
+

(x)
}

= sup
x≥0

{−f(x)−D(x)
}
.

Theorem A.3. Suppose that Assumption A.1 holds. Suppose that the (strictly
convex) function f + D has the minimizer x̄ over R

n, and that there is ȳ such that

ȳ ∈ Arg min
y∈Rm

{g0(y) + D⊕(g(y))}.(A.1)

4This inequality is a simple consequence of the definition of the convex conjugate; see [17, Propo-
sition 3].
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RESCALING GENERALIZED PROXIMAL METHODS 257

Then x̄ = ∇D⊕(g(ȳ)).
Proof. From the definition of ȳ and the nondecreasing property of D⊕, we have

that g0(ȳ) = v(g(ȳ)). Then, defining ū = g(ȳ), Lemma A.2 states that

v(ū) + D⊕(ū) = inf
u∈Rn

{
v(u) + D⊕(u)

}
= sup

x∈Rn

{− f(x) −D(x) − δR
n
+

(x)
}
.

Hence, we may use [23, Theorem 2] to verify that

x̄ = arg max
x∈Rn

{− f(x) −D(x) − δR
n
+

(x)
} ∈ ∂D⊕(ū) =

{∇D⊕(g(ȳ)
)}
,

where the last equality is a consequence of D⊕ being the convex conjugate of a strictly
convex function, meaning that ∂D⊕ is single-valued throughout its domain [24, Chap-
ter 26].

Corollary A.4. Let di, i = 1, . . . , n, conform to Assumption 2.1, with B ⊇ R
n
+.

Suppose that there is an x̄ > 0 such that x̄ ∈ dom f . Given xk ∈ dom f , there is a
unique point xk+1 that satisfies (1.3). Moreover, if there exists a point yk+1 satisfying
(3.5), then (3.6) holds.

Proof. Since we assumed that primal problem (1.5) is feasible, the weak dual-
ity theorem asserts that the dual objective function is bounded above. Hence, f is
bounded below and the existence and uniqueness of xk+1 is given by Lemma 3.2.

Finally, let D(·) =
∑n

i=1
1
αk

i

di(·, xki ). Then, for all u ∈ R
n,

D⊕(u) =

n∑
i=1

1

αk
i

d⊕i (αk
i u, x

k
i ),

as the convex conjugate of a separable function is just the sum of the convex conjugates
of its components. Also, if we define hα(x) = αh(x) for some positive number and
convex function h, we have

h∗α(x) = αh∗
(x
α

)
.

The result then follows from the previous theorem.
Now, we analyze the existence of solutions to the penalized problem (A.1). In

order to do so, we will use the notation

P (·) def
= D⊕(g(·)).

Note that P is closed because D⊕ def
= (D + δR

n
+

)∗ must be closed [24, Theorem 12.2].
Lemma A.5. Suppose that Assumption A.1 holds, domD ⊇ R

n
++, and D is

bounded below. Let R = {d | (gi)∞(d) ≤ 0, i = 1, . . . , n}. Then

P∞(d) =

{
0 if d ∈ R
+∞ otherwise.

Proof. Let ȳ be a feasible point for (1.5). From the definition of P and g(ȳ) ≤ 0,

P (ȳ) = sup
z≥0

{〈z, g(ȳ)〉 −D(z)
} ≤ sup

z≥0

{−D(z)
}
.

Hence, as D is bounded below, ȳ ∈ domP . Therefore, since P is a closed convex
function,

P∞(d) = lim
t→∞

P (ȳ + td) − P (ȳ)

t
(A.2)
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for all d ∈ R
n.

As R
n
++ ⊆ dom(D+δR

n
+

) and is an open set, we have R
n
++ ⊆ dom ∂(D+δR

n
+

), and

from D⊕ = (D + δR
n
+

)
∗

we then obtain R
n
++ ⊆ rge ∂D⊕. Thus, for all x > 0, there

exists some γ ∈ R
n with x ∈ ∂D⊕(γ). So, for all x > 0, there exists some γ ∈ R

n

such that

∀ t > 0, ∀ d ∈ R
m : D⊕(γ) + 〈x, g(ȳ + td) − γ〉 − P (ȳ) ≤ P (ȳ + td) − P (ȳ).

Dividing both sides by t and taking limits as t → ∞, (A.2) implies that for all
x ∈ R

n
++,

n∑
i=1

xi(gi)∞(d) ≤ P∞(d).(A.3)

This summation is well defined since the recession function of a closed proper convex
function is also proper [27, Corollary 3.27]. Taking the limit as x → 0, we may
conclude that

∀d ∈ R
n, 0 ≤ P∞(d).(A.4)

Now, we consider two cases:
1. d ∈ R. Then

g(ȳ + td) ≤ g(ȳ) ∀ t ≥ 0 ⇒ P (ȳ + td) − P (ȳ) ≤ 0 ∀ t ≥ 0.

Dividing both sides by t and taking limits as t → ∞, it follows that P∞(d) ≤ 0.
Hence, using (A.4), P∞(d) = 0.

2. d �∈ R. Without loss of generality, let us assume that (g1)∞(d) > ζ > 0. Let
x = (M, 1, 1, . . . , 1) ∈ R

n. From (A.3), it follows that

∀M > 0, Mζ +

m∑
i=2

(gi)∞(d) ≤ P∞(d).

Since (gi)∞(d) > −∞, i = 1, . . . ,m, we can take the limit as M → ∞ and
conclude that P∞(d) = +∞.

Appendix B. Inexact multiplier methods. In this appendix, we present con-
ditions that make it possible to use the RPMM acceptance criterion (3.2) to develop
a verifiable test for accepting an approximate solution to the penalized problem (3.5).
We retain the assumptions of section 3.2, in particular the differentiability assump-
tions and Assumption 3.8. Moreover, we assume that ai = 0, i = 1, . . . , n. Then d⊕i =
d∗i and, since di is essentially smooth, R++ = int dom di = dom∇1di = rge∇1d

∗
i [24,

Theorem 23.5].
Let σ ∈ [0, 1], {sk} be a nonnegative summable sequence, and {zk} be a nonneg-

ative vanishing sequence. Let yk+1 be an approximate solution of the unconstrained
minimization (3.5) and let xk+1 be defined by (3.6). Note that xk+1 > 0. To obtain
a subgradient of f at xk+1, as required by (3.1), let

ỹ ∈ Arg min
y∈Rm

{
g0(y) +

n∑
i=1

xk+1
i gi(y)

}
.
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Then, for any x ∈ R
n
+, we have from (3.3) that

f(x) ≥ −g0(ỹ) − 〈x, g(ỹ)〉
= −g0(ỹ) − 〈xk+1, g(ỹ)〉 + 〈xk+1 − x, g(ỹ)〉
= f(xk+1) + 〈x− xk+1,−g(ỹ)〉,

whence −g(ỹ) ∈ ∂f(xk+1). On the other hand, (3.6) and [24, Theorem 23.5] tell us
that g(yk+1) ∈ diag(αk)−1∇1D(yk+1, yk). Letting ek+1 = g(yk+1) − g(ỹ), we then
conclude that the acceptance criterion (3.2) will hold if, for i = 1, . . . , n,

∣∣gi(ỹ) − gi(y
k+1)

∣∣ ≤ σ
∣∣gi(yk+1)

∣∣+ min

{
sk+1

‖xk+1 − xk‖ , zk+1

}
.(B.1)

Although ỹ is unknown, the above inequality may be still be verified if we suppose
that g0 is strongly convex with modulus ζ > 0, and the constraints gi, i = 1, . . . , n,
are globally Lipschitz continuous with respective constants Li, i = 1, . . . , n.5 Let

φk(y)
def
= g0(y) +

n∑
i=1

1

αk
i

d∗i
(
αk
i gi(y), xki

)
denote the augmented Lagrangian at step k ≥ 0. Note that φk inherits the strong
convexity of g0. Then, since ∇φk(ỹ) = 0,

ζ
∥∥ỹ − yk+1

∥∥ ≤ ∥∥∇φk(yk+1)
∥∥ .

Using the Lipschitz continuity of the constraints, it follows that

ζ

Li

∣∣gi(ỹ) − gi(y
k+1)

∣∣ ≤ ∥∥∇φk(yk+1)
∥∥ , i = 1, . . . , n.

Therefore, (B.1) holds whenever

∥∥∇φk(yk+1)
∥∥ ≤ ζ

Li

[
σ
∣∣gi(yk+1)

∣∣+ min

{
sk+1

‖xk+1 − xk‖ , zk+1

}]
, i = 1, . . . , n.(B.2)

This last relation may be readily tested in practice. Furthermore, our final lemma
shows that if we choose sk+1, zk+1 > 0 and use a convergent algorithm to solve the
subproblem (3.5), then (B.2) must eventually be satisfied.

Lemma B.1. Suppose sk+1 and zk+1 are both positive, and let ȳ be any solution
of (3.5). There is a neighborhood Nof ȳ such that if yk+1 ∈ N , then (B.2) holds.

Proof. Define, for i = 1, . . . , n,

xi(y)
def
= ∇1d

∗
i

(
αk
i gi(y), xki

)
,

wi(y)
def
= ‖∇φk(y)‖ − ζ

Li

[
σ |gi(y)| + min

{
sk+1

‖x(y) − xk‖ , zk+1

}]
,

where x(y) denotes the n-vector of the xi(y), and the min is taken to be zk+1, as
in our standing convention, whenever the enclosed denominator is zero. With this

5The strong convexity assumption is usual in the literature; see [3, Remark 5.2] and [21, section
10]. However, these results do not require Lipschitz continuity of the constraints.
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convention, the wi, i = 1, . . . , n, are continuous functions. Moreover, at ȳ we have

wi(ȳ) ≤ 0 − ζ

Li

[
σ |gi(ȳ)| + min

{
sk+1

‖x(ȳ) − xk‖ , zk+1

}]
≤ − ζ

Li
min

{
sk+1

‖x(ȳ) − xk‖ , zk+1

}
< 0,

the last inequality following from the positivity of sk+1 and zk+1. For each i, the
continuity of wi implies the existence of a neighborhood Ni of ȳ over which wi is
negative. Let N =

⋂n
i=1 Ni, which is also a neighborhood of ȳ. Recalling (3.6), we

find that (B.2) holds if yk+1 ∈ N .
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