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Abstract This paper develops a new error criterion for the approximate
minimization of augmented Lagrangian subproblems. This criterion is practical since
it is readily testable given only a gradient (or subgradient) of the augmented Lagrang-
ian. It is also “relative” in the sense of relative error criteria for proximal point
algorithms: in particular, it uses a single relative tolerance parameter, rather than a
summable parameter sequence. Our analysis first describes an abstract version of
the criterion within Rockafellar’s general parametric convex duality framework, and
proves a global convergence result for the resulting algorithm. Specializing this algo-
rithm to a standard formulation of convex programming produces a version of the
classical augmented Lagrangian method with a novel inexact solution condition for
the subproblems. Finally, we present computational results drawn from the CUTE test
set—including many nonconvex problems—indicating that the approach works well
in practice.
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320 J. Eckstein, P. J. S. Silva

1 Introduction, motivation, and summary

This paper presents a new rule for approximately solving the subproblems of aug-
mented Lagrangian methods. Consider the following convex optimization problem:

min f (x)

s. t. h(x) = 0
g(x) ≤ 0,

(1)

where f : R
n → R is convex, h : R

n → R
m1 is affine, and g(x) = (

g1(x), . . . ,

gm2(x)
)
, where g1, . . . , gm2 : R

n → R are convex. While it is not essential to our
analysis, we assume for simplicity of presentation that f and g are differentiable. Aug-
mented Lagrangian methods for such convex optimization problems are intimately
connected with the proximal point algorithm (PPA) for set-valued monotone opera-
tors [25,26]: here, given a maximal monotone operator T : R� ⇒ R

�, the canonical
problem is to locate a root of T , that is, a point z such that 0 ∈ T (z). The PPA refers
to computing a sequence {zk} obeying the recursion

zk = (I + ck T )−1(zk−1), or equivalently zk + ck T (zk) � zk−1, (2)

where {ck} is a sequence of scalars with infk{ck} > 0. Any sequence {zk} conform-
ing to (2) converges to a root of T , if one exists. Applying the PPA to an operator
derived from the dual of the problem (1), one obtains as described in [25] the method
of multipliers

xk ∈Arg min
x∈Rn

{
f (x)+〈λk−1, h(x)〉+ ck

2
‖h(x)‖2+ 1

2ck

∥∥ max
{
0, μk−1+ck g(x)

}∥∥2
}

(3)

λk = λk−1 + ckh(xk) (4)

μk = max
{
0, μk−1 + ck g(xk)

}
, (5)

where {ck} is as above and the “max” operations are interpreted componentwise. In
the augmented Lagrangian minimization step (3), λk−1 ∈ R

m1 and μk−1 ∈ R
m2+

are the previous iteration’s estimates of the Lagrange multipliers for the equality and
inequality constraints in (1), respectively.

If one applies the proximal point algorithm to a monotone operator derived from
a primal-dual formulation of (1), one instead obtains—again, see [25]—the proxi-
mal method of multipliers, in which the subproblem minimand contains an additional
augmenting term:

123



Relative error for augmented Lagrangians 321

xk = arg min
x∈Rn

{
f (x)+ 〈λk−1, h(x)〉+ ck

2
‖h(x)‖2

+ 1

2ck

∥∥ max
{
0, μk−1+ck g(x)

}∥∥2 + 1

2ck
‖x − xk−1‖2

}
(6)

λk = λk−1 + ckh(xk) (7)

μk = max
{
0, μk−1 + ck g(xk)

}
. (8)

In practice, one would prefer not to solve all the subproblems of the form (3) or (6)
to high precision, but to instead solve them inexactly using tolerances that tighten as
the algorithm proceeds. The idea is to avoid expending excessive effort on computing
exact minimizers xk of the augmented Lagrangian in early iterations when the esti-
mates (λk−1, μk−1) of the Lagrange multipliers may be poor. To prove convergence of
methods of this kind, it is natural to appeal to the theory of approximation criteria for
the proximal point algorithm, that is, for approximating the recursion (2) while still
maintaining convergence of {zk} to a root of T . The oldest approximation conditions
for (2), which we call absolute summable error criteria, involve a theoretically infinite
sequence of error tolerance parameters {εk} ⊂ [0,∞), but provide no direct guidance
as to how to select it, except for requiring that

∑∞
k=1 εk <∞. For instance, one of the

original approximation criteria proposed in [26] is

∥∥zk+1 − (I + ck T )−1(zk)
∥∥ ≤ εk ∀ k, where

∞∑

k=1

εk <∞. (9)

The past 10–15 years, starting with [27–29], have seen the development of a new
family of relative error criteria for approximating (2); such criteria have only a single
scalar parameter and are based on the ratio of the error in evaluating the proximal
operator (I + ck T )−1 to some other quantity maintained by the algorithm, such as
the tentative step length. For example, the method of [27] involves finding z̃k and
vk ∈ T (z̃k) such that

‖z̃k + ckv
k − zk‖ ≤ σ‖z̃k − zk‖, (10)

where σ ∈ [0, 1) is a scalar parameter; note that if σ = 0, then z̃k is simply the next
exact iterate specified by (2). In [27], the next iterate is not z̃k , but zk+1 = zk − ckv

k

(although these two vectors are identical if σ = 0); [28] gives a different, projec-
tive “corrector” formula. In general, the advantage of such criteria is that they set
the exactness tolerance for each subproblem in a manner sensitive to the algorithm’s
convergence on each particular problem instance, and do not require selection of an
infinite sequence of parameters.

Approximation criteria like (9) or (10) for the generic proximal point recursion (2)
tend to translate straightforwardly into implementable criteria for approximately per-
forming the minimization (6) in the proximal method of multipliers, but regrettably
this is not the case for the far more commonly used augmented Lagrangian minimiza-
tion (3), for which generic proximal-point approximation criteria reduce to conditions
that are not readily testable. This situation is unfortunate, since methods such as (3)–(5)
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322 J. Eckstein, P. J. S. Silva

tend to be faster than their regularized cousins like (6)–(8) and are much more often
used in practice; for a recent example of empirical results to this effect, see [13].

This paper develops new relative error criteria for approximating “pure dual” aug-
mented Lagrangian calculations like (3). Besides being relative rather than absolute
summable, the other critical feature of the criteria proposed here is that they are
practical, that is, they are readily testable given knowledge of the gradient, or a sub-
gradient, of the augmented Lagrangian. Direct application of approximation analyses
such as those in [27–29] or even [26] to dual formulations of problems like (1) does
not yield algorithms that are practical in this sense. Other approaches to approximat-
ing (3) while retaining a global proof of convergence in the convex case, for example
techniques based on ε-subgradients, have similar difficulties except in special cases.
The one exception we are aware of is the analysis in [12]: our analytical approach
to deriving practical approximation criteria draws on [12], and makes similar use of
Rockafellar’s general parametric convex duality framework; see [22, Chaps. 29–30]
and [24]. The analysis in [12] derives an augmented Lagrangian error criterion that
is practical in the same sense we use here, in that it requires only readily available
information such as the gradient of the augmented Lagrangian; however, [12] devel-
oped only an absolute summable error criterion with an infinite sequence {εk} of
error parameters, and, as in [26], provides no direct guidance as to how to select this
sequence. By contrast, the analysis here develops true relative error criteria with only
one or two scalar parameters.

Some of our recent experiments in [13] used a heuristic approximation rule for dual
methods like (3)–(5), obtained by taking a provably convergent rule for a proximal,
primal-dual method of multipliers of the form (6)–(8), and simply deleting the terms
relating to primal regularization. Our computational results for this criterion, given
as (59) and discussed in Sect. 6 below, were very promising, but a corresponding
formal convergence proof is not known, even in the convex case.

Here, we derive an outwardly similar but somewhat more complicated approxima-
tion criterion and prove that it is globally convergent for convex problems. We also
present empirical computational results conducted in a similar environment to [13],
using an advanced nonlinear conjugate gradient method [17,18] for the subproblems
and standard nonconvex test problems from the CUTE test set [7]. These results show
that our new algorithm’s performance is very close to the heuristic rule of [13] and, in
the context in which we performed our tests, superior to approximation rules adapted
from those used by the popular augmented Lagrangian solvers Algencan [1,2] and
Lancelot-B [9,10]. These rules are in turn faster than absolute summable criteria
based on [12], or solving each subproblem essentially exactly.

As a preview and summary of the main results, specializing the general approxi-
mation framework we will propose to the problem (1) produces the following set of
recursive conditions, with arbitrary starting values λ0 ∈ R

m1 , μ0 ∈ R
m2+ , and w0 ∈ R

n :

yk = ∇x

[
f (x)+ 〈λk−1, h(x)〉+ ck

2
‖h(x)‖2 + ∥∥ max

{
0, μk−1+ck g(x)

}∥∥2
]

(11)

2

ck

∣∣∣〈wk−1 − xk, yk〉
∣∣∣+ ‖yk‖2 ≤ σ

(

‖h(xk)‖2+
∥∥∥∥min

{
1

ck
μk−1,−g(xk)

}∥∥∥∥

2
)

(12)
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Relative error for augmented Lagrangians 323

λk = λk−1 + ckh(xk) (13)

μk = max
{
0, μk−1 + ck g(xk)

}
. (14)

wk = wk−1 − ck yk . (15)

Here, (11)–(12) replace the exact augmented Lagrangian minimization (3); the
“min” in (12), like the “max” in (11), is interpreted componentwise. To execute the
first step of the classical augmented Lagrangian method (3)–(5), one would in general
apply some iterative method to the problem (3) until it finds point x where the aug-
mented Lagrangian gradient y is nearly 0; to satisfy (11)–(12), we similarly apply an
iterative method to (3), but truncate it as soon as the trial iterate x has a corresponding
augmented Lagrangian gradient y small enough to satisfy (12). Next, (13) and (14)
are just the usual augmented Lagrangian multiplier updates, but (15) and the way the
sequence {wk} appears in (12) are novel features. Relative-error variants of the prox-
imal point algorithm typically involve some kind of “corrector” to the basic proximal
step, either a projection as in [28], or an extragradient step as in [27,29]. Here, (15)
appears to fulfill this role, but in an unusual manner, since wk plays no direct role in
either the subproblem objective function in (11) or the multiplier updates (13)–(14).
Instead, it only appears in the approximation condition (12) and the extragradient-
like auxiliary update (15). Note that if we were able to minimize all the augmented
Lagrangians exactly, and thus obtain yk = 0 for all k, then {wk} would simply be a
constant sequence. The sequence {wk} appears to play the role of tracking the accu-
mulated “error drift” in the sequence of calculations, something novel in augmented
Lagrangian algorithms.

The quantity νk = ‖h(xk)‖2 + ‖min{(1/ck)μ
k−1,−g(xk)}‖2 on the right-hand

side of (12) measures how much the trial primal-dual solution
(
xk, (λk, μk)

)
satisfies

the feasibility and complementarity conditions for optimality of (1), whereas ‖yk‖
measures how much

(
xk, (λk, μk)

)
violates the remaining condition for optimality,

stationarity of the Lagrangian. In the exact augmented Lagrangian method (3)–(5),
one could in principle use νk ≈ 0 as a termination condition, since exact optimization
of the augmented Lagrangian guarantees yk = 0. Because its left-hand side is closely
related to ‖yk‖, one can interpret the approximation criterion (12) as requiring that
stationarity violation be bounded by a quantity proportional to the feasibility/comple-
mentarity violation.

There is another line of research into augmented Lagrangians algorithms that
directly addresses differentiable nonconvex problems; see [1–5,8–10,15]. Among
these references, the most general global convergence results are given in [4]; there,
as in [1–3], the approximation criterion is simply ‖yk‖ ≤ εk , where εk → 0 is a
sequence of positive scalars. In this case, under a suitable weak constraint qualifica-
tion, it is possible to show that the limit points of the primal sequence {xk} are either
KKT points—that is, points x such that there exists a multiplier vector p = (λ, μ)

with (x, p) satisfying the KKT conditions—or stationary for a natural infeasibility
measure. However, such results do not show that the dual sequence {pk} converges in
the convex case; actually, it is in general not possible to show that the dual sequence
is bounded. To avoid unbounded multipliers, the methods described in [1–4] impose
artificial bounds on them, but update the penalty parameter sequence {ck} in such a
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way that if the artificial multiplier bounds are binding, one has ck → ∞, essentially
converting the algorithms into a pure penalty methods.

Thus, an important topic in this line of research concerns finding conditions that
ensure that the penalty parameters remain bounded. To obtain such boundedness,
relatively stringent assumptions on the problem are required, usually the strong sec-
ond-order sufficiency condition and regularity [1], or, more recently, the strict Man-
gasarian-Fromowitz constraint qualification [6]. The analysis of [1], for example,
guarantees boundedness of the penalty parameters if the approximation criterion is
strengthened to

‖yk‖ ≤ min

{
εk, ηk

∥∥∥∥
h(xk)

min
{ 1

ck
pk−1,−g(xk)

}
∥∥∥∥

}
,

where both {εk} and {ηk} are positive sequences converging to zero. The form of this
last condition suggests an interesting possible connection with the criterion proposed
in this paper; see (12) and also (59) below. But observe that, once again, the theory
does not provide any direct guidance on how to choose the sequence of parameters
{εk}; the same comment also applies here to {ηk}. Finally, an interesting recent result
is able to avoid the requirement of a constraint qualification and still ensure the bound-
edness of the penalty parameters whenever the initial primal-dual pair is close enough
to a KKT pair that conforms to the second-order sufficient condition and the initial
penalty parameter is large enough [14].

We organize the rest of this paper as follows: Sect. 2 below will briefly review
the general parametric duality framework of [22,24], apparently required to derive
error criteria that are practical in the sense meant here. Next, Sect. 3 will develop
a much more general version of the framework (11)–(15), and show that it reduces
to (11)–(15) in the case of problem (1). Section 4 will establish the convergence
properties of the generalized framework, which carry over immediately to the special
case (11)–(15). The fundamental convergence result is slightly weaker than tradition-
ally obtained for methods like (3)–(5), in that we do not show convergence of the
dual sequence {pk} = {(λk, μk)} to a unique limit; however, we do show that {pk}
is bounded, with all its limit points being dual optimal solutions, while the sequence
{xk} is asymptotically optimal, with all its limit points being primal optimal solutions.
We will also show that a stronger result, asserting convergence of {pk} and akin to
those typically obtained for multiplier methods, may be obtained by enforcing a sec-
ond approximation condition in addition to a condition generalizing (12). Section 5
discusses applying our framework to a more practical formulation which enhances (1)
with “box” constraints, Sect. 6 presents the computational results, and Sect. 7 presents
some concluding remarks.

The results of this paper should extend to inner products more general than the
canonical 〈u, v〉 = u�v, so long as the corresponding norm and adjoint operator are
used in place of “‖·‖” and “�”. Such techniques could also be used to extend the results
to infinite dimension. For simplicity, we will not address such generalizations further
here.
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Relative error for augmented Lagrangians 325

2 General parametric convex duality framework

We now briefly review the general parametric convex duality framework from [22,
Chaps. 29–30] and [24]. We suppose that we have a closed (lower semicontinuous)
proper convex function F : Rn × R

m → (∞,+∞], and we wish to solve the primal
problem

min
x∈Rn

F(x, 0). (16)

The second argument to F represents some kind of perturbation to the primal
problem (16). The customary choice for modeling problem (1) is to set m = m1+m2,
partition u = (r, s) with r ∈ R

m1 and s ∈ R
m2 , and define

F
(
x, (r, s)

) =
{

f (x), if h(x)+ r = 0 and g(x)+ s ≤ 0
+∞, otherwise.

(17)

Further, ∂ F : Rn ×R
m ⇒ R

n ×R
m denotes the subgradient mapping of F . Now, we

define Q to be the concave conjugate of F , that is

Q(y, p) = inf
x∈Rn

u∈Rm

{
F(x, u)− 〈x, y〉 − 〈u, p〉}, (18)

and the dual problem to (16) to be

max
p∈Rm

Q(0, p). (19)

A simple application of Fenchel’s inequality—see for example [22, Theorem 23.5]—
shows that weak duality holds, that is, Q(0, p) ≤ F(x, 0) for all x ∈ R

n and p ∈ R
m .

Q is a closed (upper semicontinuous) concave function, and we let ∂ Q : Rn ×R
m ⇒

R
n × R

m denote its subgradient map (the negative of its supergradient map), that is,

(x, u)∈ ∂ Q(y, p)⇔ Q(y′, p′)≤Q(y, p)−〈x, y′−y〉−〈u, p′− p〉 ∀ y′ ∈R
n, p′ ∈R

m .

(20)

We also define L : Rn × R
m → [−∞,∞] to be the function obtained by taking

the concave conjugate of F with respect to only its second argument, that is,

L(x, p) = inf
u∈Rm

{
F(x, u)− 〈u, p〉}. (21)

If we compute L for the choice of F given in (17), with p partitioned as p = (λ, μ)

for λ ∈ R
m1 and μ ∈ R

m2 , we obtain

L
(
x, (λ, μ)

) =
{

f (x)+ 〈λ, h(x)〉 + 〈μ, g(x)〉, μ ≥ 0,

−∞, otherwise,
(22)
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326 J. Eckstein, P. J. S. Silva

which is the Lagrangian ordinarily associated with problem (1), along with the require-
ment that the inequality-constraint Lagrange multipliers μ be nonnegative. By anal-
ogy, one in general calls L the Lagrangian corresponding to (16). L is convex in its
first argument and concave in the second, and we let ∂L denote its subgradient map,
that is,

(y, u) ∈ ∂L(x, p) ⇔
{

L(x ′, p) ≥ L(x, p)+ 〈y, x ′ − x〉 ∀ x ′ ∈ R
n

L(x, p′) ≤ L(x, p)− 〈u, p′ − p〉 ∀ p′ ∈ R
m .

We point out that the point-to-set maps ∂ F , ∂ Q, and ∂L are all maximal monotone
operators, and

(y, p) ∈ ∂ F(x, u) ⇔ (y, u) ∈ ∂L(x, p) ⇔ (x, u) ∈ ∂ Q(y, p), (23)

that is, ∂ F and ∂ Q are inverses of one another, and ∂L is a partial inverse [30] of both
∂ F and ∂ Q. If (x∗, p∗) ∈ R

n × R
m is such that (0, 0) ∈ ∂L(x∗, p∗), then x∗ solves

the primal problem (16) and p∗ solves the dual problem (19). In this case, we say that
(x∗, p∗) is a saddle point (of the Lagrangian L). If such a saddle point exists, then
strong duality holds, that is, F(x∗, 0) = Q(0, p∗) and thus the optimal values of the
primal and dual problems (16) and (19) exist and are equal.

3 An abstract approximate method of multipliers

We now formulate a set of recursions analogous to (11)–(15), but in the much more
general setting of the abstract problem (16). Specifically, for some σ ∈ [0, 1), we
suppose we have sequences {xk}∞k=1, {yk}∞k=1, {wk}∞k=0 ⊂ R

n , and {pk}∞k=0 ⊂ R
m

satisfying for all k ≥ 1 the conditions

(
yk, 1

ck
(pk−1 − pk)

) ∈ ∂L(xk, pk) (24)

2ck

∣∣∣〈wk−1 − xk, yk〉
∣∣∣+ c2

k‖yk‖2 ≤ σ‖pk−1 − pk‖2 (25)

wk = wk−1 − ck yk . (26)

At this point, (25) and (26) may seem unmotivated; we will attempt to provide insight
into these choices later, as we proceed with the convergence proof. First, however, we
will show that, with F defined as in (17), the conditions (24)–(26) reduce exactly to
our proposed algorithm (11)–(15).

Consider F as defined in (17), with its perturbation argument partitioned u = (r, s).
Similarly partitioning p = (λ, μ), we obtain when μ ≥ 0 that

∂L
(
x, (λ, μ)

) = {∇ f (x)+∇h(x)�λ+ ∇g(x)�μ} × {−h(x)} × (−g(x)+ N
R

m2+
(μ)

)

= {∇ f (x)+∇h(x)�λ+ ∇g(x)�μ} × {−h(x)}
× {−g(x)+ q | q ≤ 0, 〈μ, q〉 = 0 } ,
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where N
R

�+ denotes the normal cone mapping of the nonnegative orthant in R
�; note

that if μ �≥ 0, then ∂L
(
x, (λ, μ)

) = ∅. Inserting this form of L into (24) and parti-
tioning pk as pk = (λk, μk), we obtain that (24) is equivalent to the conditions

yk = ∇ f (xk)+ ∇h(xk)λk +∇g(xk)μk (27)

1
ck

(λk−1 − λk) = −h(xk) (28)

1
ck

(μk−1 − μk) ∈ −g(xk)+ NR
m+(μ

k). (29)

Rearranging (28), we obtain λk = λk−1 + ckh(xk), exactly as in (4) and (13). Rear-
ranging (29) in a similar manner yields

(
μk−1 + ck g(xk)

)− μk ∈ NR
m+(μ

k),

which is equivalent to μk being the unique projection of μk−1 + ck g(xk) onto R
m2+ ,

that is,

μk = max
{
0, μk−1 + ck g(xk)

}
.

Thus, we obtain exactly the classical inequality multiplier update in (5) and (14).
Substituting this expression and λk = λk−1 + ckh(xk) into (27), we obtain

yk = ∇ f (xk)+ ∇h(xk)
�(

λk−1 + ckh(xk)
)+ ∇g(xk)

�
max

{
0, μk−1 + ck g(xk)

}
,

which is equivalent to (11). Thus, condition (24) is simply equivalent to yk being the
gradient of the usual augmented Lagrangian of (3) at xk , with (λk, μk) being obtained
by the usual multiplier updates (13) and (14).

Next, we turn our attention to the approximation condition (25). Using the multi-
plier update formulas to substitute into the expression on its right-hand side, we note
that

pk−1 − pk =
[

λk−1 − λk

μk−1 − μk

]
=

[
λk−1 − (λk−1 + ckh(xk))

μk−1 −max
{
0, μk−1 + ck g(xk)

}
]

=
[ −ckh(xk)

min{μk−1,−ck g(xk)}
]

.

Substituting this expression into (25) produces

2ck

∣∣
∣〈wk−1 − xk, yk〉

∣∣
∣+ c2

k‖yk‖2 ≤ σ
(

c2
k‖h(xk)‖2 + ∥∥min

{
μk−1,−ck g(xk)

}∥∥2
)

.

Dividing this relation by c2
k yields precisely (12). Since (26) and (15) are identical,

it follows that when F is defined as in (17), the abstract recursions (24)–(26) reduce
exactly to the approximate multiplier method (11)–(15) presented in Sect. 1.
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The same basic mode of analysis may be used to specialize (24)–(26) to many
other kinds of convex problems, such as those involving general conic constraints
(for example, for cones of semidefinite matrices), and nonsmooth functions. We next
prove the convergence of the abstract method, which immediately yields convergence
of specializations such as (11)–(15).

4 Convergence proof for the abstract method

Proposition 1 Let F : R
n × R

m → (∞,+∞] be closed proper convex, with Q
and L defined as in (18) and (21), respectively. Let σ ∈ [0, 1) and let {ck}∞k=1 ⊂ R

be such that infk≥1{ck} > 0. Suppose that {xk}∞k=1, {yk}∞k=1, {wk}∞k=0 ⊂ R
n and

{pk}∞k=0 ⊂ R
m obey for all k ≥ 1 the recursions (24)–(26). Define, for all k ≥ 1,

uk = 1
ck

(pk−1 − pk). (30)

If there exists any saddle point of L, that is, any (x∗, p∗) ∈ R
n × R

m such that
0 ∈ ∂L(x∗, p∗), then the following hold:

– The sequences {pk} and {wk} are bounded.
– uk → 0 and yk → 0.
– F(xk, uk) and Q(yk, pk) both converge to the common optimal value of the primal

and dual problems (16) and (19).
– All accumulation points of {xk} are solutions to the primal problem (16) and all

accumulation points of {pk} are solutions to the dual problem (19).

If no saddle point exists, then at least one of the sequences {pk}or {xk} is unbounded.

Proof First, we consider the case that some saddle point exists, and let (x∗, p∗) be
any such point. For any k ≥ 1,

‖pk−1 − p∗‖2 = ‖pk−1 − pk + pk − p∗‖2
= ‖pk−1 − pk‖2 + 2〈pk−1 − pk, pk − p∗〉 + ‖pk − p∗‖2. (31)

Using the definition of uk , we have pk−1 − pk = ckuk , which we may substitute
into (31) to obtain

‖pk−1 − p∗‖2 = ‖pk−1 − pk‖2 + 2ck〈uk, pk − p∗〉 + ‖pk − p∗‖2,

which may be rearranged into

‖pk − p∗‖2 = ‖pk−1 − p∗‖2 − 2ck〈uk, pk − p∗〉 − ‖pk−1 − pk‖2. (32)
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Next, using that wk = wk−1 − ck yk , we perform a similar expansion of ‖wk − x∗‖2:

‖wk − x∗‖2 = ‖wk−1 − ck yk − x∗‖2
= ‖wk−1 − x∗‖2 − 2〈wk−1 − x∗, ck yk〉 + c2

k‖yk‖2
= ‖wk−1 − x∗‖2− 2ck〈wk−1 − xk, yk〉− 2ck〈xk− x∗, yk〉+ c2

k‖yk‖2.
(33)

Next, we add (32) and (33) to obtain

‖pk − p∗‖2 + ‖wk − x∗‖2 = ‖pk−1 − p∗‖2 + ‖wk−1 − x∗‖2
−2ck

[
〈xk − x∗, yk〉 + 〈pk − p∗, uk〉

]

−2ck〈wk−1 − xk, yk〉 + c2
k‖yk‖2

−‖pk−1 − pk‖2. (34)

Next, we use the monotonicity of ∂L to eliminate the expression on the second line
of (34). Specifically, from (24) and (30) we have that (yk, uk) ∈ ∂L(xk, pk), and since
(x∗, p∗) is a saddle point, we also have (0, 0) ∈ ∂L(x∗, p∗). Thus, the monotonicity
of ∂L yields

〈xk − x∗, yk − 0〉 + 〈pk − p∗, uk − 0〉 = 〈xk − x∗, yk〉 + 〈pk − p∗, uk〉 ≥ 0.

(35)

Combining this inequality with (34) yields

‖pk − p∗‖2 + ‖wk − x∗‖2 ≤ ‖pk−1 − p∗‖2 + ‖wk−1 − x∗‖2
− 2ck〈wk−1 − xk, yk〉 + c2

k‖yk‖2
− ‖pk−1 − pk‖2.

(36)

The error criterion (25) is designed so that the terms on the second line of (36) may
be “buried” in the last term. Specifically, (25) implies

− 2ck〈wk−1 − xk, yk〉 + c2
k‖yk‖2 ≤ 2ck

∣∣∣〈wk−1 − xk, yk〉
∣∣∣+ c2

k‖yk‖2

≤ σ‖pk−1 − pk‖2. (37)

Substituting this inequality into (36), we obtain an inequality that is the key to the
convergence analysis:

‖pk− p∗‖2+‖wk−x∗‖2≤‖pk−1− p∗‖2+‖wk−1−x∗‖2−(1−σ)‖pk−1 − pk‖2.
(38)

Since (38) holds for all k ≥ 1, a cascade of deductions follows:
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–
{‖pk − p∗‖2 + ‖wk − x∗‖2} is a nonincreasing sequence, so the sequences {pk}
and {wk} are bounded. Since

{‖pk − p∗‖2 + ‖wk − x∗‖2} is bounded below by
0, it must be convergent. Since (x∗, p∗) was an arbitrary saddle point, we further
conclude that {(xk, pk)} is Fejér monotone to the set of saddle points.

– Summing (38) over k and using that σ < 1, we conclude that {‖pk−1 − pk‖2} is
a summable sequence and hence that pk − pk−1 → 0.

– Since ck is bounded away from 0 and uk = (1/ck)(pk − pk−1), it follows that
uk → 0 and {‖uk‖2} is summable.

– Referring to (25) or (37), and using the just-established properties of the sequence
{pk − pk−1} , it then also follows that the two sequences {ck |〈wk−1 − xk, yk〉|}
and {c2

k‖yk‖2} are both summable, and thus converge to 0. Immediately, we have
ck〈wk−1 − xk, yk〉 → 0.

– Since it is absolutely summable, {ck〈wk−1 − xk, yk〉} is also summable.
– Again using that ck is bounded away from 0, the last two sets of observations imply

that {|〈wk−1 − xk, yk〉|}, {〈wk−1 − xk, yk〉}, and {‖yk‖2} are all summable and
convergent to 0. and in particular we have yk → 0.

– Writing

〈xk, yk〉 = 〈wk−1, yk〉 − 〈wk−1 − xk, yk〉,

we note that since {wk} is bounded and yk → 0, we have 〈wk−1, yk〉 → 0.
Since we have already established that 〈wk−1 − xk, yk〉 → 0, it follows that
〈xk, yk〉 → 0.

Next, applying (23) to (yk, uk) ∈ ∂L(xk, pk) gives that (xk, uk) ∈ ∂ Q(yk, pk).
Thus, combining the subgradient inequality (20) with y′ = 0 and p′ = p∗ yields

Q(0, p∗) ≤ Q(yk, pk)− 〈xk, 0− yk〉 − 〈uk, p∗ − pk〉,

which we may rearrange into

Q(yk, pk) ≥ Q(0, p∗)− 〈xk, yk〉 + 〈uk, p∗ − pk〉. (39)

Passing to the limit and using that 〈xk, yk〉 → 0, uk → 0, and {pk} is bounded, we
obtain

lim inf
k→∞ Q(yk, pk) ≥ Q(0, p∗). (40)

We now consider lim supk→∞ Q(yk, pk), which must by (40) be at least Q(0, p∗);
however, we have not yet excluded the possibility that it may be larger, perhaps +∞.
Let K be a subsequence such that Q(yk, pk) →K lim supk→∞ Q(yk, pk). By the
boundedness of {pk}, there exists a subsequence K′ ⊆ K such that {pk}k∈K′ converges
to some limit p∞. We then observe that
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Q(0, p∗) ≥ Q(0, p∞) [Since p∗ is optimal for the dual]
= Q

(
lim

k→∞
k∈K′

yk, lim
k→∞
k∈K′

pk
)
[Since yk → 0, pk →K′ p∞]

≥ lim sup
k→∞
k∈K′

Q(yk, pk) [Since Q is upper semicontinuous]

= lim sup
k→∞

Q(yk, pk). [By the choice of K ⊇ K′]

Combining this result with (40), we conclude that

lim inf
k→∞ Q(yk, pk) ≥ Q(0, p∗) ≥ lim sup

k→∞
Q(yk, pk)⇒ lim

k→∞ Q(yk, pk) = Q(0, p∗),

which is the common optimal value of the primal and dual problems.
We now consider the sequence {F(xk, uk)}. Since F and −Q are convex conju-

gates and (xk, uk) ∈ ∂ Q(yk, pk), the Fenchel equality—see for example [22, Theorem
23.5]—implies

F(xk, uk) = Q(yk, pk)+ 〈yk, xk〉 + 〈pk, uk〉.

Since we already know that Q(yk, pk)→ Q(0, p∗), and we have that 〈yk, xk〉 → 0,
{pk} is bounded, and uk → 0, it follows that F(xk, uk)→ Q(0, p∗) = F(x∗, 0).

We now show that all limit points of {xk} must be solutions to the primal prob-
lem (16). Considering any such limit point x∞ and corresponding subsequence K, we
have from uk → 0 and the lower semicontinuity of F that

F(x∞, 0) = F
(

lim
k→∞
k∈K

xk, lim
k→∞
k∈K

uk
)
≤ lim inf

k→∞
k∈K

F(xk, uk) = F(x∗, 0),

but since F(x∗, 0) is the minimum possible value of F(· , 0), we must have F(x∞, 0) =
F(x∗, 0). Using the upper semicontinuity of Q and yk → 0, analogous reasoning
implies that all limit points of {pk} are dual solutions. The proof for the case that at
least one saddle point exists is now complete.

It remains only to consider the case that no saddle point exists. In this case, we use
a variant of the analysis originally given in [26] for the behavior of the proximal point
algorithm for operators with no roots. The proof proceeds by contradiction: suppose
that no saddle point exists, but the conclusion of the proposition does not hold, so that
{pk} and {xk} are both bounded. In this case, there exists some scalar R ∈ (0,∞) such
that supk≥1{‖(xk, pk)‖} < R. Let B denote the closed ball of radius R around the
origin in R

n×R
m , and consider the point-to-set operator T = ∂L+ NB , where NB is

the normal cone mapping of B. From the results of [23], T is maximal monotone, since
T and ∂L are both maximal monotone and dom ∂L and int dom NB have nonempty
intersection. Furthermore, since dom T lies within B and is therefore a bounded set, it
follows from [21, Proposition 2] that there exists at least one point (x∗, p∗) ∈ R

n×R
m

for which (0, 0) ∈ T (x∗, p∗).
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Since the entire sequence {(xk, pk)} lies in the interior of B, we have for all k that

NB(xk, pk) = {0} ⇒ T (xk, pk) = ∂L(xk, pk) ⇒ (yk, uk) ∈ T (xk, pk).

Using the monotonicity of T , we may conclude that (35) still holds, but with (x∗, p∗)
assumed to be any root of T . Following the logic above for the case in which at
least one saddle point exists, all the results above from (36) through 〈xk, yk〉 → 0
continue to hold. From the boundedness of {(xk, pk)}, it must have at least one limit
point (x∞, p∞), whose norm must be less than R. Taking limits over an appropriate
subsequence in the relation (yk, uk) ∈ T (xk, pk), and using the maximality of T ,
we conclude that (0, 0) ∈ T (x∞, p∞). But since ‖(x∞, p∞)‖ < R, it lies in the
interior of B and hence ∂L(x∞, p∞) = T (x∞, p∞). Thus, (0, 0) ∈ ∂L(x∞, p∞),
and (x∞, p∞) must be a saddle point, which contradicts the hypothesis. Therefore,
the assumption above that one can simultaneously have no saddle points with both
{pk} and {xk} bounded cannot hold. ��

The properties of {wk} are unusual. Although {(wk, pk)} is Fejér monotone to
the set of saddle points, and all limit points of {pk} are dual solutions, {wk} need
not approach the set of primal solutions, and may behave very differently from {xk}.
Indeed, if we were able to solve the augmented Lagrangian subproblems exactly and
achieve yk = 0, then {wk} would simply be a constant sequence. One possible inte-
pretation of the role of {wk} is that it accumulates, through (26), the total “error drift”
of the algorithm. If a large amount of drift accumulates in the sense that wk−1 − xk

becomes large, the subproblem optimality tolerance may be effectively tightened, in
that the component of yk parallel to wk−1 − xk will have to be small.

The conclusions of Proposition 1 are somewhat weaker than are typically obtained
for multiplier methods, either in their exact form or with the exact summable error
criterion of [12]. In particular, in the case in which no solution exists, one typically
obtains that the dual sequence {pk} is unbounded, but here we obtain only that either
{pk} or {xk} is unbounded. The latter can in theory happen even if saddle points
exist, but the set of primal solutions is unbounded; however, in practical implemen-
tations, such behavior of {xk} is generally not of concern. When saddle points exist,
Proposition 1 is also weaker than results normally obtained for multiplier methods,
in that full convergence of {pk} is not guaranteed. If the optimal solution of the
dual problem is unique, then the results of Proposition 1—that {pk} is bounded and
all its limit points are solutions—are equivalent to convergence. If the optimal dual
solution is nonunique, the results are somewhat weaker, but the differences seem
unlikely to be of practical concern. We now show how the dual convergence results
may be strengthened to full convergence by imposing a second approximation crite-
rion in addition to (25); however, it is doubtful such a criterion would be needed in
practice.

Proposition 2 Suppose all the hypotheses of Proposition 1 hold, in the case that at
least one saddle point exists. If for some scalar ζ ≥ 0 it is also true for all k ≥ 1 that
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ck‖yk‖ ≤ ζ‖pk−1 − pk‖2, (41)

then {pk} must converge to a unique limit, which is necessarily a dual solution.

Proof By hypothesis, all the conclusions and intermediate results of Proposition 1 for
the case that at least one saddle point exists must hold. Again letting (x∗, p∗) denote
an arbitrary saddle point and rearranging (34), we obtain

2ck

[
〈xk − x∗, yk〉 + 〈pk − p∗, uk〉

]

= ‖pk−1 − p∗‖2 + ‖wk−1 − x∗‖2 −
[
‖pk − p∗‖2 + ‖wk − x∗‖2

]

−2ck〈wk−1 − xk, yk〉 + c2
k‖yk‖2 − ‖pk−1 − pk‖2.

Summing this equation for k = 1, . . . , K , we obtain

2
K∑

k=1

(
ck〈xk − x∗, yk〉 + ck〈pk − p∗, uk〉

)
= ‖p0 − p∗‖2 + ‖w0 − x∗‖2

−
[
‖pK − p∗‖2 + ‖wK − x∗‖2

]

−2
K∑

k=1

ck〈wk−1 − xk, yk〉

+
K∑

k=1

c2
k‖yk‖2 −

K∑

k=1

‖pk−1 − pk‖2.

Since
{‖pk − p∗‖2+‖wk − x∗‖2} is convergent, and {ck〈wk−1−xk, yk〉}, {c2

k‖yk‖2},
and {‖pk−1 − pk‖2} are all summable, we conclude that the sequence

{
ck〈xk − x∗, yk〉 + ck〈pk − p∗, uk〉} (42)

is summable. Next, we will use the additional hypothesis (41) to show that the first
term {ck〈xk − x∗, yk〉} above is summable, with the consequence that the second term
{ck〈pk − p∗, uk〉} must also be summable. To this end, we write

ck〈xk − x∗, yk〉 = ck〈xk − wk−1, yk〉 + 〈wk−1 − x∗, ck yk〉.

Now, the first term on the right-hand side above, ck〈xk −wk−1, yk〉 was already been
shown to be summable in the proof of Proposition 1. As for the second, we note that
from the extra condition (41) and the summability of {‖pk−1 − pk‖2}, we have that
{‖ck yk‖} (without the norm being squared) is summable. Now, since {(wk, pk)} is
bounded, we have that {wk−1 − x∗} is bounded, and since {‖ck yk‖} is summable, it
follows that {〈wk−1− x∗, ck yk〉} and therefore {ck〈xk− x∗, yk〉} are summable. From
the summability of (42), it follows that {ck〈pk − p∗, uk〉} is also summable.
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Next, we perform the expansion

‖pk−1 − p∗‖2 = ‖pk − p∗ + (pk−1 − pk)‖2
= ‖pk − p∗‖2 + 2〈pk − p∗, pk−1 − pk〉 + ‖pk − pk−1‖2
= ‖pk − p∗‖2 + 2ck〈pk − p∗, uk〉 + ‖pk − pk−1‖2,

where the last equality follows from the definition of uk . Rearranging the resulting
equation, we have

‖pk − p∗‖2 − ‖pk−1 − p∗‖2 = −2ck〈pk − p∗, uk〉 − ‖pk − pk−1‖2.

Because the two terms on its right-hand side above are summable, summing the above
equation leads to the conclusion that {‖pk − p∗‖2} converges.

Next, consider any limit point p∞ of the bounded sequence {pk}, which we know
from Proposition 1 must be a dual solution. Since the set of primal-dual solutions form
a Cartesian product [22, Corollary 30.5.1], we know that (x∗, p∞) is also a saddle
point, and therefore we may set p∗ = p∞ to conclude that {‖pk − p∞‖} converges.
But since p∞ is a limit point of {pk}, {‖pk − p∞‖} must have a subsequence con-
verging to 0, and thus the entire sequence converges to 0 and we must have pk → p∞.

��
Although the constant ζ may be arbitrarily large, the additional approximation cri-

terion (41) is potentially stringent in the limit, since the norm on its right-hand side is
squared, but the norm on its left is not. Again, it seems doubtful that this extra criterion
would be needed in practice.

5 Including variable bounds

Although in principle it is no more general, we now consider a version of (1) including
explicit bounds on the variables, namely

minx∈Rn f (x)

s. t. g(x) ≤ 0
h(x) = 0

a ≤ x ≤ b,

(43)

where a ∈ [−∞,∞)n , b ∈ (−∞,∞]n , and a ≤ b.
Due to their simple structure, we will directly enforce the constraints a ≤ x ≤ b in

the subproblems, rather than attaching Lagrange multipliers to them. Let

B(a, b) = {
x ∈ R

n | a ≤ x ≤ b
}

denote the “box” set defined by these constraints, and let NB(a,b) denote its normal
cone map. In particular, NB(a,b)(x) = ∅ if x �∈ B(a, b), and otherwise, for z ∈ R

n ,
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z ∈ NB(a,b)(x) ⇔
{

zi ≤ 0 ∀ i : xi < bi

zi ≥ 0 ∀ i : xi > ai .

Partitioning the second argument to F as before into u = (r, s), we choose F as
follows:

F
(
x, (r, s)

) =
{

f (x), if a ≤ x ≤ b and h(x)+ s = 0 and g(x)+ r ≤ 0
+∞, otherwise.

Again partitioning p = (λ, μ), the corresponding Lagrangian takes the form

L
(
x, (λ, μ)

) =

⎧
⎪⎪⎨

⎪⎪⎩

f (x)+ 〈λ, h(x)〉 + 〈μ, g(x)〉, if a ≤ x ≤ b and μ ≥ 0

−∞, if a ≤ x ≤ b and μ �≥ 0

+∞, if a �≤ x or x �≤ b.

Note that the form of L effectively enforces the dual constraint μ ≥ 0. The corre-
sponding extended dual function is Q

(
y, (λ, μ)

) = infx∈Rn
{

L
(
x, (λ, μ)

)− 〈x, y〉}.
Applying the proximal point algorithm to the map ∂ Q

(
0, (· , ·)) produces an aug-

mented Lagrangian method identical to (3)–(5), except that (3) is replaced by the
box-constrained augmented Lagrangian minimization

xk ∈Arg min
x∈B(a,b)

{
f (x)+〈λk−1, h(x)〉+ ck

2 ‖h(x)‖2 + 1
2ck

∥∥ max
{
0, μk−1+ck g(x)

}∥∥2
}
.

(44)

Applying the recursions (24)–(26) to this form of L reduces, after defining

Lk(x) = f (x)+〈λk−1, h(x)〉+ ck

2
‖h(x)‖2 + 1

2ck

∥∥ max
{
0, μk−1+ck g(x)

}∥∥2
, (45)

to the approximate augmented Lagrangian recursions

yk ∈ ∇Lk(xk)+ NB(a,b)(xk) (46)

2

ck

∣∣∣〈wk−1 − xk, yk〉
∣∣∣+‖yk‖2 ≤ σ

(

‖h(xk)‖2 +
∥∥∥∥min

{
1

ck
μk−1,−g(xk)

}∥∥∥∥

2
)

(47)

λk = λk−1 + ckh(xk) (48)

μk = max
{
0, μk−1 + ck g(xk)

}
(49)

wk = wk−1 − ck yk . (50)

The only difference from (11)–(15) is the presence of NB(a,b)(xk) in (46), due to the
box constraints a ≤ x ≤ b. Note that (46) is equivalent to yk being a subgradient of the
function Lk + δB(a,b), where δB(a,b)(x) = 0 for x ∈ B(a, b), and δB(a,b)(x) = +∞ if
x �∈ B(a, b); note that Lk+δB(a,b) is effectively the function being minimized in (44).
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To implement (46)–(50) computationally, one would apply some iterative bound-
constrained solver to the problem (44), but truncate its calculations as soon as it finds
a vector xk such that there exists a yk ∈ ∇Lk(xk)+ NB(a,b)(xk) satisfying (47). For
a given trial value of xk , the possible corresponding choices of yk will be nonunique
if any component of the constraints a ≤ xk or xk ≤ b is binding. Observing from the
Cauchy-Schwarz inequality that |〈wk−1 − xk, yk〉| ≤ ‖wk−1 − xk‖‖yk‖, one simple
strategy for trying to satisfy (47) with as few iterations as possible of the bound-
constrained subproblem solver is to choose yk to have the minimum possible norm
among all vectors in the set ∇Lk(xk)+ NB(a,b)(xk); a similar strategy is used in the
computational tests of [13]. To compute the vector y with the minimum norm in the
set t + NB(a,b), for any t ∈ R

n , one may use the following simple calculation:

yi =
⎧
⎨

⎩

min{ti , 0}, ∀ i : xi = ai

ti , ∀ i : ai < xi < bi

max{ti , 0}, ∀ i : xi = bi .

(51)

We close this section by observing that Proposition 1 implies that, whenever there
exists at least one saddle point (x∗, p∗) = (

x∗, (λ∗, μ∗)
)
, we have that uk → 0 and

F(xk, uk) → F(x∗, 0), where {uk} is defined by (30). For the current choice of F ,
these conditions reduce to

lim sup
k→∞

gi (x) ≤ 0, i = 1, . . . , m1 h(xk)→ 0 f (xk)→ f (x∗).

Such behavior of the primal sequence {xk} is often referred to as asymptotic opti-
mality; see for example [12]. In particular, all accumulation points of {xk} are primal
solutions.

6 Computational testing

We now describe some preliminary computational testing of the algorithm (46)–(50),
using a subset of problems from the CUTE test set [7]. For our tests, we did not require
f or the component functions of g to be convex, nor did we require h to be affine; we
merely assumed f : Rn → R, g : Rn → R

m1 , and h : Rn → R
m2 to be once contin-

uously differentiable. Our current convergence theory does not cover such potentially
nonconvex problems, and analyzing our algorithm’s behavior in the nonconvex case
is a topic for future research. Nevertheless, to assess our approach’s computational
promise, it seemed best to test it on a standard, realistic, demanding test set, even if
the majority of its problems are nonconvex.

We based our testing closely on our recent work in [13]. As in [13], we imple-
mented our main algorithm (the “outer loop”) in Python [31], using SciPy [19], an
open-source software environment with capabilities similar to MATLAB; in fact, the
implementation is a minor enhancement to the existing “pyauglag” prototype code
already developed in [13].

The “inner loop” of the implementation consists of the procedure necessary to iden-
tify some pair (xk, yk) jointly satisfying (46) and (47). To this end, much as in [13],
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we used a slightly modified version of the ASA bound-constrained conjugate gradient
code of Hager and Zhang [18], which is based on the advanced unconstrained con-
jugate gradient algorithm described in [17]. Our only significant modification to the
base ASA code [16] is the ability to use a user-specified termination criterion. Specif-
ically, we ran ASA on the bound-constrained problem (44), starting from the previous
primal iterate xk−1, and checking the trial solution x produced at each ASA iteration
as follows:

1. Calculate the minimum-norm member y of the set ∇Lk(x) + NB(a,b)(x) by
using (51) with t = ∇Lk(x).

2. Determine whether

2

ck

∣∣∣〈wk−1 − x, y〉
∣∣∣+ ‖y‖2 ≤ σ

(

‖h(x)‖2 +
∥∥∥∥min

{
1

ck
μk−1,−g(x)

}∥∥∥∥

2
)

(52)

or

‖y‖∞ ≤ δ, (53)

where δ is a fixed constant that is small enough to assert that the subproblem was
solved “exactly”. This parameter depends on the termination criterion for the outer
loop, and will be defined below.
If either (52) or (53) holds, set xk = x and yk = y and exit the ASA subroutine;
if not, continue to the next ASA iteration.

The remainder of the algorithm comprises the updates of the multiplier estimates and
wk , which consist of simple vector calculations implemented in SciPy.

In our computational tests, we used a subset of 127 of the AMPL versions of the
CUTE [7] test problems made available by Hande Benson at http://orfe.princeton.
edu/~rvdb/ampl/nlmodels/cute/. We used exactly the same subset of these problems
as in [13], to facilitate direct comparison with our recent computational work there.
The exact selection of problems is described in [13]; in brief, some of the larger prob-
lems were excluded due to prototype nature of our implementation, which contains
extensive intepreted Python code.

To terminate the outer loop, we use a condition similar to that of [13] and also
inspired by Algencan [1,2], a well established general-purpose augmented Lagrang-
ian solver. Given a positive penalty parameter c > 0, we define

γ (x, p, q) = min
{‖y‖∞

∣
∣ y ∈ ∇x L

(
x, (p, q)

)+ NB(a,b)(x)
}

(54)

φc(x) = max{‖h(x)‖∞, ‖max{−p/c, g(x)}‖∞}. (55)

Here, γ (x, p, q) measures how close x comes to being the minimizer of L
(· , (p, q)

)

over B(a, b), whileφc(x) simultaneously measures the feasibility of x and the violation
of complementary slackness for the inequality constraints g(x) ≤ 0. If γ (x, p, q) = 0
and φc(x) = 0, then (x, p, q) satisfies the KKT conditions for (43). Note that under
the recursions of our proposed algorithm, we have γ (xk, pk, qk) = ‖yk‖∞.
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Given a parameter ε > 0, we terminate, declaring success, whenever

γ (xk, pk, qk) = ‖yk‖∞ < ε and φck(xk) < ε. (56)

We also experimented with using a fixed c in place of ck in (56), without any significant
change in the computational results. For easier comparison with the results presented
in [13], we set ε = 10−4; in future, we plan to use tighter tolerances, but scale them in
some relation to the problem data, or apply coordinatewise scaling in the definitions
of the convergence metrics (54)–(55). We defined the constant δ appearing in (53)
to be ε/10. Note that we allow (53) to serve as an alternative subproblem termina-
tion condition to (52) because checking only (52) might require more exact solution
of subproblems than warranted by the overall tolerance ε; if (52) is more stringent
than (53), one may consider the relative error criterion to have already “served its
purpose”, at least for the time being, and instead proceed as one would in classical
augmented Lagrangian implementation.

We considered a method to have failed if any of the following occur:

– We still have not satisfied the approximate KKT conditions (56) after 200 outer
iterations (k ≥ 200)

– The ASA subproblem solver fails more than 5 times
– There are more than 1 million function evaluations
– The total CPU time exceeds 1 h (on a single core of a 2.83 GHz Intel Core 2 Quad

Q9550 processor with 800 MHz memory).

We use the following strategy to adjust the penalty parameter ck , once again based
on the technique used in the Algencan [1,2]. At the end of iteration k, we test whether

φck(xk) < ε or φck(xk) ≤ 0.5 φ(xk−1). (57)

If (57) holds, we consider our method to be making “good progress” towards feasi-
bility and complementarity, and keep the penalty parameter ck unchanged. Otherwise,
the penalty parameter increases by a factor of 5; note that Algencan, with a Newton
subproblem solver instead of the conjugate gradient approach employed here, uses a
larger increase factor of 10. We set the initial penalty parameter c0 to 5 (in future, a
more sophisticated approach might base c0 on a scaling analysis of the problem and
starting point).

Below, we experimentally compare the new approximation criterion (52)–(53) with
a number of alternative criteria described in existing literature, as well as to solving
each subproblem to the fixed “exact” precision δ, that is, using (53) only. We tested all
the alternatives within the same prototype solver implementation described above and
in [13]. The first alternative approximation criterion is a special case of the absolute
summable error criterion from [12, formula (17)]. Specifically, we tested an approxi-
mation criterion of the form

‖yk‖ ≤ εk

ckγk
, with γk =

{
1, ‖xk‖ ≤ β

‖xk‖/β, ‖xk‖ > β,
(58)
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where εk is some summable sequence and β > 0 is a given constant; in our
experiments, we used β = 104√n. Using that the penalty parameter sequence
{ck} ⊂ (0,∞) is assumed to be bounded away from 0, it can easily be shown that (58)
is a special case of the criterion specified in [12]. As for the choice of the summable
sequence {εk}, we experimented with various sequences of the form εk = η/kζ , where
η is a positive constant and ζ > 1. After some numerical experimentation, we settled
on η = 0.1 and ζ = 2, which seemed to perform the best on our experimental test set.

Next, we compared the new approach with adaptations of the error criteria used
by the existing augmented Lagrangian codes Algencan [1,2] and Lancelot-B [9,10].
The Algencan criterion involves a simple two-stage process: recall that δ is the thresh-
old that determines when the subproblems are solved “almost exactly”; see (53) and
the following discussion. The Algencan criterion starts by requiring that each sub-
problems be solved with fixed precision

√
δ, that is, the subproblem solver is stopped

once ‖yk‖∞ ≤
√

δ. As soon as the stopping conditions for the outer loop (56) hold
with precision

√
ε, the precision required in the subproblems is tightened to δ, and

remains fixed thereafter.
The criterion used by Lancelot is more complicated, and can be adapted to our

setting as follows: let εk be the precision required in the kth iteration, that is, the sub-
problem solution process halts once ‖yk‖∞ ≤ εk . After iterations where the algorithm
has made good progress toward feasibility and complementarity slackness, as defined
in (57), set εk+1 = εk/ck+1, otherwise set εk+1 = ε0/ck+1. Note that, even though
εk+1 may be larger than εk in the former case, lack of good progress also triggers an
increase in ck , which will accelerate the rate of tolerance tightening in future iterations.
We set the initial precision ε0 to 0.1/c0, as Lancelot does.

Finally, we also compared the new approach with the heuristic criterion suggested
in [13], which used a form of the relative error criterion for which there is (at least at
present) no global convergence proof even in the convex case. In our current notation,
this heuristic uses the error criterion

‖yk‖2 ≤ σ

(

‖h(xk)‖2 +
∥∥∥∥min

{
1

ck
μk−1,−g(xk)

}∥∥∥∥

2
)

, (59)

that is, (47) with the term involving wk−1 deleted. This criterion was proposed in [13],
where it was developed by analogy with a similar but rigorously derived criterion
for primal-dual methods like (6)–(8). In order to ensure theoretical convex-case con-
vergence, the use of (59) in [13] included supplementary safeguards based on the
summable criterion (58). However, at least for our current set of test problems, these
safeguards are not required in practice, and only slow down the method. So, in order to
compare (52) to the best-performing heuristic criterion available, we simply used (59)
without any safeguards.

Note the augmented Lagrangian tests based on the various acceptance criteria
described above all use the same conditions to declare success and failure of the
overall algorithm; see (56) and the following discussion. Moreover, all the algorithm
variations use the same strategy to update the penalty parameters.

123



340 J. Eckstein, P. J. S. Silva

Both criteria (47) and (59) require us to select the parameter σ ∈ [0, 1). In both
cases, based on some numerical experimentation, we used the following “adaptive”
method to control σ : at the outset, we set σ = 0.99; however, if at iteration k the
starting point x = xk−1 for the ASA algorithm already satisfies the error criterion, we
decrease σ by setting σ ← σ/10. Conversely, if the ASA inner loop fails to find a
solution of the subproblem within the required precision, we set σ ← min{0.99, 10σ }.
Note that since σ ≤ 0.99 at all iterations, our procedure fulfills the assumptions of the
convergence proof with σ = 0.99.

In the new error criterion, the choice of the initial reference vector w0 is arbitrary,
but can have great bearing on the strictness of the error criterion. If at some point the
current trial solution x of the ASA algorithm is far from wk−1, then it is possible that
|〈wk−1 − x, y〉| will be large in (52), making it much stricter than the heuristic crite-
rion (59), and thus requiring a much smaller subgradient y. A small value of yk , once an
acceptable pair (xk, yk) has been identified, means that the update wk = wk−1−ck yk

will leave wk close to wk−1, and the error criterion for the next iteration will be sim-
ilarly strict if x remains in the same region. If this phenomenon occurs for values
of the multiplier estimates (λk−1, μk−1) for which the inner loop is having trouble
solving the subproblem (44) accurately, it has the potential to “jam” the progress of
the overall algorithm. Initially, we observed this pattern occurring for a few of the test
problems, causing a minor loss of robustness in comparison to the heuristic method
of [13]. To ameliorate such behavior, we make a “smart” initial choice of wk , and
allow a finite number of “resets” to the {wk} sequence. Specifically, for the first three
iterations, we ignore the wk−1 term in the error criterion (47), effectively reducing it
to (59). Then, we initialize w4 = x3, the idea being that henceforth wk is likely to
be roughly equal to xk , and the criterion (47) will not be overly stringent. However,
we have occasionally observed (especially for nonconvex problems) that xk can shift
substantially later in the algorithm, again raising the possibility of |〈wk−1 − x, y〉|
becoming large. Thus, at each trial point computed by the ASA solver, we check
whether ‖wk − xk‖ > 100ck‖yk‖. If so, we “reset” wk ← xk . However, we allow at
most 5 resets of this kind, so that in the limit we are using algorithm (45)–(50) and
our convergence theory applies, at least in the convex case.

Figure 1 shows two performance profiles [11]. The upper profile compares the
summable criterion (58), the Algencan criterion, the Lancelot criterion, and “exact”
solution of all subproblems using only (53). We measure performance by counting
the number of gradient evaluations; results for the number of function evaluations are
similar. The raw data used to generate all the profiles are displayed in Appendix A.
It is clear that the inexact approaches are clear improvements over exact subproblem
solution, requiring less computational effort without any compromise in robustness.
Moreover, the criteria from Algencan and Lancelot are faster than the summable cri-
terion and very similar to one another. The lower profile in Fig. 1 compares the three
previous inexact criteria with the new relative error criterion introduced in this paper.
Once again, we see a clear improvement with no robustness sacrifice. We interpret
this improvement as resulting from the relative criterion’s ability to better sense the
rate of approximation tightening appropriate to each problem instance.

Figure 2 displays a performance profile comparing the new relative error criterion
with the heuristic relative error criterion (59), which was the best-performing approach
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Fig. 1 Performance profiles, in terms of the number of gradient evaluations: the top profile compares
exact subproblem minimization (“Exact subproblems”), the Algencan approximation criterion, the Lancelot
approximation criterion, and using a predetermined summable error sequence {εk } (“Summable”), as in (58).
The lower profile compares the three approximation criteria from the upper profile with our new relative
error criterion (52)–(53) (“New (relative error)”)

in [13]. Here, we see that the extra term involving wk on the left-hand side of (47)
has very little practical impact, slowing down convergence only slightly. On the other
hand, it appears to have a small (but probably statistically insignificant) benefit in
terms of robustness. The main difference between the two methods is that the new
criterion has a convergence proof for the convex case, while the heuristic currently
does not. Thus, our new method works about as well as the best heuristic method we
are aware of, but has the advantage of a global convergence proof.

In conclusion, our computational experiments suggest that, at least in the setting
of our prototype implementation using a modern conjugate gradient method to solve
the subproblems, the new approximation criterion improves on the procedures used in
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Fig. 2 Performance profile comparing the proposed algorithm (“New (relative error)”) with the best
algorithm in [13] (“Heuristic”), in terms of the number of gradient evaluations

established, popular augmented Lagrangian nonlinear optimization solvers, and thus
has significant practical value. That the heuristic criterion (59), without the sequence
{wk}, seems to work about as well in practice as our proposed method, or perhaps
slightly better, suggests that it may be worthwhile trying to prove its convergence.
Such a proof appears difficult, and we do not know if one is possible, but we plan to
further investigate this topic in the future.

7 Concluding discussion

We have developed a promising new error criterion for approximate minimization of
augmented Lagrangian subproblems. It does not require a primal regularization term
as in (6), and yet requires only readily available information, namely the gradient (or
a subgradient) of the augmented Lagrangian. It is also a true relative error criterion, in
that it sets the precision requirement for each subproblem proportionally to the current
violation of feasibility and complementarity—as, for example, on the right-hand side
of (47). Thus, it is an advance over the results of [12], which require a summable
sequence of error parameters {εk}, and provide no direct guidance how to select it.
Furthermore, in our computational tests using a conjugate-gradient “inner loop”, the
performance of our new, provably convergent method is very close to the best heu-
ristic approach with which we have experimented so far, and appears to improve on
approximation rules adapted from currently popular augmented Lagrangian solvers.

The new error criterion involves an unusual auxiliary sequence {wk}; referring to
the proof of Proposition 1, we now make some additional comments about the role
of this sequence, and why it appears to be necessary to obtain a global convergence
result in the convex case. To have a practical condition requiring only knowledge of
augmented Lagrangian gradient, as opposed to more problematic conditions involving
ε-optimality or ε-subgradients, it appears that any convex-case global convergence
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proof must be based on the monotonicity of the Lagrangian subgradient operator
∂L(· , ·) and upper semicontinuity of the extended dual function Q(· , ·), rather than
working with the lower-dimensional dual functional Q(0, ·) and its subgradient map,
as is traditionally the case for augmented Lagrangian methods. The earlier analysis
in [12] is based on this same idea, but establishes simple Fejér monotonicity of {pk} to
the dual solution set and does not require an auxiliary sequence like {wk}. However,
we have as yet been unsuccessful in directly modifying the analysis of [12] into one
involving a relative error criterion, because the resulting criteria always seem to require
knowledge of the saddle point (x∗, p∗), which (even though it might be assumed to
exist) is necessarily unknown if one is trying to solve the corresponding optimization
problem. The approach presented here manages to sidestep this difficulty by instead
establishing Fejér monotonicity of (wk, pk) to the set of saddle points. In some sense,
one can view the method as a proximal algorithm in the dual variables p—or (λ, μ)

for the problem (1) and (43)—and a kind of extragradient algorithm [20] in the primal
variables: the extragradient-like step (26) provides the necessary Fejér monotonicity
in the primal variables. However, that {wk} is distinct from the ordinary primal iterates
and need not, and in general does not, approach the set of primal solutions, is a curious
new feature of the algorithm.

Although theσ = 0 case of our method is exactly the pure-dual augmented Lagrang-
ian method, our proposed error criterion (25) and the more concrete criteria we have
derived from it are “primal-dual” in a similar sense to the absolute-error criterion pro-
posed in [12], in that the new primal iterate xk appears not only implicitly through the
multiplier change ‖pk−1 − pk‖ appearing on the right of (25), but also in the expres-
sion involving the gradient norm ‖yk‖ on the left. In particular, if xk becomes large
relative to wk , then the acceptance criterion may be effectively tightened by the pres-
ence of the term |〈wk−1 − xk, yk〉| on the left of (25). The criterion in [12], although
it uses a given parameter sequence {εk}, has a similar property. For example, in (58),
if ‖xk‖ becomes large relative to β, then the error tolerance on ‖yk‖ becomes smaller
than εk/ck . In both cases, if {xk} appears to be “blowing up”, the error criterion may
be significantly tightened, which one may interpret as making sure that the behavior
of {xk} is “legitimate”, and not the result of excessively accumulation of error in the
augmented Lagrangian minimizations.

In our planned continued work on this topic, it is of obvious interest to analyze the
behavior of the method for nonconvex problems (to the extent possible), and further
improve its practical reliability. Rate of convergence is another topic deserving of
study. However, the present results are promising enough that we plan to embark on
more sophisticated, fully compiled implementations aimed at larger-scale problems
and parallel computing architectures. Parallelizing the algorithm will require parallel-
ization of the ASA subproblem solver, but this task seems likely to be feasible due to
the separable structure of the box constraints and the relatively simple linear algebra
required by the underlying conjugate gradient method of [17]. The outer loop of our
method also seems readily parallelizable due to the the simple form of the updates to
the multipliers and {wk}.

We will also continue trying to prove the convergence of the simpler and more
intuitive relative error criterion (59), which has similar practical performance to the
method proposed here, but has so far resisted analysis.
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Appendix A: Performance data table

We present below the raw data used to generate the perfomace profiles in Sect. 6.
Each line of Table 1 displays the total number of evaluations of the problem Jacobian
under each possible approximation criterion. Asterisks indicate cases in which the
corresponding solver failed.

Table 1

Problem Relative error Heuristic Algencan Lancelot Summable Exact

airport 1,122 1,022 1,347 1,754 1,748 1,785

avgasa 101 93 125 122 117 145

avgasb 74 70 123 116 96 150

batch 38,885∗ 158,131∗ 105,764∗ 45,489∗ 39,396∗ 40,469∗
cb2 27 27 28 25 43 33

cb3 27 27 29 24 40 33

chaconn1 27 27 28 25 43 33

chaconn2 27 27 29 24 40 33

congigmz 406 342 400 595 303 724

core1 440,077∗ 526,500∗ 602,649∗ 602,649∗ 602,649∗ 602,649∗
core2 635,900∗ 548,055∗ 751,808∗ 767,343∗ 596,229∗ 596,229∗
coshfun 4,735 2,808 6,044 2,461 3,688 7,772

cresc100 89,718∗ 89,718∗ 122,640∗ 76,069∗ 89,718∗ 89,718∗
cresc4 2,870 2,826 2,969 3,750 2,880 3,033

cresc50 78,990∗ 98,399∗ 81,250∗ 77,144∗ 81,625∗ 75,818∗
demymalo 156 156 149 155 160 146

dipigri 280 280 299 325 318 457

disc2 74,956∗ 4,561∗ 12,950∗ 2,488∗ 4,967∗ 8,071∗
discs 1,061 1,017 841 923 844 808

dualc1 254 254 263 238 238 238

dualc2 69 69 83 83 81 81

dualc8 293 293 285 328 306 336

eg3 3,492 3,428 403 564 685 667

expfita 5,663 3,489 3,912 6,531 14,100 4,095

expfitb 2,115 2,115 3,942 2,985 1,937 3,278

fletcher 71 71 115 120 112 140

gigomez1 130 130 125 133 132 120

goffin 8,251 8,251 8,249 8,253 8,253 8,249

gpp 19,570 23,397 28,646 29,869 31,326 32,656

hadamard 16 16 16 16 16 18

haifam 528,240∗ 528,240∗ 528,240∗ 528,240∗ 528,240∗ 528,240∗
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Table 1 continued

Problem Relative error Heuristic Algencan Lancelot Summable Exact

haifas 138 138 82 78 109 148

haldmads 1,550 2,495 5,094 4,528 2,726 4,296

hanging 1,067 967 1,525 1,697 1,730 2,134

himmelbi 1 1 1 1 1 1

himmelp3 5 5 5 5 5 5

himmelp4 5 5 5 5 5 5

himmelp5 14 14 14 14 14 14

himmelp6 2 2 2 2 2 2

hs015 59 59 59 59 59 59

hs016 24 24 24 24 24 24

hs017 62 62 81 79 74 93

hs018 240 240 240 253 227 246

hs019 152 152 291 180 175 175

hs020 33 33 31 31 33 33

hs022 42 40 43 43 49 48

hs023 61 61 73 72 73 89

hs024 50 48 43 42 56 49

hs033 32 32 32 34 35 33

hs034 284 283 272 267 283 285

hs043 100 100 125 125 107 157

hs044 32 32 37 37 52 37

hs059 13 13 13 19 28 13

hs066 54 54 94 71 76 96

hs072 115 111 159 173 181 193

hs076 28 28 41 38 43 41

hs085 520,539∗ 520,539∗ 472,359∗ 532,854∗ 517,589∗ 518,435∗
hs086 129 125 169 192 151 231

hs093 206∗ 206∗ 206∗ 206∗ 206∗ 206∗
hs095 154 154 154 150 154 154

hs096 154 154 154 150 154 154

hs097 40 40 29 29 40 40

hs098 40 40 29 29 40 40

hs100 280 280 299 325 318 457

hs100mod 2,602 2,602 5,155 4,513 4,516 5,132

hs101 3,236 3,286 5,549 5,121 5,504 6,150

hs102 5,414 5,282 7,507 8,486 8,349 10,315

hs103 5,967 6,648 8,578 10,081 10,866 13,865

hs104 555 481 511 661 628 1,158

hs106 843,447∗ 771,795∗ 722,088∗ 640,932∗ 391,617∗ 391,617∗
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Table 1 continued

Problem Relative error Heuristic Algencan Lancelot Summable Exact

hs108 83 83 90 84 92 76

hs109 94,415∗ 94,415∗ 94,415∗ 94,415∗ 94,415∗ 94,415∗
hs113 356 356 345 288 331 560

hs114 76,479∗ 76,479∗ 85,905∗ 88,428∗ 88,428∗ 88,428∗
hs116 598,890∗ 289,163∗ 604,430∗ 1,124,882∗ 867,720∗ 1,236,783∗
hs117 4,082 3,872 4,309 3,575 3,477 5,050

hs268 1 1 1 1 1 1

hs44new 19 19 19 19 34 19

kiwcresc 14 14 16 14 14 17

loadbal 351 351 469 267 255 379

lootsma 6 6 11 6 6 11

madsen 37 37 47 48 46 46

madsschj 1,728 1,728 1,709 1,703 1,690 1,709

makela1 32 32 34 33 39 36

makela2 23 23 23 24 31 19

makela3 417 417 431 422 425 436

makela4 632 632 632 630 634 632

matrix2 30 30 33 27 29 42

mifflin1 113 113 108 114 115 111

mifflin2 205 204 179 182 185 185

minmaxbd 404 404 397 370 429 516

minmaxrb 326 326 276 308 280 286

mistake 66 66 87 73 73 75

model 622,687 775,610∗ 860,808 679,486 840,008 648,121

optmass 643,890∗ 643,890∗ 643,890∗ 528,286∗ 528,286∗ 643,890∗
optprloc 91,053 91,053 92,034 91,027 91,045 91,053

pentagon 105 105 201 169 240 147

polak1 5 5 5 5 5 5

polak3 305 268 442 401 299 590

polak4 1,893 1,893 1,205 2,278∗ 1,897 3,737

polak5 23 23 36 36 32 34

polak6 543 543 531 527 530 571

prodpl0 359 351 487 540 598 679

prodpl1 307 298 561 512 583 721

qpcstair 125,083 125,083 95,574 132,981 129,524 129,524

qpnstair 164,354∗ 147,700∗ 133,590∗ 135,286∗ 133,786∗ 134,960∗
rosenmmx 309 309 304 294 327 331

s365mod 920∗ 920∗ 405∗ 390∗ 1,178∗ 416∗
simpllpa 13 13 13 13 13 13
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Table 1 continued

Problem Relative error Heuristic Algencan Lancelot Summable Exact

simpllpb 9 9 9 9 9 9

snake 24,072∗ 24,072∗ 23,122∗ 23,122∗ 23,122∗ 23,122∗
spiral 657 657 671 720 731 663

sseblin 2,186 2,049 1,375 1,413 1,362 1,362

ssebnln 2,708 2,950 1,808 1,904 1,725 1,725

stancmin 71 71 73 77 73 85

swopf 248,526 321,896 558,715∗ 293,960 569,905∗ 569,905∗
trimloss 1,195,701∗ 1,132,121∗ 2,483,114∗ 2,483,114∗ 2,483,114∗ 2,483,114∗
twirism1 12,026 9,295 9,517 18,081 10,869 202,490∗
twobars 43 43 54 56 49 63
vanderm1 54,434 90,951 83,864 229,563 37,233 49,192

vanderm2 217 217 195 169 271 180

vanderm3 205 205 377 327 393 225

vanderm4 142 142 75 100 107 78

womflet 42 42 30 42 48 38

zecevic2 24 24 23 23 23 23

zecevic3 29 28 38 38 51 44

zecevic4 15 15 27 22 27 30
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