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Abstract. Proximal point methods have been used by the optimization community to analyze different algorithms
like multiplier methods for constrained optimization, and bundle methods for nonsmooth problems. This paper aims
to be an introduction to the theory of proximal algorithms borrowing ideas from descent methods for unconstrained
optimization. This new viewpoint allows us to present a simple and natural convergence proof. We also improve
slightly the results from Solodov and Svaiter (1999).
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1. Introduction

Proximal point methods are tools for the solution of a wide class of problems whose mathe-
matical representations may range from Nonlinear Programming models to the computation
of fixed points, or zeroes, for some classes of operators.

These methods were originally introduced by Martinet in the context of fixed points
and variational inequalities (Martinet, 1970, 1972). Afterwards, Rockafellar presented the
proximal algorithm to the optimization community and uncovered their tight relation to
multiplier methods for constrained optimization (Rockafellar, 1976a, 1976b). Henceforth
proximal methods have continually appeared in the nonlinear programming literature, with
a perceptible increase in the last decade. Many authors have shown that proximal methods
can be used as a framework to better understand many algorithms like splitting methods
used to exploit parallelism (Eckstein and Bertsekas, 1992), bundle methods for nonsmooth
optimization (Auslender, 1987), and multiplier methods. Just in that last area, a recent survey
lists dozens of references (Iusem, 1999). In spite of the increase in the number of papers
and computational reports on proximal point methods, there are few didactical references
on the subject and usually they correspond to reasonably advanced texts like (Bertsekas,
1996).
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The objective of this paper is twofold. First, we show how to interpret the proximal
point algorithm as a descent method whenever it is applied to optimization problems. This
goal is supported by three reasons: the conceptual simplicity of descent methods, their
familiarity to optimization practitioners, and the easy way this point of view can han-
dle questions like realistic stopping rules for the proximal subproblems. This approach is
used to present a very simple convergence proof for Solodov-Svaiter’s hybrid projection-
proximal algorithm (Solodov and Svaiter, 1999) and to show the new result that no pro-
jection is needed in the optimization case. The report of the last result is our second
objective.

In order to present both a common language and a motivation for the study of this area, we
start our exposition by an introductory section on proximal methods. Readers familiar with
such methods may skip this section. Next, we present the descent view for proximal methods
and we show how it simplifies the analysis of the proximal algorithm for optimization
problems. The nonsmooth optimization case is analyzed, as it is the natural setting for
multiplier methods. Finally, we study zeroes of operators along with the projection step
required for convergence in this case.

2. The proximal point algorithm

Let us consider the unconstrained optimization problem

minimize f (x)

s.t. x ∈ IRn,
(1)

where f : IRn �→ IR is convex and twice continuously differentiable. A differentiable
function is convex if and only if

∀x, y ∈ IRn, f (y) ≥ f (x) + 〈∇ f (x), y − x〉.

Then a necessary and sufficient condition for x to be a minimizer of f is

∇ f (x) = 0.

Solving the above system of nonlinear equations by Newton’s method is probably the best
known algorithm for unconstrained optimization problems. Its iteration is given by

hk def= −∇2 f (xk)−1∇ f (xk); xk+1 def= xk + hk .

If the initial point is close to a minimizer of f with a positive-definite (and hence nonsingular)
Hessian, then Newton’s method converges quadratically to such minimizer. However, the
convergence is not global and the method may face numerical instability if the Hessian is
nearly singular at the solution.
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To overcome such difficulties, many strategies have been proposed. Among others, Dennis
and Schnabel recommended in their classical book (Dennis and Schanbel, 1996) the use of
a modified Newton’s method based on a slightly different system of linear equations:

hk def= −(H k)−1∇ f (xk); H k def= ∇2 f (xk) + αk I,

where αk is large enough to make H k safely positive definite. This change assures both that
the step is taken towards a good descent direction1 and that the system is well conditioned.

The modified Newton’s method can be interpreted in two equivalent viewpoints. The first
one is that the next iterate is restricted to a circular trust region around the current point.
The other perspective is to consider that the modified algorithm computes an iteration of
the Newton’s method for the regularized problem

minimize f (x) + αk

2
‖x − xk‖2

s.t x ∈ IRn.
(2)

This may be verified by direct calculations. Observe that the regularized problem has nicer
properties than (1), like uniqueness of solutions and better conditioned Hessians.

Proximal point methods follow this regularization idea to the extreme: instead of taking
a single Newton step, the classical proximal point algorithm2 asks for a full solution of (2).
That is, it defines its iterative step by

xk+1 def= argmin
x∈IRn

{
f (x) + αk

2
‖x − xk‖2

}
.

Note that, if we apply the proximal algorithm as above, the computation of the full proximal
step can be computationally expensive. Therefore, it is natural to study means to tolerate
errors in the proximal steps, leading to inexact proximal methods.

Following this line, the modified Newton’s method proposed by Dennis and Schnabel
can be understood as an inexact proximal method where the required precision should be
achieved after a single Newton step. In this spirit, Solodov and Svaiter (1999) showed that
it is possible to couple Newton’s method with a proximal algorithm to obtain a globally
convergent algorithm for nonlinear equations.3

Proximal methods have a wider applicability in Nonlinear Programming than outlined
above. For instance, the classical method of multipliers (Bertsekas, 1995, 1996) is equiv-
alent to the proximal algorithm applied to the dual of a given constrained optimization
problem (Rockafellar, 1976b).

At first, this approach may seem odd and worthless. The dual objective is very difficult
to compute: it is the minimum value of the Lagrangian function with a fixed multiplier.
Fortunately, it turns out that a proximal step is equivalent to the unconstrained minimization
of a modified Lagrangian function, called the augmented Lagrangian. This fact is remarkable
since the proximal steps happen to be much easier to solve than the original constrained
problem. They can be carried out by standard unconstrained solvers. The convergence of
multiplier methods can then be readily derived from the convergence properties of proximal
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methods. We leave the proof of this assertion, and the detailed formulas needed to implement
the method of multipliers, to the Appendix.

Finally, we recall that the dual problem is always convex. But its objective function is
not necessarily differentiable, or even finite, everywhere. This is the reason why we must
deal with such questions in Section 4.

We can now proceed to study the classical proximal point algorithm.

3. The descent property

Let us consider the unconstrained optimization problem

minimize f (x)

s.t. x ∈ IRn,
(P1)

where f : IRn �→ IR is convex and continuously differentiable.
Many algorithms used to solve (P1) generate a minimizing sequence, i.e. a sequence {xk}

such that { f (xk)} is decreasing. Convergence towards an optimal solution is then proved
by showing that the objective function is decreasing fast enough.4

Suppose that we want to relate the decrease of f on a given sequence, {xk}, and the
norm of the gradients of f on this same sequence. This may be done using the fundamental
inequality

f (xk) ≥ f (xk+1) + 〈gk+1, xk − xk+1〉, (3)

where gk+1 denotes ∇ f (xk+1). This is equivalent to

f (xk) ≥ f (xk+1) + ‖gk+1‖‖xk − xk+1‖ cos θ, (4)

where θ is the angle between gk+1 and xk − xk+1, see Figure 1.
Then xk+1 is surely “better” than the previous point whenever θ is acute. If we consider

the triangle [xk, xk+1, xk+1 + gk+1], shown in Figure 1, it is easy to see that θ will be acute
if the side opposite to it is not the largest one.

One way to ensure such a property is to focus on sequences that verify the following
acceptance criterion:

‖gk+1 + (xk+1 − xk)‖ ≤ σ max{‖gk+1‖, ‖xk+1 − xk‖}, (AC1)

where σ is a positive number smaller than 1. Below we will show that the proximal point
method generates a sequence that satisfies (AC1).

We start our analysis by studying some simple properties of the triangle [xk, xk+1, xk+1 +
gk+1].
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Figure 1. The θ angle.

Lemma 1. If (AC1) holds true, then

0 ≤ sin θ ≤ σ (and thus cos θ ≥
√

1 − σ 2).

Proof: Let M denote the length of the largest side of the triangle (M
def= max{‖gk+1‖,

‖xk+1 − xk‖}) and let α be its opposite angle. Then, from the sine rule:

M

sin α
= ‖gk+1 + xk+1 − xk‖

sin θ
.

Therefore,

sin θ

sin α
= ‖gk+1 + xk+1 − xk‖

M
≤ σ,

and the result follows.

Note that (AC1) not only implies that θ is acute; it actually asserts that θ is bounded away
from π

2 .
The acceptance criterion also implies that the ratio between ‖gk+1‖ and ‖xk+1 − xk‖ is

well behaved.

Lemma 2. Let M
def= max{‖gk+1‖, ‖xk+1 − xk‖} and m be the minimum of these two

numbers. Then, if (AC1) is satisfied,

(1 − σ )M ≤ m ≤ M.
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Proof: Clearly,

M − m ≤ ‖xk − xk+1 − gk+1‖ ≤ σ M ⇒
(1 − σ )M ≤ m ≤ M.

We have now all the ingredients to derive a very useful bound on the decrease of f on
any sequence satisfying (AC1):

f (xk) ≥ f (xk+1) + ‖gk+1‖‖xk − xk+1‖ cos θ

= f (xk+1) + mM cos θ

≥ f (xk+1) + mM
√

1 − σ 2 (5)

≥ f (xk+1) + (1 − σ )
√

1 − σ 2 M2

≥ f (xk+1) + (1 − σ )
√

1 − σ 2‖gk+1‖2.

This inequality will be the key to prove the convergence of the proximal algorithm:

Algorithm 1. Inexact Proximal Point Algorithm for Differentiable Functions
Let f : IRn �→ (−∞, ∞] be a continuously differentiable convex function. Let σ be a

number in [0, 1).
1. Initialization: Let x1 be any point in IRn;
2. Iteration: Find xk+1 such that, for gk+1 def= ∇ f (xk+1) and ek def= gk+1 + xk+1 − xk,

‖ek‖ ≤ σ max{‖gk+1‖, ‖xk+1 − xk‖}.
It is important to observe that the acceptance condition presented in the iterative step is
exactly (AC1). Moreover, if we approximately minimize the regularized function

f (x) + 1

2
‖x − xk‖2

with enough accuracy, we can find a point that satisfies this condition.
Applying (5) recursively to a sequence computed by the inexact proximal algorithm it

follows that

f (x1) ≥ f (xk) + (1 − σ )
√

1 − σ 2
k∑

j=2

‖g j‖2. (6)

Therefore, the sequence
{

f (xk)
}

is nonincreasing, being either unbounded below or con-
vergent to some real value. In the later case it is clear by (6) that ∇ f (xk) = gk → 0. We
can now state:



INEXACT PROXIMAL POINT ALGORITHMS 263

Theorem 1. Assume that f is convex, continuously differentiable, and bounded below.
Let {xk} be any sequence generated by the inexact proximal point algorithm. Then all of its
cluster points are solutions to (P1).

Proof: The discussion following the inequality (5) showed that ∇ f (xk) → 0. Hence, if
x̄ is an accumulation point of {xk}, the continuity of ∇ f implies that ∇ f (x̄) = 0. It follows
that x̄ is a minimizer of f .

4. The nonsmooth case

In this section, we will further explore the convexity of f . This allows us to drop the
differentiability assumptions from Section 3. We will also introduce a parameter to control
the level of regularization.

Let us consider the unconstrained optimization problem:

minimize f (x)

s.t x ∈ IRn,
(P2)

where f : IRn �→ (−∞, +∞] is a lower semi-continuous convex function but not neces-
sarily differentiable, or even finite, everywhere. Moreover we assume that f is proper, that
is it must be finite at least at one point.

What can we use to replace the gradient of f ? The natural choice, found in the convex
analysis literature, is the subdifferential operator, ∂ f . We say that a vector g is a subgradient
of f at x , g ∈ ∂ f (x), if

∀y ∈ IRn, f (y) ≥ f (x) + 〈g, y − x〉.

This inequality says that a subgradient defines an affine lower bound for f whose value at
x is exactly f (x). If f is differentiable at x then this affine bound is unique and defined by
the gradient. However, it may not be unique, as for |x | at the origin, or it may even not exist
at some points. In any case, there is an one-to-one relation between lower affine bounds
and subgradients. For more details see Hiriart-Urruty and Lemarechal (2002). Therefore,
if gk+1 ∈ ∂ f (xk+1), the inequality (3) still holds. Following the sequence of inequalities
presented in the last section, we may derive again the relation given by (5):

f (xk) ≥ f (xk+1) + (1 − σ )
√

1 − σ 2‖gk+1‖2.

Once more, using this inequality to motivate an algorithm, we devise an iterative process
where a better point xk+1 is computed from xk by minimizing approximately:

f (x) + 1

2
‖x − xk‖2.

Note that the Euclidean norm above regularizes the original objective function, guaran-
teeing strong convexity and, therefore, improving the convergence properties of standard
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minimization algorithms. Nevertheless, it forces the next iterate to remain close to the actual
point and we may want to reduce this effect. To achieve this we introduce a regularization
parameter, αk , and we minimize approximately

f (x) + αk

2
‖x − xk‖2.

A small value for αk gives more liberty to explore regions far from xk , while a large αk

ensures that xk+1 remains close to xk .
Now, it is natural to introduce the following proximal method:

Algorithm 2. Inexact Proximal Point Algorithm
Let f : IRn �→ (−∞, ∞] be a proper convex function. Choose σ ∈ [0, 1) and ᾱ > 0.

1. Initialization: Let x1 be any point in IRn;
2. Iteration: Let 0 < αk ≤ ᾱ. Find xk+1 such that, for a gk+1 ∈ ∂ f (xk+1) and ek def=

gk+1 + αk(xk+1 − xk)

‖ek‖ ≤ σ max{‖gk+1‖, αk‖xk+1 − xk‖} (AC2)

holds.

Once again, a point that satisfies (AC2) may be computed if we approximately minimize

f (x) + αk

2
‖x − xk‖2.

Theorem 2. Assume that f is convex, lower semi-continuous, proper, and bounded from
below. Let {xk} be any sequence generated by the inexact proximal point algorithm. Then
all of its cluster points are solutions to (P2).

Proof: Using a reasoning analog to the last section, we may define

M
def= max{‖gk+1‖, αk‖xk+1 − xk‖}, m

def= min{‖gk+1‖, αk‖xk+1 − xk‖}.

Then we may follow the steps that took us to (5) and, using the acceptance criterion (AC2),
we can conclude that a small variation of this inequality holds:

f (xk) ≥ f (xk+1) + 1

αk

√
1 − σ 2(1 − σ )‖gk+1‖2.

Finally, as {αk} is bounded above, it follows that, if { f (xk)} is bounded below, then
gk → 0. As the graph of the subdifferential of a lower semi-continuous convex function
is outer semi-continuous (Hiriart-Urruty and Lemarechal, 2002, Theorem 6.2.4), it follows
that any accumulation point of {xk} must be a minimizer of f (its subdifferential contains
the origin).
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5. Maximal monotone operators

Proximal point methods are important in the more general framework of finding zeroes
of maximal monotone operators.5 In this context, it is still possible to use the geometric
ideas presented above to prove convergence of a slightly modified proximal method. Let us
introduce the definition of a monotone operator.

Definition 1. An operator T : IRn �→ 2IRn
is called monotone if for all x, y ∈ IRn , and all

g ∈ T (x), ζ ∈ T (y)

〈x − y, g − ζ 〉 ≥ 0.

Moreover, a monotone operator T will be called maximal monotone if it cannot be
extended preserving monotonicity (i.e., whenever T ′ is a monotone operator such that
T ′(x) ⊇ T (x), ∀x , then T ′ ≡ T ).

The problem we want to solve is to find a zero of a maximal monotone operator, T , i.e.,
find x ∈ IRn such that

0 ∈ T (x).

The exact version of the proximal point method computes a sequence using the following
recursion:

gk+1 ∈ T (xk+1),

gk+1 + αk(xk+1 − xk) = 0.

In Rockafellar (1976a), the author introduced error bounds to relax the equation above. In
Solodov and Svaiter (1999), using an extra projection after each proximal step, less stringent
error bounds were presented. We will prove the convergence of Solodov-Svaiter’s method.
Formally the algorithm is given below:

Algorithm 3. Inexact Hybrid Projection-Proximal Point Algorithm
Let T : IRn �→ 2IRn

be a maximal monotone operator. Choose σ ∈ [0, 1) and ᾱ > 0.
1. Initialization: Let x1 be any point in IRn;
2. Iteration: Let 0 < αk ≤ ᾱ. Find x̃k such that, for a g̃k ∈ T (x̃ k) and ek def= g̃k+αk(x̃ k−xk),

‖ek‖ ≤ σ max{‖g̃k‖, αk‖x̃ k − xk‖}. (AC3)

We call x̃ k the partial iterate.
Finally, let xk+1 be the projection of xk onto the hyperplane that crosses x̃k and that

has g̃k as normal.

This is graphically explained by Figure 2.
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Figure 2. The projection after the inexact proximal step.

Note that the acceptance criterion (AC3) is analogous to (AC2). On the other hand, we
do not have the projection in the optimization case. The need for the projection resides in
the absence of an explicit merit function: there is no function being minimized. Then we
try to ensure that the distance to the solution set decreases at each iteration. The projection
guarantees that the new iterate, xk+1, is closer to any zero of T than xk . This is a direct
consequence of the monotonicity of T , since for any x∗ ∈ T −1(0),

〈x∗ − x̃ k, g̃ − 0k〉 = 〈x∗ − x̃ k, g̃k〉 ≤ 0,

and, as we already know, the angle θ between xk − x̃ k and g̃k is acute due to (AC3). This
asserts that

〈xk − x̃ k, g̃k〉 > 0.

We conclude that the projection hyperplane strictly separates xk from the set of zeroes.
Following these geometrical ideas, it should be easy to the reader to verify that

xk+1 = xk − 〈g̃k, xk − x̃ k〉
‖g̃k‖2

g̃k,

(7)‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2.

We can state the main result of this section:

Theorem 3. Let T : IRn �→ 2IRn
be a maximal monotone operator. Assume that T has at

least one zero. Let {xk} be any sequence generated by the hybrid projection-proximal point
algorithm. Then {xk} converges to a zero of T .
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Proof: Let x∗ be a zero of T . From (7) we may conclude that ‖xk − x∗‖ is a decreasing
sequence bounded below by 0 and that

‖xk+1 − xk‖ → 0.

Since θ is bounded away from π
2 (from Lemma 1), it follows that

‖xk − x̃ k‖ → 0, (8)

And, using the boundedness of {αk} and Lemma 2, we conclude that

αk(xk − x̃ k) → 0,

g̃k → 0. (9)

Moreover, {xk} is bounded since it is contained in the ball with center x∗ and radius
‖x1 − x∗‖. Let x̄ be any accumulation point {xk}. From (8) we see that the partial iterates,
{x̃ k}, have the same subsequence converging to x̄ . Hence, (9) and the outer semicontinuity
of T imply that 0 ∈ T (x̄). That is, any accumulation point of {xk} is a zero of T .

Finally, let us show that {xk} has only one accumulation point, and therefore it is con-
vergent. Given any accumulation point x̄ , we can see from (7) that ‖xk − x̄‖ is decreasing.
Hence, it must go to zero and then xk → x̄ .

6. Final comments

This article is based on Solodov and Svaiter’s results for computing zeroes of maximal
monotone operators (Solodov and Svaiter, 1999). It has emerged from our efforts to under-
stand the convergence proof therein and to present simpler proofs. The descent approach
is presented in a more general framework in Humes and Silva (2000). Another reference
where a similar reasoning is used to analyze proximal methods is Birge et al. (1998). In
this interesting paper, the authors use a slightly different acceptance criterion and do not
consider the case of maximal monotone operators. The result without projection cannot be
extended to general monotone operators as shown in Solodov and Svaiter (1999).

Appendix

Consider the following Nonlinear Programming problem:

min f (x)

s.t. g(x) ≤ 0 (10)

x ∈ IRn,

where f : IRn → IR and g : IRn → IRm are given functions.
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We define the Lagrangian function associated to (10) by

L(x, λ)
def=




f (x) +
m∑

i=1

λi gi (x), if λ ≥ 0

−∞, otherwise.

Moreover, the respective Lagrangian dual problem consists on the maximization of

F(λ)
def= inf

x∈IRn
{L(x, λ)}. (11)

This optimization problem, re-written as a minimization problem, is known to be convex and
carries an intimate relation to (10). In particular, under reasonable convexity assumptions, its
solutions are the Lagrange multipliers for (10). Many algorithms for constrained optimiza-
tion work with the dual problem as a way to solve the original, primal, problem (Bertsekas,
1995, Chapter 4–6).

One of such algorithms, is the method of multipliers, which starts with an initial multiplier
guess, λ0 ≥ 0, and tries to to improve it solving the following a sequence of unconstrained
problems:

xk+1 ∈ argmin
x∈IRn

{
f (x) + 1

2

m∑
i=1

max
{
0, λk

i + gi (x)
}2 − (

λk
i

)2

}
;

λk+1
i

def= max
{
0, λk

i + gi (x
k+1)

}
i = 1, . . . , m.

Theorem 4. Assume that f and each component of g are differentiable convex functions.
Let λ ∈ IRm, and define

x̄ ∈ argmin
x∈IRn

{
f (x) + 1

2

m∑
i=1

max
{
0, λi + gi (x)

}2 − λ2
i

}
;

λ̄i
def= max

{
0, λi + gi (x̄)

}
, i = 1, . . . , m.

Then,

λ̄ = argmin
γ∈IRm

{
−F(γ ) + 1

2
‖γ − λ‖2

}
.

Therefore, the multiplier sequence computed by the method of multipliers is actually the
same sequence that would be computed by the proximal point algorithm used to solve the
dual problem and starting from λ0.

Proof: We use the proof from Iusem (1995).
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Let λ̃ be defined by

λ̃
def= argmin

γ∈IRm

{
−F(γ ) + 1

2
‖γ − λ‖2

}
.

Note that λ̃ is uniquely determined, since the function being minimized is strictly convex.
Using subgradient notation, this condition can be rewritten as λ − λ̃ ∈ ∂(−F)(λ̃), or
equivalently,

−F(γ ) ≥ −F(λ̃) + 〈λ − λ̃, γ − λ̃〉, ∀γ ≥ 0. (12)

Since this last inequality fully characterizes λ̃, all we need to show is that it holds with λ̄

replacing λ̃.
First, the definitions of x̄ , λ̄, and simple calculus rules imply that

0 = ∇ f (x̄) +
m∑

i=1

λ̄i∇gi (x̄).

Therefore, the convexity assumptions ensure that x̄ minimizes L(·, λ̄), and hence

F(λ̄) = f (x̄) +
m∑

i=1

λ̄i gi (x̄). (13)

This is the first term in the right hand side of (12) with λ̄ replacing λ̃.
Let us turn on attention to 〈λ − λ̄, γ − λ̄〉. For each i = 1, . . . , m,

λ̄i = max{0, λi + gi (x̄)} ⇒
λ̄i − λi = max{−λi , gi (x̄)} ≥ gi (x̄). (14)

It follows from the last equation that if λ̄i > 0,

max{−λi , gi (x̄)} = λ̄i − λi > −λi .

And then, max{−λi , gi (x̄)} = gi (x̄). Hence, as λ̄i ≥ 0

(λi − λ̄i )(−λ̄i ) = (λ̄i − λi )λ̄i = max{−λi , gi (x̄)}λ̄i = gi (x̄)λ̄i .

Moreover, using the inequality in (14), it follows that for any γi ≥ 0,

(λi − λ̄i )(γi − λ̄i ) ≤ gi (x̄)λ̄i − gi (x̄)γi .
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Finally, if follows from the definition of F and (13) that, for γ ≥ 0:

−F(λ̄) + 〈λ − λ̄, γ − λ̄〉 = − f (x̄) − 〈λ̄, gi (x̄)〉 + 〈λ − λ̄, γ − λ̄〉
≤ − f (x̄) − 〈λ̄ − λ̄ + γ, gi (x̄)〉
= − f (x̄) − 〈γ, gi (x̄)〉
≤ −F(γ ),

which is exactly (12) for λ̄ = λ̃.
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Notes

1. Actually it can be used to ensure that the computed direction is a descent direction even in the nonconvex case.
2. In this paper we deal only with the classical version of the proximal algorithm, where the regularization term

is quadratic. Algorithms based on different regularizations, like Bregman distances or ϕ-divergences, are the
subject of more advanced texts.

3. This work is based on the hybrid-projection proximal algorithm that is presented in Section 5.
4. Here, fast enough is not clearly defined on purpose. There are several approaches that try to give a precise

meaning to this property. For example, see the basic algorithm models in Polak (1997).
5. Note that the subdifferential map of a closed convex function is maximal monotone (Rockafellar, 1970).

However, there are maximal monotone operators that are not a subdifferential map of a function (Rockafellar
and Wets, 1998). Actually, the problem of finding a zero of a maximal monotone operator generalizes different
problems like convex optimization, saddle point problems and variational inequalities. A good introduction on
maximal monotone operators is Rockafellar and Wets (1998) [Chapter 12].
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