Parallel block coordinate descent methods with
identification strategies *

Ronaldo Lopes', Sandra A. Santos?, and Paulo J. S. Silva?

! Universidade Estadual de Maringd (UEM), Centro de Ciéncias Ezatas (CCE), Av.
Colombo, 5790 - Zona 7, 87020-900, Maringd, Parand, Brazil Email:
ronaldolps3@gmail.com
2 Universidade Estadual de Campinas (Unicamp), Instituto de Matemdtica,
Estatistica e Computagio Cientifica (IMECC), Rua Sergio Buarque de Holanda, 651,
13083-859, Campinas, Sdo Paulo, Brazil Emails: sandra@ime.unicamp.br,
pjssilva@ime.unicamp.br

July 29th, 2025

Abstract

This work presents a parallel variant of the algorithm introduced in
[Acceleration of block coordinate descent methods with identification strate-
gies, Comput. Optim. Appl. 72(3):609-640, 2019] to minimize the sum of
a partially separable smooth convex function and a possibly non-smooth
block-separable convex function under simple constraints. It achieves bet-
ter efficiency by using a strategy to identify the nonzero coordinates that
allows the computational effort to be focused on using a nonuniform proba-
bility distribution in the selection of the blocks. Parallelization is achieved
by extending the theoretical results from Richtarik and Taka¢ [Parallel
coordinate descent methods for big data optimization, Math. Prog. Ser.
A 156:433-484, 2016]. We present convergence results and comparative
numerical experiments on regularized regression problems using both syn-
thetic and real data.

Key words: Block coordinate descent, active-set identification, large-
scale optimization, parallel computation and ¢; regularization.

AMS Classification: 60K05, 65Y05, 49M37, 90C30, 90C06, 90C25

arXiv:2507.22277v2 [math.OC] 4 Aug 2025

1 Introduction

The contemporary need to address problems with huge data sets has renewed
interest in simple first-order optimization algorithms such as coordinate descent

*Partially supported by FAPESP grants 2023/08706-1, 2018/24293-0, 2014/14228-6,
2013/07375-0, and CNPq grants 312394/2023-3, 305010/2020-4.

https://arxiv.org/abs/2507.22277v2

methods, particularly when problem structure can be further explored [I1 [15]
19]. Another room for improvement is the use of parallelism [2] [12] [14] 2T}, [23]
25], where decomposition strategies, communication, and distributed memory
architectures are crucial [3], 20} 22} [6].

Previously, [I3] proposed an acceleration of block coordinate descent meth-
ods (BCDMs) using identification strategies. The main idea was to use a nonuni-
form probability distribution to select free blocks that are more likely to induce
a larger reduction of the objective function at each iteration. The resulting
method was called Active BCDM. This approach was combined with an extra
second-order step in the subspace of the free blocks, using a blocked Hessian,
reducing the running time required to solve ¢;-regularized problems. In [I7], the
authors develop an exhaustive study concerning algorithmic choices that influ-
ence the efficiency of BCDMs, namely the block partitioning strategy, the block
selection rule, and the block update rule. In the current work, we investigate
how identification strategies can be used in parallel variants of BCDM.

A naive parallel BCDM implementation suffers from several challenges, no-
tably the need to predefine subgroups of blocks to be updated in parallel. This
would enable the precomputation of each subgroup’s Lipschitz constants of the
gradient. Without this precomputation, the descent directions and the Lipschitz
constants, or line searches, would need to be computed for each new selection,
which would limit computational performance.

These issues were addressed by the theoretical results in [21I]. In this paper,
the authors introduced the concept of partial separability, which relaxes the
notion of function separability. Then, they developed a framework where the
blocks can be updated in parallel using the original Lipschitz continuity con-
stants of the gradient of each block. Hence, the blocks updated in parallel are
no longer fixed in advance. The method also avoids extra function evaluations
to enforce a descent criterion. Instead, it penalizes the curvature of the model
used to compute the descent directions, leading to improved efficiency.

However, the results in [2I] assume that the blocks are selected using a uni-
form distribution, limiting the direct application of the identification strategy
described in [I3]. The main theoretical contribution of the present text is to over-
come this limitation and allow nonuniform distributions to be employed. This
opens up the path to incorporate identification techniques in parallel block coor-
dinate descent methods. We then present a convergence theory for our method,
named Parallel Active BCDM (Algorithm [2)) and compare its efficiency with
the (uniform) parallel block coordinate descent method, PCDM. The numerical
comparison uses randomly generated artificial tests and a library of real-world
problems [I3], Tables 2 and 3]. The numerical experiments unveil essential differ-
ences in the behavior of parallel block coordinate descent methods depending on
the relation between dimensions of the data matrix when applied to regression
problems with regularization (Lasso) [24].

The remainder of this text is organized as follows: Section [2] contains the
problem statement and details the main ingredients of Active BCDM, whose (se-
quential) version is detailed in Section [3| Then, its parallel version is introduced
in Section [] along with the associated convergence results. Finally, computa-

tional experiments are presented and analyzed in Section Our conclusions
are stated in Section [0 along with lines for future research.

2 Background

We consider the problem

min f(z) + ¢ (z) (1)

rzeR™
st [<x<wu,

where f : R™ — R and 9 : R™ — R are both convex, with 1 possibly nonsmooth.
In addition, v is assumed to have a block-separable structure given by

Y(z) = Z%(Jﬁ(i))v (2)

where z(;) € RP? is a subset of coordinates of the vector x € R" with E:’;l p; =
n. The vectors | and u have n coordinates in [—oo,+00], with components
lj <wuj, j=1,...,n. Infinite values denote the absence of a bound.

Based on the block decomposition of the vector x in m coordinate subsets
described in , we define a set of matrices U; € R™*Pi whose columns are
canonical vectors of R™, and such that

T = Z Uiz and mg) = UZ-T;E.
i=1

Let B; € S, i=1,...,m be a set of positive definite matrices of order p;.
We then define the respective primal and dual norms in RP¢ by

||5L'(z)H(z) = 1/99,’(1;)le(1) and ||£L'(,)H>(kl) = 1/95,’(12)Bi_11'(,*), VZ S {1, e ,m}.

Such matrices may be used to provide scaling information for the problem vari-
ables, particularly if they are diagonal. They may also be used to provide
second-order information to the models.

The gradient of the smooth function f is assumed to be Lipschitz continuous
by blocks, that is, for each i = 1,...,m, there exists a constant L; > 0 such
that

IVif(z + Ushi) = Vif(2)lli) < Lillhill gy, he € R, i=1,...,m, (3)

for all z such that [<z < w and V,f(z) = UV f(x).
Let B € R™*™ be the block diagonal positive definite matrix stated as

B :=diag(L1 By, - , Ly By) € R™™,

where, for i = 1,...,m, the scalars L; are as in and the matrices B; are
fixed above. We then define the following primal and dual norms in R™:

Izl = VzTBz and |z||z=VzTB 1z

For the vectors x,y,l,u, which can be indexed by coordinates or blocks,
we have adopted the convention that the subindex (¢) refers to the ith block,
whereas i refers to the ith component. The remaining vectors, matrices, func-
tions, and scalars used in the text, namely, h;, w;, p;, S;, B, U, ¥;, Vif, L,
are only indexed by blocks. Therefore, we simply use ¢ to refer to the ith block
and avoid overloading the notation.

Throughout the text, || - || refers to either the Euclidean vector norm or it’s
induced matrix norm. The cardinality of the set Z is denoted by |Z|. Given a
positive integer p, we define the set of indices [p] := {1,...,p}. The feasible set
of problem is denoted by

X ={zeR"|l<z<u} 4)

and its objective function by F'(z) := f(x) + ¢¥(x).

3 On the sequential Active BCDM

Our objective is to parallelize the block coordinate descent method with the
identification of active variables (Active BCDM) introduced in [I3], see Algo-
rithm [1} Let us start describing its essential components.

Given a vector x € R™ and a block index i, the block descent direction
employed in the Active BCDM, h;(x), is the minimizer of the subproblem

L.
3 T A 2
min - Vif(z)"h+ S llhllG) + vilze +h) = vi(za),

st. I <x+Uh<u.

()

Such descent directions were introduced in and they are supported theoret-
ically by the fact that null descent directions for all blocks are equivalent to the
stationarity of the current iterate [I3], Lemma 2].

In [13], the blocks are chosen from a nonuniform probability distribution.
The coordinate blocks are split into two groups: one, denoted by 7, containing
a subset of the blocks for which the variables are likely to activate the bound
constraints of the problem, and the other, denoted by Z, with the remaining
blocks. The blocks in Z are updated by a probability distribution that is dpp
times more likely than the blocks in the set 7, since the objective function value
is expected to have a larger decrease for variables in Z than for those in 7. Such
a strategy has proved effective for problems with t(x) = A||z||1, where A > 0 is
a regularization parameter. Both sets Z and J are updated along the method
after a pre-established cycle of iterations. The strategy employed to classify
a block of coordinates as active is based upon an identification function [§].

Algorithm 1 BCDM with Identification of Active Variables (Active BCDM)

1: Choose an initial point { < 2 < u, a block separation of 1 function de-
scribedasz = Y"1 Uiz (), an initial cycle size co, the parameters .y € N,
e € R} and two natural numbers ér,dpp. Initialize a vector v € R™ with
2¢ in all positions, the sets Z = [m], J = 0, the cycle size ¢; = ¢y, and the
counter £ = 0.
Calculate the Lipschitz constants of the gradient by blocks satisfying .
repeat

fork=¢+1,...,0+cs do

Choose a block i that satisfies the probability distribution

dpp e
— = ifieT,
dpp|Z| +1T|

1
SpplZ|+ 1TV

P(i) =
ifieJ.

Find h; = h;(z¥), a solution to the subproblem
Set x* 1 = ¥ 4 U;h; and vy = h,.

end for

Set £ =1+ cs.

10: Obtain the set C(x%) C [m], where

C(z*)={i| gj(=") > pa(mé),Vxﬁ s.t. j belongs to the ith-block}

with the identification function p, (z) described in (g).
11: Define J C C(z*) and T = [m] \ J. Set c¢; = max{min{Sr|Z|,m},co}.
12: until ||v|| <eor f > lpax

Such functions can unveil, in a neighborhood of a stationary point z*, which
constraints are active at x*.

One example of an identification function that can be used in line 10 of Active
BCDM, Algorithm was given in [I3] Propositions 2 and 3]. To present it, we
start by describing the feasible set X’ using the function g : R® — R?", defined
by

9i(x) = { T, —u;, ifn+1<i<2n.

Then, the feasible set X may be rewritten as
X ={zeR"|g(z) <0}.

Given z € X and B € Ry, h?(z) € R" is defined as the unique minimizer of

P (6)

st. [< T(;) +h; <wuy, i€ [m]

Additionally, let h(z) € R™ be defined as h”(x), for 8 = 1, that is, the solution
of

m

) L;
min > (vz’f(x)Thi + ?Hhi”%i) + i) + hi))

D @
st L <ay +hi <ug, i€ [ml.

Notice that problems and are closely related, since the block separa-
bility of implies that the ith block of h(z) is the solution h;(x) of ().

Finally, we draw inspiration from an idea introduced in [9] to define a func-
tion that identifies the active constraints at the stationary points of an opti-
mization problem, namely

pa(z) = —[[h(z)[|", (8)

where a € (0,1). Under an error-bound assumption, it was shown in [I3}, Propo-
sitions 2 and 3] that p,, is an identification function for (1)) that is highly effective
when used in Active BCDM in the context of ¢;-regularization problems.

4 Parallel Active BCDM

The parallelization of the Active BCDM Algorithm is not straightforward. An
initial idea would be to distribute the task of the for loop to the available
threads, choosing 7 blocks obeying the nonuniform probability distribution to
be updated in parallel. However, to ensure descent of the objective function, it
would be necessary to calculate the Lipschitz constant for each selected group of
blocks and an associated descent direction. This would greatly affect efficiency.

To maintain the computational cost of the parallel iterations as close as
the serial version, both methods use the same Lipschitz constants for a fixed
block coordinate structure. Moreover, it is desirable that both variations should
employ the same nonuniform distribution, which privileges updating the blocks
of inactive variables. To achieve this, we have adapted the theoretical framework
based upon [21].

We start with a concept presented in [2I], Section 1.5] which extends the block
separability notion to the smooth part of the objective function of problem .
This enables the characterization of a wider class of smooth functions f that
might benefit from the parallelism.

Definition 1. The convex and smooth function f is partially separable of
degree w if there exists a finite number of smooth functions fs such that

fl@) =Y fs(a),

Ses

where S is a finite collection of nonempty subsets of [m], fs are differentiable
convez functions that only depend on blocks x ;) for i € S and

S| <w, VS € S.

When applying block coordinate descent methods to a partially separable
function, we must determine the value of w as it influences the convergence of
the methods. Specifically, we aim to find the minimal value w that satisfies
Definition [I} however, we may need to consider larger values for w to ensure
that the coordinate blocks of fg, for all S € S, satisfy a desirable property.

The partial separability notion is useful because the structure of the smooth
component of relevant problems, like Lasso and ¢;-regularized logistic regression,
allows for a simple computation of the degree w; for further details see [21]
Section 1.5].

4.1 Descent directions for the method

Throughout this subsection, we assume that the point x € X', the number 7 > 0
of threads that will work in parallel, together with the disjoint sets of indices Z
and J that split the groups of coordinate blocks (Z U J = [m]) are all fixed.

Let us also recall the concept of a multiset [II} Definition 1], a generalization
of the notion of a set that allows repetitions of its elements. In the finite
case, a multiset can be defined as a set of tuples, {(z1,¢1), (z2, z2),... (xk, ck)},
where, for ¢ = 1,...,k, x; represents the element in the multiset and ¢; is
a positive integer representing the cardinality of x; in the multiset. In other
words, ¢; represents the number of times z; appears repeated in the multiset.
The cardinality of a multiset is the sum of the cardinalities of its elements. From
now on, we will adopt a simplified abuse of notation and denote a multiset using
the notation of a set with the elements x; appearing c¢; times. For example, we
will denote the multiset {(1,2), (2,1),(3,4)} by {1,1,2,3,3,3,3}.

Now, let B be randomly chosen from [m], with cardinality 7, allowing possible
repetitions, and following the probability distribution of Algorithm [I] Observe
that this definition allows the algorithm to select a block of coordinates multiple
times in a single step. The objective is to select B and a constant S > 1, such
that updating = + >, g Uihf produces descent for F' in expectation, where

hf € RP: is the solution of

. BL;
s Vif(@)"h+ THh”%i) +bi(zey + h) — Vi),

st. I <x+Uh<u.

(9)

To reach this goal, a few auxiliary definitions and results are provided.

Definition 2 (Intersection keeping all values). Let I and J be a set and
a multiset of indexes in [m], respectively. The multiset of elements of J that
are in I is stated as (I,J), and the cardinality of such a multiset is denoted by
(L,)]

For the sake of illustration, let I = {1,3,5} and J = {1,1,2,3,4}. In this
case, (I,J) = {1,1,3} and |(I,J)| = 3, since, considering the repetitions, the
multiset .J contains three elements of I.

Proposition 1. Let B be a multiset randomly chosen with elements from [m],
with cardinality T, following the probability distribution of Algorithm[1, and let
S C [m] be a nonempty set. For k € N, with 1 <k <, it holds

képp s _
SopZnS|+]gng TiEINS:
P(i e B|[(S,B)|=k) = (10)

k "
SorZ NS +l7ng; YieINs

Proof. First, notice that from the probability distribution of Algorithm [I] we
have

dpp o
— ifiel
‘ Spp|Z|+|TV ’
P(i) = . (11)
—— ifie J.
dpplZ|+ |T|

Additionally, observe that the integer k& € N such that 1 < k < 7 is constant
along the proof.

Let i € ZNS. To reach expression , we will rest upon the conditional
probability formula:

P(i € B and |(S,B)| = k)

PiieB||(S,B)| =k = P(|(S, B)[= k)

(12)

For computing the numerator above, let us calculate the following values:
1. Probability of the index i to be chosen in a certain position.

) @@ dpp
7 = .
Spp|Z +|T|

2. Probability of an element of S to be chosen in a certain position. This is
obtained by adding up the probabilities of each element of S to be in a
certain position of B, that is,

Z dpp n Z _dpp|INS|+|TNS|
zemS5DPIII+IJ\ eJﬁsr5Dp|I|+\J| Spp|Z|+ ||

3. Probability of an element that does not belong to S to be chosen in a
certain position. This is obtained by adding up the probabilities of each
element that does not belong to .S to be in a certain position of B, namely,

dpp 1
P2 o= Y, + Y =
GI\S5DP|I\+|7| ieqis OoplZl+ 1T
_ 5DP(|I|*|IWS|)+|J|*|~7QS|
Sppl|Z|+ |T| '

Now, to obtain the probability that ¢ € B and |(S,B)| = k, one should
organize the previous values. Assume the index ¢ is chosen in the first position,
the next k — 1 positions are elements of S and the last 7 — k positions are
elements of [m] \ S:

k—1
prPr P2 P2 (13)
——

T—k
Notice that amounts to the probability of a specific event in which the
index ¢ appears in the first position, and the k first terms are elements of S. To
account for the remaining events of i € B and |(S, B)| = k, we must introduce
two additional factors. First, (;), the number of possibilities of distributing the
k elements of S in the 7 positions of the random multiset B. Second, (]f), the
number of possibilities of setting ¢ among the k elements of S that belong to B.

Therefore,
k—1
-

P(i € B and |(S,B)| = k) = (;“) (k>pzmw. (14)

T—

Now, let us compute the probability of |(S,B)| = k, i.e., the denominator
of . We start by evaluating the probability of the particular event of B in
which the first k indices are elements of S, and the last 7 — k elements do not

belong to S:
k

—
pr...p1p2...p2- (15)
——
T—k
As in the previous reasoning, the remaining related events must be consid-
ered. Indeed, the probability has to be multiplied by (Z), the number of
possibilities of distributing the k elements of S in the 7 positions of the random
multiset B. Hence,

k
P(|(S,B)| = k) = (;);)’T..“.plpg...pg. (16)

T—k
Replacing and in , we obtain
(1) (Dpzpi~'p3 "

(7)pips "

PieB[[(SB) =k =

kpz
p1
dpp
W rYIviEarg

Spp|ZNS[+JNS]
Spp|Z|+|T|

képp
(5DP|IQS‘ + |jﬁS|

Now, assuming that i € J N.S, we proceed as before, using the fact that the
probability of the index i being chosen in a certain position is given by

(] 1
PT = SoelZl+1TT

Arguing as in the previous case, we have
k k—1, 17—k
() (Wpapi™'p3
—&
(k)Pip3

kpg
D1

BicB||(S,B) =k =

1
k(SDP|IH“j‘
5Dp|IﬂS|+|._7I'-TS‘
opp|Z|+|T|

k
SpplZNS|+|TNS|)’

the proof is complete. O

It is worth mentioning that formulas and are also valid for k = 0.
This case is not included in Proposition [1f because the theoretical reasoning to
prove differs from the analysis regarding 1 < k < 7. Nevertheless, the
aforementioned probability values for k = 0 are easily verifiable: |(S,B)| = 0
implies that SN B = @, and thus, if either i € ZN S or i € J NS then i & B,
so that P(s € B | |(S,B)] = 0) = 0. Moreover, it is not difficult to see that
P(|(S,B)| = 0) = p5.

Before the main result of this section, we will show that, given Z and 7, two
fixed and disjoint sets of indices such that Z U J = [m], it is always possible to
extend the partial separability description of f(z) = ¢.s fs(z) in such way
that it conforms to

‘IQSH = |Iﬂ52|, VSl,SQ GS,
TS =T NS, ¥ 81,5, €8,

the respective degree of partial separability is at most doubled, and it can be
easily computed from the original w, |Z| and |J]|.
To achieve this, let Z and J be fixed and set S’ = 0. Select S € S. As
|S| < w, it follows that
|SNZ| < min{|Z],w}.

If the equality holds, define S’ = S. Otherwise, there are min{|Z|,w} — |S N Z|
block indexes in Z that can be added to S, creating an S’ such that [S’ N
Z| = min{|Z|,w}. Similarly, we can define S’ from S, adding extra elements
from J whenever necessary, such that |S’ N J| = min{|J|,w}. Finally, define
S'=8SUIUJ. AsI cZand JC J, these two sets are disjoint, and S’ obeys

|S"NZ| = min{|Z|,w} and |S'NJ| = min{|T]|,w}.

10

Clearly S’ D S. Now, define fgr = fg. It is true that the function fs only
depends on variables that are in S’, as it only depends on the variables in S.
Moreover,

|S"| = 15" NZ|+ |9 NJ| = min{|Z|,w} + min{|J|,w} < 2w. (17)

Finally, repeat the process to all S € S to obtain &’ = {57, 5%,..., S|/S\}’ a
partial separability decomposition of f that has the desired properties.

The following example illustrates the procedure above. Let m = 7, 7 =
{1,2} and J = {3,4,5,6,7} and S be composed of the sets S; = {1,4}, So =
{2}, S5 ={2,5,6}, and Sy = {1,3,7}. In this case, w = 3, min{|Z|,w} = 2 and
min{|J|,w} = 3.

For S1, we have |S1NZ| =1 < 2 = min{|Z|,w}, and we can define I; = {2}.
As for [S1NJ] =1 < 3 = min{|J|,w} and we choose J; as {3,5}. Hence,
St =S5 UL UJ; ={1,2,3,4,5}. Similarly, we get S5 = {1,2,3,4,5}, S} =
{1,2,3,5,6}, Sy = {1,2,3,4,7}, and &’ = {57, 55,5%,5,}. All intersections
of the elements of S’ with Z and J have the same cardinality. The partial
separability degree associated with &’ is 5 = min{|Z|,w} + min{|J|,w} < 2w.

We summarize these ideas in the following lemma. Its proof is basically the
discussion that precedes the example.

Lemma 1. Lef f =) g.s fs be a partially separable decomposition of f with
degree w and let T and J be two fized and disjoint sets such that TU J = [m).
It is possible to extend the sets in S to form a new decomposition S’ such that,
forall S € &',

IZN S| =min{|Z|,w} and |JNS'|=min{|T|,w}.
Hence, the decomposition S’ has degree w' = min{|Z|,w} + min{|J|,w} < 2w.

We are now ready to state the main result of this subsection. It presents the
expected decrease of the objective function of problem whenever blocks of
coordinates are updated following the probability distribution of Algorithm [I}

Lemma 2. Consider z € X, h? = [h? b3, ... hB]T € R™, in which h? is the
solution of (9), and a random multiset B as in Proposition [1, with |B] = 7.
Additionally, suppose that f is a partially separable function of degree w, and
let T and J be two fixred and disjoint sets of indices such that TU J = [m].
Then,

E

f (az +3 Umf)

i€B

< fa)+ Y TR (Vi)] + S

2
ieT

T BLi
30T (Ve)l + B). (18)
i€eJ

(1= 1)(dpp min{|Z],w} + min{|T|,w})
q

with B =

+1, and ¢ =épp|Z| + |T|.

11

Proof. Without loss of generality, we start by applying Lemma [I] to build a new
set S’ such that f(z) = ¢ g fs (), which satisfies

{zms'| = min{|Z|,w}, ¥ §' € &, 19)

|7 NS | =min{|J|,w}, VS €&,
with partial separability degree w’ = min{|Z|,w} + min{|J]|,w}.
Now, to simplify the notation, let H := > Uihf , and define the functions
i€EB
¢(h) := f(z+h) = f(z) = V(@)"h
¢s/(h) = fsr(z+h) = fs(x) = Vs (x) h,V 5 €S,

in which fg/, S’ € &, are those functions that come from the partial separability
of f (cf. Definition[I]). Since

Elp(H)] = E[f(z+H)~ f(z) - Vf(x)"H]

= E[f(z+ H)) ZVf)Th?P(i € B)
= E[fe+H)] - f@) -3 ”if”v F(@)Thf +

s
=2 V@),
16..7
to obtain the desired result, it is enough to ensure that

i) < 70 (P) + S 7 (P

ez 1 =

b)) @
for some g € R.
Resting upon the sets S’ € S’ from Lemma the expected value of function
¢ may be expressed as the following sum of conditional expectations:

> > PUS,B) = kE[bs (H) | [(S,B)] =K. (21)

k=0S'eS’

The relations in guarantee that the cardinalities |[ZN.S’| and |7 NS’| do
not depend on the sets S’ € §’. From (L6), the probability P(|(S",B)| = k) is
also independent on S’ € S’ for all fixed k, 0 < k < 7. Therefore, rewriting

we obtain

El¢p(H) < Y P((S.B)| =k) E [¢S/(H) ‘ (57, B)| =k]~ (22)
k=0

S’es’

12

For k = 0, and for all 8" € &', the expected value of ¢g: in may be

expressed as
B o | 3 vl) |isnmi=0
1€(S’,B)

E | s (Z Uihf>

i€
= ¢s(0)
= fo(z+0)— fo(x) = Vs (x)"0
= 0. (23)

E¢s (H) | (5, B)| = 0]

For each fixed k, 1 < k < 7, from the convexity of the function ¢g- we have

El¢s (H) | [(S',B)| =k =E |¢ (> kUhﬁ) ‘ (’,B>|=k]

1€(S’,B)

<E|p X os (w0f) ‘|S’ =]

zE(S’ B)

:;E[‘Z o5 (KUK ‘|s’]
1e(S’

5)
:%qus, (kU) B € BT |(S',B)] = k)

ics’
o1 B kdpp
ok Lg;u%' (k0?) 5orns 7T
38 k
+ ie;j bsr (kU1h¢> SpplIN S| +|TNS|
> doros (kUn)+ 30 os (kU!) |,
i€S'NT i€S'NT
(24)
1

for all S’ ! = .
orall S € S and 2z SoP NS £17 NS

13

Applying expressions .) and (| .) to (. yields

H) < Z]P’(|(S’,B)\ =k) Y zl Y dppds (kUih?) +
k=1

S'eS’ 1€S'NT
+ > os (kURY)
1€S'NT
=23 B((S,B)| = k) lz Sppo (kUihf) +Y ¢ (k:Usz)
k=1 €T ieJ
gzZ]P’ﬂ S B [Z5DP ||khﬂ||()+2||khﬁ”(11
k=1 €T i€J
. Li L;
=2y P((S,B)| = k)k* [Z 5DP3||hfllfi) +y 2||hf|?¢)] :
k=1 i€T eJ

(25)
Now, from [21], (24)], it holds

Y P((S".B)| = k)k?
k=1

= 7pi(tp1+p2) = P1((T — D)p1 + 1), (26)

since ps = 1 — p1, with p; and p- as established in Proposition
Through the definition of p; and , we obtain

_opp|ZNS'|+|TNS'| dppmin{|Z],w} + min{|T|,w}
SpplZ|+|T| q '

Using (26), (27) and ¢ = dpp|Z| +|T|, inequality (25) becomes

E (5", B)))’]

(27)

El¢p(H)] < zmpi((T—1)p1+1) Z5DP IR + Z 1RSI]
i€l ieJ
T Liy 62 Liya2
= 5((7 —Dp1 +1) Z(;DP?”hi Gy + Z 7”7% i)
ieT €T
@ 7épp 5L BL;
B Tor s S + T 3 SR, (25)
1€L 16.7
with = (7= Do min{|Tl,w} + ming|7].w}) |
q

As is exactly inequality , the proof is complete. O

Owing to Lemma [2| an expression for the expected decrease of function
F = f + ¢ may be attained by updating simultaneously 7 blocks of coordi-
nates, with each of these blocks obeying the probability distribution described
in Algorithm

14

Let B be a multiset of independent and identically distributed (i.i.d.) random
variables, as previously defined, and let h? € RPi 4 € [m] be blocks of solution
vectors of the subproblems @ The expected value of F' may be expressed as

F <x+ZUihf> f <x+ZUihf> ¢ <x+ZUihf>

ieB i€B ic€B

E =E +E

(29)
Due to the separable structure of ¢ (x), we have

E ¥ (x +) Uﬂlf) = E|D iz +h)) + waw@»]
ieB ieB igB
= E|) @ilze +h) — bilza)) + Zwi(ﬂﬁ(i))]
icB i=1
Tépp 3 Tépp
= Z Yi(zey +hy)+ (1 - Vi) +
iex ¢ q
T T
+ Z iz + h?) + (1 -) Vi(z@))- (30)
ieJ q 9
Using and in equality 7 we obtain
E

F (:v +> Umf)

i€B

) L,
< For D (Tastarnt + i, +
+ il +) — %(I(i))) +> g (Vz'f(l’)Th?Jr
eJ
L;
BL 212+ iy + 1) — w,(x@)) RETS

M

This ensures that solving 7 subproblems from a fixed vector x € X, as pre-
viously described, the direction), ; Uih (x) is expected to induce a decrease
in F. Thus, we have shown to be theoretically sound to base an algorithm on
this type of updating to compute descent directions for problem .

This leads directly to Algorithm [2 (Parallel Active BCDM). It is a parallel
version of Algorithm [I] supported by the theoretical development of this sub-
section. Note that the algorithm does not depend on the specific sets in the
partial separability decomposition of the objective S. It only depends on the
partial separability degree of f and the sizes of the sets Z and 7. This explains
the formula for 5 appearing in the method.

Algorithm [2] also uses other parameters as inputs. The parameter 7 is the
number of threads available for the method; dr controls the number of iter-
ations the algorithm performs before reevaluating the identification function.
Furthermore, dpp determines how many times the probability of selecting in-
active blocks should be higher than that of active blocks.

15

In the outer loop (starting at line 7 of the algorithm), it selects 7 coordinate
blocks according to the probability distribution P(¢) and update their coordi-
nates in parallel using our proposed descent direction. At the end of each cycle
of v parallel iterations, the sets of active and inactive coordinate blocks are
updated using the identification function (as shown in lines 15 and 16 of the
algorithm).

Algorithm 2 Parallel BCDM with Identification of Active Variables (Parallel
Active BCDM)

1: Choose an initial point | < 2 < u, a block separation of ¢ function de-
scribed as x = ZT;I Uiz (;y, an initial cycle size co, the parameters £y € N,
€ € R4, w the partial separable degree of f, the number of threads 7 and two
natural numbers d, dpp. Initialize a vector v € R™ with 2¢ in all positions,
the sets Z = [m], J = 0, the initial cycle size cs = ¢g, and the counters
£,7=0.

2: Calculate the Lipschitz constants of the gradient by blocks satisfying .

3: repeat

£ g=opplZ|+1J;

50y 2]

o o (1= Do min{|T].0} + min{|J].w)

q
fork=(G—-1)vy+1,...,jydo
Choose a multiset B* C [m] of 7 blocks of coordinates, where each
element of B* satisfies the probability distribution

+1, with ¢ = 6pp|Z| +|T|;

dpp .
—— ifieZ,
. Spp|Z] + 1T
P(i) =)

—— ifieJ.

Spp|Z] + 1T
9: for each i € B* do in parallel
10: Find h? = b (z¥), a solution to the subproblem ©
11 Set 2F+! = 2% + U;h! and vy = h.
12: end parallel for

13: end for
14: Set j=j+1and { =/+~T.
15: Obtain the set C(x%) C [m], where

C(z*)={i| gj(=") > pa(a:é),Vxﬁ s.t. j belongs to the ith-block}
with the identification function p, (z) described in (g).

16: Define J C C(z%) and Z = [m] \ J. Set ¢, = max{min{Sr|Z|,m},co}
17: until ||v|| < e or £ > lhyax

16

4.2 Convergence results

Using the notation above, the global convergence and the complexity analysis
of the Algorithm [2] are obtained as follows.

Definition 3. Let Q(h,z,7) : R® x R* x Ry — R and G(h,z,v) : R™ x R™ x
Ry — R be the functions

Qh,.7) = f(2) + Vf (@) h+ LIl + (@ +h)
and
Gh..7) = V@) ht SR + (e + b) = (h).
Additionally, we define Gi(hi,z,7y) : RPi x R* x Ry — R as
Gi(hi,@,y) = Vif(x)" h; + %th’H% + iz + hi) = i(w))
and, fori € [m].
Notice that with this definition

hf(z) =argmin G;(h;, x,8)
h; ERPi (32)
st. I <ay +h <y

and
h9(z) = argmin G(h,z, 5).
heRn (33)
st. I <z+h<u
Definition 4. X™* is the set of minimizers of problem .

Assumption 1. The set X* is not empty, and the minimum value of the
problem is F* = min,cx F(x).

The error bound condition stated next comes from [26l EB condition (47)].
This condition can be verified in some situations. For example, when f is
strongly convex and has Lipschitz continuous gradient. Another is whenever
f is a quadratic function (even nonconvex) and 1 is a polyhedral function,
see [26] [27] for more examples.

Assumption 2. Let p > F*, suppose there exist €1, €3 > 0 such that
dist(x, X*) < ea||h(x)]|, whenever F(x) < o, ||h(z)] < €1,
where dist(x, X*) = minyex- || — yl| and h(x) is the solution of (7).

Assumption 3. The gradient of f is globally Lipschitz continuous with respect
to the Euclidean norm, i.e., there exists Ly > 0 such that

IVi(y) = V@) < Lilly =z, Vo,y € R".

17

A classical consequence of the last assumption is described next.

Corollary 1. [5, Lemma 4.1.12] Under Assumption@

7) — F(@) = V@)~)] < Ly — 2,

Corollary 2. A point x* € X* if, and only if, h;(xz*) = 0 for all i € [m], with
h(z) the solution of (7).

Proof. Follows as an immediate consequence of [I3] Lemma 2]. O
We now present some auxiliary results that will be useful below.

Lemma 3. Let {z*} be the sequence generated by Algom'thm@ (Parallel Active
BCDM) and B* C [m] be a multiset of randomly generated i.i.d. indices that
controls the choice of T blocks of coordinates at the k-th iteration of the method,
where each element of the multiset B¥ is chosen by the probability distribution
of Algorithm|[2 Then,

F(a*) - E [F(a")|B*] > h(z")I?,

where B [F(zM)|BF| =E |F |2+ Y Uihfk (%) ||, with hf’“ (x*) solution
icBk

of (), i € [m], and h(z) the solution of (7).
Proof. Due to the dynamics of Algorithm [2| and Equation , we have

B[] < P+ Y “55 GO,) +

1€L
+Z th a k7ﬁk)
16._7
S
< Fat)+3 7 jpcthk (@*), 2%, Br). (34)
=1

First, we use the fact that |Z| 4 |J| = m, despite of the change of the sets Z

and 7 along the iterations. Second, since G;(h?* (%), 2%, Bi) < Gi(hEP* (2F), 2F, LiBy) <

0, where hiB ¥ and hfiﬁ *(x*) are the minimizers of the subproblem , for all
i € [m], each one with your specific 5. Putting all this together, we get

7'5DPZ 1
q mopp
1
o PGP (N),ab) < o GihE (), o, Lif)
q mopp
h _ _
o PP G (k) 0%, B) < ——Gi(hD("), %, B), (35)
q mopp

18

with B
B = 5max)\mameax; (36)

where Bmax = 2(7—Dw(dpp+1)/m, Amax is the largest eigenvalue of the matrix
B e Rnxn, and L.y = maxlgigm{Li}.

Through the expression , the inequality admits the following upper
bound

E[FEB] S P+ Y G0 a)
DP i—1

= F(a*) + ——G(1 (a"), 2",)
mopp
1 1 = _
—(1- k Bk .k)
(1= o) P&+ i (P25 B)) . o)
From the relationship (37) and because the function Q(-,z*,) is strongly
convex with respect to the norm || - |2, it holds that
1 1 = _
F(zF) — E [F(F) B > F(2%) — B kY .k
(@) ~E[F@ B 2 ——F") - ——QW(a").2"B)
1 _ = _
= (Q(0,$k7ﬁ) _Q(hﬁ(xk)’xkvﬂ)
mopp
B B k2
> —— .
e L] (39)

Assuming 8 > 1, which may be achieved without loss of generality by in-
creasing the Lipschitz constants L; or choosing conveniently the matrix B, and
using [I8, Lemma 4], we see that

BN @®)[1* = (|n(®)[|>. (39)
Putting the expression and together concludes the proof. O

Lemma 4. Let © ¢ X*. Then, there exist v,8 > 0 such that, for all feasible
y € B(,0), we get |h(y)|| = v||h(z)|], with h(-) the solution of (7).

Proof. Just apply the same arguments of [I3], Lemma 4]. O

The following result establishes a global convergence property for Algo-
rithm[2] We show that every sequence generated by the algorithm converges to
a point z* € X by applying Corollary [2| thus guaranteeing that h;(z*) = 0 for
all ¢ € [m], which is equivalent to h(z*) = >"1", U;hi(2*) = 0.

Theorem 1. Let {z*} be an infinite sequence generated by Algom'thm@ (Parallel
Active BCDM) under the hypotheses of Lemma @ Then, ||h(z*)|| — 0, with h(-)
the solution of .

19

Proof. Without loss of generality, we admit that 2* ¢ X*. If 2P € X*, for some
p €N, ||[h(x*)|| = 0 for all k > p. Suppose, by contradiction, that ||h(z*)|| 4 0,
then there exist > 0 and a subsequence N; C N such that

1h(z")I| = p, k € Ny

Combining the last expression with Lemmal[3] yields the following inequality:

2
k+1y k] ky « __H
E [F(a")|B*] — F(a*) < mdnn’ k € Njp. (40)

Taking the expectation on {B*}ren in inequality , since the random
variables are i.i.d., we get

2
E[F(a*)] —E[FGa")] < ——E— ke N,. a1
[P)] B [F@")] < —5h— ke N (1)
From the expression and Assumption we have that the sequence
{E [F(x’“)]}keN is nonincreasing and bounded below, therefore, it converges.
Its convergence along with guarantees the contradiction, since the left side
term of goes to zero, while the right side term of is negative. O

Finally, we present a complexity result for Algorithm [2] estimating the ex-
pected objective decrease in its sequences.

Theorem 2. Let {z*} be a sequence generated by the Parallel Active BCDM
Algorithm and suppose that the Assumptions[1],[4 and[3 are verified. Then, there
exists k1 € N with the following linear convergence rate for the expected values
of the objective function

1 ok 0 *
mir(l+ <B+Lf)e§>> (Fl) = F7),

E [F(z*)] — F* < (1 -

with 8 as in (Lemma @, €2 QS N Assumption@ and Ly as in Assumption @

Proof. From Theorem (1| we have ||h(z*)| — 0. Hence, Assumption [2| ensures
that, for a fixed o = F(2°), there exist e3>0 and k1 € N such that

lz* = ¥ < exllh(z")l, ¥ & > ki, (42)

in which zF € X* satisfies ||2% — 2*| = dist(z®, &*).
From Corollary [I] we have

fl@) + V@) (y—2) < fly) + %Ily —a|?, Vy,z €R™ (43)

20

Adding gH:c —y||> + ¥(y) to both sides of inequality yields

Q-2 = f@)+ V@) -2+ 5wyl + ()

< 7w+ 2 o -yl + ()
B+ L
= P+ P ey, (44)

As a consequence of (44), we obtain

Q(F —at ot B) < Fr 4+ J

Putti her th i 4 ing th i k B) =
7utt1ng together the expressions , , and using that ?él;lvl Q(h,z", B)
Q(hP(a*), 2", B), we have

b — 22 e=B+Ly. (45)

E [F(z")|B"] < (1 = > F(z%) + _1 (F 4 Gk - Zk||2>

m(st 2

(F(z") = F*) +

mipp
1

m(st

C

= F(zF) =
(x) 2m6Dp

l=* = 2*]%, (46)

for all & > kq.

Subtracting F* from both sides of inequality and using the expres-
sion , we obtain

BPEIB] - P < (1o) (Fh) - P+

2
ce;

1h(z*)]1%, (47)

2m6Dp

for all &k > k.
In view of Lemma [3} the relationship (47]) turns into

+ce3(F(2%) — E [F(2*11)|BF])
(1 - ﬁm} + ce§> (F(a*) = F*) +

+ees(F* —E[F(2F11)|BY)).

This may be rewritten as

E [F(«"*1)|B] - F* < (1 _ W) (F(z¥) = F*), (48)

for all £ > k.

21

Taking both sides of to the expectation conditioned to {B*}1en, which
are i.i.d. random variables, yields

E [F(z*!)] - F* < !

< (1 — m(sDP(lHE%)) (E [F(z)] — F*), (49)

for all & > kq.
The convergence result follows by applying the expression repeatedly,
since by (1)), the sequence {E [F(z*)]} is nonincreasing. O

The complexity result above includes the term k — k1 in the exponent of the
linear rate, meaning that linear convergence is only ensured from iteration k; on.
This is needed to accommodate the nature of Assumption [2] This assumption
only asserts the error bound when F' and h are small enough, that we assume
will happen at iteration k1 in the proof of Theorem [2] However, in some special
cases it is possible to estimate k1. A notable example is when f is strongly
convex with Lipschitz continuous gradients. In this case, [28, Theorem 4] shows
that Assumption [2] holds with ¢ = oo and independently of p for all z € X.
Hence, in this case k; = 0, and Theorem [2]is a global linear convergence result in
expectation. For other cases, estimating k1 may be difficult, or even impossible,
and problem dependent.

5 Numerical tests

This section presents the numerical behavior of the parallel version of Active
BCDM, Algorithm [2| denoted PA from now on. In [13], the authors introduced
its serial variant. It showed that active constraints identification combined with
a nonuniform choice of coordinate blocks was very efficient and competitive
with several well-established methods in the literature. Therefore, in this work,
we will focus on how parallelism can accelerate this method and compare the
effectiveness of the acceleration achieved by PA with the one achieved by its
uniform counterpart.

To accomplish this, one might consider it enough to compare the behaviors
of the new PA code and PCDM, the standard implementation of parallel uniform
block selection from [2I]. However, as PA evolved from the code in [I3], it is
implemented in Fortran 90, while PCDM is implemented in C++. This difference,
and the fact that such codes were developed by different groups, could be par-
tially responsible for the perceived differences in performance. We introduced
our implementation of the uniform selection method in Fortran 90, UBCDM, to
mitigate this. Note that Fortran 90 is considered to produce slightly faster ex-
ecutables due to its programming model that allows the compiler to optimize
the generated binary better. This should be considered when interpreting the
results below. We also point out that we needed to perform minimal changes to
PCDM to enable repeated executions for each test instance so that the random
selection of the blocks could be taken into account.

22

All experiments were performed on a Ryzen 97950X3D 16C/32T system
with 128 GB of memory, running Ubuntu Linux 22.04.4 LTS. They were com-
piled using version 11.4.0 of the GNU compilers, and the parallelization is
achieved using OpenMP. Since the CPU has 16 processing cores with inde-
pendent floating point units, the experiments were limited to use a maximum
of 16 threads always pinned to run in different cores. For each test case, the
codes were executed with the number of threads 7 within the set {1,2,4,8,16}.

Throughout the section, the class of problems tested is the well-known
Lasso [24], given by

1
min§||Ax—bH§+)\||x||1, A >0, (50)
xr
which can be reformulated as a problem with simple constraints

1
min §HA(9C+ —z) =D+ XeT(zy +)

Ty,x_
st. 24 >0 (51)
x_ >0,

where e = (1,...,1)T. Note that all solutions T of can be written in terms
of solutions (Z4,Z_) of (5I)), usingz =7, —7_.

Adopting the same choices of [21], the initial point 2° was set as the null
vector; the initial cycle size ¢y was the problem dimension n, and ¢y,,x = 1000n.
Moreover, for updating the set J, we have used the strategy described in [2T],
Section 6.1].

All algorithms evaluated in this study are variants of coordinate descent
methods that operate on coordinate blocks of size one, i.e., individual variables.
To account for the stochasticity inherent in the coordinate selection process,
each algorithm was executed multiple times on the same problem instance.
Specifically, 20 independent runs were performed for the test cases described
in Subsection [5.1] and 100 runs for those in Subsection [5.2] provided that the
cumulative execution time to solve the instance exceeded one second. Other-
wise, a sufficient number of runs were performed to complete one second of
cumulative time.

Each run was stopped once the objective value of an iteration reached a
predefined target, which closely approximates the known optimal value. More
details on how such a target was obtained are presented in the sections describing
each test scenario below. Finally, the primary performance metric used in this
study is the average running time of all independent runs.

Analogously to what was done in [21], even though the theory of Parallel Ac-
tive BCDM was originally formulated for the synchronous case, the coordinate
blocks are updated asynchronously. The updates of the blocks (of size 1) have
a very low cost, compared to the effort necessary to synchronize the gradient
update of the smooth part of after the calculation of the descent directions.
This makes synchronous implementation impractical.

23

In the serial case, the gradient can be efficiently updated at a low com-
putational cost immediately following the modification of a single coordinate.
However, in the asynchronous setting, multiple threads concurrently read from
and write to the shared gradient vector, leading to a "race condition" that can
cause the gradient to accumulate numerical errors over time. This gradient
degradation can severely impact the algorithm’s convergence.

To mitigate this issue, our implementation includes a correction routine that
runs after each cycle that comprises n coordinate updates. This routine recom-
putes and corrects the shared gradient vector to restore numerical consistency.
Additionally, this synchronization point is leveraged within the framework of
Algorithm [2] to identify the active constraints, thus improving the algorithmic
performance.

5.1 A controlled and highly favorable scenario

The initial experiments were performed in a controlled environment that is
particularly favorable to coordinate descent methods. As theoretical results
suggest, the smaller the degree of partial separability w, the greater the expected
acceleration for these methods. For problem , the value of w depends on
the number of nonzero elements in the rows of the matrix A.

To generate the initial test instances, we employed the random problem gen-
erator of [21], which the authors provide in a C++ implementation. This tool
builds a class of test problems originally described in [I6]. Using this generator,
it is possible to construct a matrix A and a vector b for the problem , assum-
ing A = 1, based on the following input parameters: the dimensions of matrix
A; the number of nonzero entries per row in matrix A, and the sparsity level of
the optimal solution, that is, the number of its nonzero components. By default,
the sparsity level is set to min{10000, % } and we used this value. Consequently,
the value of the degree of partial separability w is indirectly influenced by these
inputs.

We generated six random problem instances (matrix A and vector b). Among
these, three instances were constructed with 20 nonzero elements per column,
while the remaining three contained 1000 nonzero elements per column. Ta-
ble [[] summarizes the set of generated problems, including their identifiers, the
dimensions of matrix A, the corresponding values of w, and the proportion of
zero components in the optimal generated solution x*, denoted by (nz(z*)).

To define the target function value (Fiqrger) for each of the six test problems,
we employed our implementation of the uniform coordinate descent method,
running for 1000n iterations with a block size equal to 1, obtaining a very precise
approximation of the optimal value that we denote F*. Finally, we constructed
the target value so that the relative error between Fiqpger and F* is 1074, that
is, Fiqrget is defined as ~

Frarget = F*(1+107%).

We begin analyzing the performance of Algorithm [2] to identify an effective

24

Name #rows X #cols w | nz(x*)
Nel 100,000 x 200,000 258 | 95.0%
Ne2 200,000 x 100,000 85 | 90.0%
Ne3 | 2,000,000 x 1,000,000 | 90 | 99.0%
Ned 100,000 x 200,000 71 | 95.0%
Neb 200,000 x 100,000 27 | 90.0%
Ne6 | 2,000,000 x 1,000,000 | 30 | 99.0%

Table 1: Features of the artificially generated problems.

Running Time(s) Running Time(s)

1
0.8 4 -
0.6
0.4 ——PA-10-1 —+—PA-10-2
7 PA-50-1 - PA-50-2
02 PA-100-1 || PA-100-2
R -9~ PA-500-1 =0~ PA-500-2
PA-1000-1 PA-1000-2
0 ‘ ‘ ‘ : ‘ ‘ ‘ :
0 0.1 0.2 0.3 0.4 0 0.05 0.1 0.15 0.2
(a) 1 thread. (b) 2 threads.

Figure 1: Performance profile of the average execution time between the variants
of the Parallel Active BCDM method (PA) with 1 and 2 threads.

configuration. This process requires the appropriate selection of two key pa-
rameters: dpp and dr. The first governs the probability distribution employed
by the method, that is, the relative frequency with which the method selects
inactive coordinates compared to active ones. The second one determines the
number of iterations between successive evaluations of the identification func-
tion. In this preliminary analysis, we fix §p = 1 and evaluate the algorithm’s
performance with different values of dpp € {10,50,100,500,1000}. In the ex-
perimental results shown in the figures, each variant of the algorithm is labeled
as PA followed by the corresponding value of dpp and the number of threads
used. To put the different configurations in perspective, we have used log, scaled
performance profiles of the average execution time among the 20 independent
runs of each problem instance solved by each variant of the algorithm. Such
cumulative distribution plots depict the proportion of problems solved in the
y-axis, within the factor of the fastest (log, scaled) that is shown in the z-axis.
We refer the reader to [7] for further details on this benchmarking tool.
Looking at Figures[l] and [2], we note that the performance of the methods is
minimally affected by the change in the value of dpp for this set of problems.
Due to the promising performance of the PA-500 variant, this choice was adopted

25

Running Time(s)

——PA-10-4
~¥-PA-50-4
~E-PA-100-4
-9~ PA-500-4

PA-1000-4

0.1

ARunmng Time(s)

" Running Time(s)

0.8

0.6

0.4

A

/

<

——PA-10-8
~¥-PA-50-8
~E-PA-100-8
-9~ PA-500-8

PA-1000-8

—#—PA-10-16
~¥-PA-50-16
~E-PA-100-16
=~ PA-500-16
PA-1000-16

0.05 0.1 015

02 025

0.2 0.3

(a) 4 threads. (b) 8 threads. (c) 16 threads.

Figure 2: Performance profile of the average execution time between the variants
of the Parallel Active BCDM method (PA) with 4, 8, and 16 threads.

Ratios UBCDM-1/UBCDM-k for Ne problems Ratios PCDM-1/PCDM-k for Ne problems Ratios PA-500-1/PA-500-k for Ne problems

10- @W2Th W2 Th 10} (@H2 Th
=4 Th 125 @4 Th B4 Th
B8 Th B8 Th s Th
s W16 Th o E16 Th = g| [EH16 Th
o o . o
E === E E (==
g6 $ 75 $ 6
& g 4 .
& & &
Al 5.0 4
— ——
25 —
pJ — — —_— 2| e

8Th 16 Th 4Th 8Th 16 Th 4Th 8Th 16 Th

Figure 3: Boxplots comparing the speedup in running time between
UBCDM-1/UBCDM-% (left), PCDM-1/PCDM-k (center) and PA-500-1/PA-500-k
(right), with k € {2,4,8,16} for Ne problems.

for the subsequent tests within this subsection.

Using the selected PA variant, we evaluate the multi-threaded speedup in
execution time for the UBCDM, PCDM, and PA-500 methods for the six randomly
generated Ne test problems. To illustrate the performance of these methods,
we present the results in the form of boxplots, as shown in Figure Each
boxplot represents the speedup ratio, defined as the average execution time of
the serial version of a given method divided by the average execution time of
its multi-threaded counterpart. This visualization provides a clear comparison
of the parallel efficiency achieved by the different algorithmic implementations.

Figure [3| shows that all methods scale effectively in terms of speedup for the
problems considered: as the number of threads increases, the observed speedup
improves consistently. The UBCDM and PA-500 methods exhibit similar speedup
behavior for the tested configurations. In contrast, the PCDM method achieves a
comparable average speedup when using 2, 4, and 8 threads but surpasses the
other approaches in average speedup when executed with 16 threads.

We conclude this subsection by presenting two boxplots in Figure [d which
compare the execution time ratios between the PCDM and UBCDM and between
the UBCDM and PA-500 for different thread values. The results indicate that
UBCDM achieves, on average, a two-times speedup relative to PCDM. In turn, for

26

Ratios PCDM-k/UBCDM-k for Ne problems Ratios UBCDM-k/PA-500-k for Ne problems

2.7 14 1
1.3

) ?
1.2

2.1

1.1
@1 Th
2 Th —

1.8

B4 Th 1.0
15 8 Th
EJ16Th|
. 0.9 o
1Th 2Th 4Th 8 Th 16 Th 1Th 2Th 4Th 8 Th 16 Th

Figure 4: Boxplot comparing the running time ratio between PCDM and UBCDM
(left) and between UBCDM and PA-500 (right) for Ne problems, with 1, 2, 4, 8
and 16 threads.

this set of problems, PA-500 demonstrates a modest performance advantage
over UBCDM, with an average speedup slightly greater than one. Additionally,
in Section [7-1] of the appendix, we present tables reporting the execution time
and the average number of iterations for the most relevant methods discussed
in this subsection, namely UBCDM, PCDM, and PA-500. The values displayed
in such tables contrasting the pairs (Nel, Ne4), (Ne2, Ne5), and (Ne3, Ne6)
corroborate that the smaller the degree of partial separability w, the greater the
expected acceleration for the coordinate descent methods, as suggested by the
theoretical results.

It is important to caution the reader that, despite the favorable speedup
presented in the plots of Figure consistent with the principle discussed in [23],
it should be interpreted as indicative of the best-case performance achievable
by parallel coordinate descent methods. In real-world applications, problem
instances often involve matrices A with less favorable structures, particularly
with columns containing highly nonuniform quantities of nonzero elements. The
structural uniformity present in the test cases used here may bias the results,
obscuring several challenges that coordinate descent methods face when applied
to more heterogeneous and irregular matrix structures. The experiments in the
next subsection were performed to provide further insight into this matter.

5.2 A realistic scenario

In this subsection, we evaluate the performance of block coordinate descent
methods in real-world problems. For this purpose, we use the set of 49 test
instances introduced in [13, Tables 2 and 3]. These tables provide detailed
information on each problem, including its name, source, matrix dimensions,
target objective function value, and the number of zero coordinates in the opti-
mal solution. The regularization parameter is chosen as A = 0.1||A7b||», where
A and b denote the matrix and vector that define each problem, respectively.

27

Running Time(s) Running Time(s)

1 1
‘v
0.8 0.8
0.6 g 28 0.6 f v
0.4%°% ——PA10-1 | 0.4% 3 ——PA10-2
v =%~ PA-50-1 “xF-PA-50-2
N PA-100-1 v PA-100-2
0.2v2] 0.2t7
b/ —0—PA-500-1 ¥ —0—PA-500-2
Vi PA-1000-1 4 PA-1000-2
Y/ . . ‘ W4 X X .
0 1 2 3 0 1 2 3
(a) 1 thread. (b) 2 threads.

Figure 5: Performance profile of the average execution time between the variants
of the Parallel Active BCDM method (PA) with 1 and 2 threads for the 25 SC
problems.

Because these problems are derived from real applications and contain actual
data, they present great structural diversity, making them particularly valuable
for analysis.

A limitation of this test set is that most problems have a relatively small
number of samples and/or variables compared to those analyzed in the previous
subsection. Another distinguishing characteristic is the presence of two prob-
lem classes: those in which the matrix A has more columns than rows, called
SC problems, and those in which there are more rows than columns, called SR
problems. In the context of Lasso, where the primary objective is the selection
of variables or characteristics, this distinction is particularly relevant. In the
SC' case, the problem includes many potentially redundant or insignificant fea-
tures to be eliminated. In contrast, the SR case involves fewer variables from
the outset, where a more refined selection is required. These differences were
already important in [I3], which reported that the behavior of the block co-
ordinate descent method with identification differs notably between these two
problem classes. Therefore, we present the results for each class separately
to highlight the differences, which also impact the performance of the parallel
implementations.

We begin by analyzing the SC-type problems. The parameter dpp is cal-
ibrated using the same range of values as considered in Subsection The
comparison is once more conducted using performance profiles now based on
the average execution time among 100 independent runs of each problem in-
stance for all PA method variants, on the set of 25 SC-type problems. These
results are depicted in Figures [f] and [f] From the performance profiles, it is
evident that the PA-10 variant achieves the best overall performance among the
tested configurations.

Figure [7] presents three boxplots, one for each method PCDM, UBCDM and

28

Running Time(s) Running Time(s) Running Time(s)

>

0.4% ——PA-10-4 0.4% ——PA-10-8 —#—PA-10-16
N -PA50-4] “7-PA50-8 “¥-PAS0-16
02y ~8-PA-100-4 e | ~E-PA-100-8 o ~5-PA-100-16
: ¥ —9—PA-500-4 : 4 —0—PA-500-8 : 3 =0~ PA-500-16
v PA-1000-4] PA-1000-8 4 PA-1000-16
o\l w 4
0 1 2 3 0 1 2 3 0 1 2 3
(a) 4 threads. (b) 8 threads. (c) 16 threads.

Figure 6: Performance profile of the average execution time between the variants
of the Parallel Active BCDM method (PA) with 4, 8, and 16 threads for the 25
SC problems.

Ratios UBCDM-1/UBCDM-k for SC problems Ratios PCDM-1/PCDM-k for SC problems Ratios PA-10-1/PA-10-k for SC problems

Speedup
~ - @
I
43
E
Speedup
I
oo
43
E
Speedup
b W A
G
e
E

2Th 16 Th 2Th 4Th 8Th 16 Th 2Th 4Th 8Th 16 Th

Figure 7: Boxplots comparing the speedup in running time between
UBCDM-1/UBCDM-k (left), PCDM-1/PCDM-k (center) and PA-10-1/PA-10-k
(right), with k € {2,4,8,16} for SC problems.

PA-10, illustrating the execution time speedup achieved by each method relative
to its corresponding single-threaded variant. Although the observed speedups
are less pronounced than those reported for the Ne problems, the performance of
all methods improves consistently with increasing number of threads. Notably,
the PCDM method exhibits relatively modest gains when using 2 and 4 threads.
With 8 and 16 threads, its speedup becomes more significant and surpasses the
performance of the other two methods under these configurations.

We conclude the comparison of the SC problems with the boxplots shown in
Figure [§] which depict the execution time performance for the evaluated meth-
ods. Specifically, the figure contrasts the performance of PCDM against UBCDM, as
well as UBCDM against PA-10. Again, UBCDM method achieves an average speedup
of approximately 2 relative to PCDM. In turn, PA-10 attains an average speedup
of nearly 3.4 when compared to UBCDM.

We now turn to the analysis of the experimental results for the problems of
SR-type. The parameter dpp is adjusted using the same range of values em-
ployed previously. Performance profiles are used to compare the average execu-
tion times of all PA method variants for the 24 S R-type problems, as illustrated
in Figures[J]and [I0] Similarly to the SC case, the most promising configuration
corresponds to dpp = 10, which delivers the best overall performance.

29

Ratios PCDM-k/UBCDM-k for SC problems Ratios UBCDM-k/PA-10-k for SC problems

° 8 °
1 Th i e :
4 [EH2Th .
4 Th
8 Th 6 . .
;| [EE16 Th ! T
| | %
! —1 2
1Th 2Th 4 Th 8 Th 16 Th 1Th 2Th 4Th 8Th 16 Th

Figure 8: Boxplot comparing the running time ratio between PCDM and UBCDM
(left) and between UBCDM and PA-10 (right) for SC problems, with 1, 2, 4, 8
and 16 threads.

Figure[I1] presents three boxplots showing the speedup of the multi-threaded
variants when compared to its serial version. Unlike the previous cases, the
multi-threaded variants did not outperform their serial counterparts in the ma-
jority of instances in this test set. This outcome is attributed to the higher ¥
ratio observed in this class of problems, which leads to increased values of 3,
thereby penalizing the magnitude of the descent directions when compared to
the serial case. In several instances, the number of iterations required by the
multi-threaded versions increased substantially compared to the serial versions,
resulting in a significant reduction in the effective speedup. Please refer to the
tables in the appendix for further details.

An analysis of the average speedups reveals that the UBCDM method achieved
speedups of 1.12, 1.38, 1.61, and 1.61 for 2, 4, 8, and 16 threads, respectively.
The PCDM method reached 1.19, 1.49, 2.00, and 2.50, while PA-10 achieved 1.03,
1.25, 1.39, and 1.44 for the same thread counts.

As with the SC problems, Figure [[1] presents boxplots comparing the exe-
cution time of the serial implementation of each method with its corresponding
multi-threaded version. In contrast to previous cases, for the set of SR problems,
the multi-threaded implementations did not outperform their serial counterparts
in the majority of instances. Among the evaluated methods, PCDM demonstrated
the most notable speedup under multi-threaded execution.

To conclude this section of experiments, we present the final two boxplots
in Figure It illustrates the execution time ratios between UBCDM and PCDM,
as well as between UBCDM and PA-10, for the set of problems SR. The results
indicate that UBCDM is, on average, approximately 1.5 times faster than PCDM,
although this advantage slightly decreases as the number of threads increases to
16. In contrast, the performance gap between PA-10 and UBCDM remains more
stable, with PA-10 consistently exhibiting nearly 2.4 times the demand of UBCDM
for all configurations of threads.

We recall that Sections and of the appendix present tables with full

30

-
1
4
y

0.4X ——=PA-10-1 |1 0.4 ——PA-10-2
3 =7~ PA-50-1 i 7~ PA-50-2
0.0 —E-PA-100-1 | | 0.8y ~E5-PA-100-2
' A —9—PA-500-1 ' Y —0—PA-500-2
V4 PA-1000-1 2z PA-1000-2
Vi V4
0 0
0 1 2 3 0 1 2 3
(a) 1 thread. (b) 2 threads.

Figure 9: Performance profile of the average execution time between the variants
of the Parallel Active BCDM method (PA) with 1 and 2 threads for the 24 SR

problems.

Running Time(s) Running Time(s)

1 =
A
0.8
0.6k
—#—PA-10-8 0.4 ;’ =#—PA-10-16
\ -¥-PA-50-8 -’ “V-PA50-16
3 -100- v ~5-PA-100-8 o ~5-PA-100-16
AT 3
0'2&5 —0—PA-500-4 ’ ——PA-500-8 0‘2:_;; —-PA-500-16
} | PA-1000-4 PA-1000-8 1 2 PA-1000-16
0 1 2 3 1 2 3 0 1 2 3
(a) 4 threads. (b) 8 threads. (c) 16 threads.

Figure 10: Performance profile of the average execution time between the vari-
ants of the Parallel Active BCDM method (PA) with 4, 8, and 16 threads for
the 24 SR problems.

Ratios UBCDM-1/UBCDM-k for SR problems Ratios PCDM-1/PCDM-k for SR problems Ratios PA-10-1/PA-10-k for SR problems
. 6 .
6 8 B2 Th
s EH4Th .
EH8Th
5 EH16 Th
6 4

S4 s s
3 3 H
3] @3 i
a a4 a
& & &

]

' B
|
1

I
.
L i
*
1

! |
1

2Th aTh 8Th 16 Th 2Th aTh 8Th 16 Th 2Th 4Th 8Th 16 Th

Figure 11: Boxplots comparing the speedup in running time between
UBCDM-1/UBCDM-k (left), PCDM-1/PCDM-k (center) and PA-10-1/PA-10-k
(right), with k € {2,4,8,16} for SR problems.

31

Ratios PCDM-k/UBCDM-k for SR problems Ratios UBCDM-k/PA-10-k for SR problems

mm1Th | [
4 . 6! M2 Th .
. . @4 Th .
8 Th .
5 5! |16 Th .
4 °
2
3
1 2
1

1Th 2Th 4Th 1Th 2Th 4Th 8Th 16 Th

Figure 12: Boxplot comparing the running time ratio between PCDM and UBCDM
(left) and between UBCDM and PA-10 (right) for SR problems, with 1, 2, 4, 8
and 16 threads.

detailed information about the most relevant methods previously discussed for
problems SC and SR.

6 Final remarks

In this paper, we introduce a parallel variation of the Active Block Coordinate
Descent Method from [I3] and show that its sequence of objective values con-
verges to the optimal value in expectation, similar to the results of [2I] for the
uniform case without identification. The convergence analysis is accompanied
by a high-performance implementation that is tested in different scenarios based
on Lasso problems.

In the synthetic test set presented in [2I], our implementation displays a
consistent speedup as the number of threads increases. It can also outperform
the implementation from [21] even in the uniform case, with further accelera-
tion whenever identification is activated. In real-world tests, using the collection
from [I3], the parallel implementation is still faster than the serial one, but the
improvement is more limited than in the synthetic case. For problems with
sparse matrices that have a very unbalanced quantity of elements among the
columns, the large amount of information may burden the computational effort
unevenly among the threads. In case such columns take part in the problem
solution, our identification strategy should benefit less from the parallelism than
a uniform choice of blocks. Nevertheless, better speedups were achieved in prob-
lems where there are many columns (features) to be selected. In this scenario,
identification has a favorable effect, decreasing the computational effort to ap-
proximate an optimal solution.

A future direction of research is to use ideas akin to relative smoothness [10]
or the smooth approximation framework in [4] to relax the differentiability as-
sumptions on the smooth part of the objective function in a setting that allows
the use of identification of the active constraints.

32

Acknowledgments. We are thankful to the anonymous reviewers, whose in-
sightful comments and questions helped us improve the presentation of our work.

References

[1]

[2]

3]

A. Beck and L. Tetruashvili. On the convergence of block coordinate descent
type methods. SIAM Journal on Optimization, 23(4):2037-2060, 2013.

L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari. Asynchronous
parallel algorithms for nonconvex optimization. Mathematical Program-

ming, 184:121-154, 2020.

Y .-G. Choi, S. Lee, and D. Yu. An efficient parallel block coordinate de-
scent algorithm for large-scale precision matrix estimation using graphics
processing units. Computational Statistics, 37:419-443, 2022.

F. Chorobura and I. Necoara. Coordinate descent methods beyond smooth-
ness and separability. Computational Optimization and Applications,
88(1):107-149, May 2024.

J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Society for Industrial and Applied
Mathematics, Philadelphia, 1996.

A. Devarakonda, K. Fountoulakis, J. Demmel, and M. W. Mahoney. Avoid-
ing communication in primal and dual block coordinate descent methods.
SIAM Journal on Scientific Computing, 41(1):C1-C27, 2019.

E. D. Dolan and J. J. Moré. Benchmarking optimization software with
performance profiles. Mathematical Programming, 91:201-213, 2002.

F. Facchinei, A. Fischer, and C. Kanzow. On the accurate identification of
active constraints. STAM Journal on Optimization, 9(1):14-32, 1998.

F. Facchinei, A. Fischer, and C. Kanzow. On the accurate identification of
active constraints. SIAM Journal on Optimization, 9(1):14-32, 1998.

F. Hanzely and P. Richtarik. Fastest rates for stochastic mirror descent
methods. Computational Optimization and Applications, 79(3):717-766,
July 2021.

J. Hickman. A note on the concept of multiset. Bulletin of the Australian
Mathematical Society, 22(2):211-217, 1980.

J. Liu and S. J. Wright. Asynchronous stochastic coordinate descent:
parallelism and convergence properties. SIAM Journal on Optimization,
25(1):351-376, 2015.

33

[13]

[14]

[15]

[16]

[17]

R. Lopes, S. A. Santos, and P. J. S. Silva. Accelerating block coordinate
descent methods with identification strategies. Computational Optimization
and Applications, 72(3):609-640, Apr 2019.

I. Necoara and D. Clipici. Parallel random coordinate descent method for
composite minimization: convergence analysis and error bounds. SIAM
Journal on Optimization, 26(1):197-226, 2016.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale opti-
mization problems. SIAM Journal on Optimization, 22(2):341-362, 2012.

Y. Nesterov. Gradient methods for minimizing composite functions. Math-
ematical programming, 140(1):125-161, 2013.

J. Nutini, I. Laradji, and M. Schmidt. Let’s make block coordinate descent
converge faster: Faster greedy rules, message-passing, active-set complex-

ity, and superlinear convergence. Journal of Machine Learning Research,
23(131):1-74, 2022.

A. Patrascu and I. Necoara. Efficient random coordinate descent algorithms
for large-scale structured nonconvex optimization. Journal of Global Opti-
mization, 61(1):19-46, 2015.

P. Richtarik and M. Taka¢. Iteration complexity of randomized block-
coordinate descent methods for minimizing a composite function. Mathe-
matical Programming, 144(1):1-38, 2014.

P. Richtarik and M. Takac¢. Distributed coordinate descent method for
learning with big data. Journal of Machine Learning Research, 17(75):1-
25, 2016.

P. Richtarik and M. Takac¢. Parallel coordinate descent methods for big
data optimization. Mathematical Programming, 156(1):433-484, 2016.

R. Tappenden, P. Richtarik, and B. Buke. Separable approximations and
decomposition methods for the augmented Lagrangian. Optimization Meth-
ods and Software, 30(3):643-668, 2015.

R. Tappenden, M. Takac¢, and P. Richtarik. On the complexity of parallel
coordinate descent. Optimization Methods and Software, 33(2):372-395,
2018.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 58(1):267—
288, 1996.

C. Traoré, S. Salzo, and S. Villa. Convergence of an asynchronous block-
coordinate forward-backward algorithm for convex composite optimization.
Computational Optimization and Applications, 86:303-344, 2023.

34

[26] P. Tseng. Approximation accuracy, gradient methods, and error bound for
structured convex optimization. Mathematical Programming, 125:263-295,

2010.

P. Tseng and S. Yun. Block-coordinate gradient descent method for linearly

constrained nonsmooth separable optimization. Journal of Optimization
Theory and Applications, 140(3):513, Sep 2008.

P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth

separable minimization. Mathematical Programming, 117(1):387-423, 2009.

7 Appendix

7.1 Tables - Datasets Ne

Threads 17 oT AT 8T 16T
Problem

Nel 1300.837 | 679.493 | 395.705 | 191.876 | 146.266
Ne2 4778 9511 | 1.364 | 0729 | 0592
Ne3 83552 | 44.800 | 22.892 | 11.733 | 9.302
Ned 292.040 | 159.256 | 89.240 | 46.335 | 29.576
Neb 1.366 0.710 | 0.391 | 0203 | 0.152
Ne6 29.755 | 14.832 | 7.721 | 4.086 | 2.787

Table 2: Running time of the method UBCDM with multiple threads applied to

Ne problems.

Ratio
Problem 1T/2Tr | 1T/4T | 1T/8T | 1T/16T
Nel 1.91442 | 3.28739 | 6.77956 | 8.89365
Ne2 1.90323 | 3.50227 | 6.55844 | 8.07393
Ne3 1.86500 | 3.64977 | 7.12090 | 8.98226
Ned 1.83377 | 3.27252 | 6.30280 | 9.87430
Neb 1.92308 | 3.49023 | 6.71706 | 9.00923
Neb 2.00614 | 3.85353 | 7.28232 | 10.6769

Table 3: Running time ratio between UBCDM-1/UBCDM-k with k € {2,4, 8,16},
applied to Ne problems.

35

Threads 17 2T AT 8T 16T
Problem
Nel 1.20 x 10% | 1.58 x 109 | 1.29 x 10° | 1.32 x 109 | 1.56 x 107
Ne2 6.71 x 10% | 6.70 x 10% | 6.74 x 10° | 6.65 x 10° | 6.83 x 10°
Ne3 8.80 x 107 | 9.04 x 107 | 8.91 x 107 | 8.67 x 107 | 8.71 x 107
Ned 1.40 x 109 | 1.41 x 10° | 1.51 x 10° | 1.52 x 10° | 1.46 x 10°
Neb 8.02 x 105 | 7.68 x 10% | 8.04 x 10°% | 7.84 x 10° | 7.90 x 10°
Neb6 8.25 x 107 | 8.41 x 107 | 8.51 x 107 | 8.34 x 107 | 8.44 x 107

Table 4: Average number of iterations of the method UBCDM with multiple
threads applied to Ne problems.

Threads |, 2T AT 8T 16T
Problem
Nel 2662.8 | 1910.3 | 917.53 | 404.20 246.50
Ne2 8.8046 | 5.6280 | 3.3843 | 1.7840 0.9729
Ne3 146.49 | 103.62 | 55.365 | 27.569 14.400
Ned 541.09 | 312.39 | 186.33 | 62.555 38.082
Neb 2.8220 | 1.8062 | 0.9483 | 0.56064 | 0.26588
Neb 50.905 | 31.652 | 17.265 | 9.2756 4.9133
Table 5: Running time of the method PCDM with multiple threads applied to Ne
problems.
Ratio |\ yrjor | 1pyar | 1y87 | 1T/16T
Problem
Nel 1.39392 | 2.90214 | 6.58783 | 10.8024
Ne2 1.56443 | 2.60160 | 4.93531 | 9.05013
Ne3d 1.41372 | 2.64590 | 5.31358 | 10.1729
Ned 1.73210 | 2.90393 | 8.64983 | 14.2085
Neb 1.56240 | 2.97595 | 5.03353 | 10.6138
Neb 1.60827 | 2.94845 | 5.48805 | 10.3607

Table 6: Running time ratio between PCDM-1/PCDM-k with k € {2,4,8,16},

applied to Ne problems.

36

Threads

17 2T AT 8T 16T

Problem
Nel 20x107 [2.2%x10° [1.9x 10° | 1.5 x 109 | 1.8 x 10
Ne2 6.8 x 10% | 6.4 x 10% | 6.8 x 10° | 6.6 x 10° | 6.7 x 10°
Ne3 9.0x 107 | 8.7x 107 | 9.1 x 107 | 87 x 107 | 8.3 x 107
Ned 1.6 x10° | 1.5 x 10 | 1.6 x 10° | 1.0 x 10° | 1.2 x 10°
Neb 87x10% | 8.7x 105 | 81 x 10% | 8.7 x 10% | 7.2 x 10°
Ne6 80x107 | 8.0x 107 | 85 x 107 | 8.8 x 107 | 8.5 x 107

Table 7: Average number of iterations of the method PCDM with multiple threads
applied to Ne problems.

Threads 17 oT AT 8T 16T
Problem

Nel 1021.017 | 610.287 | 323.761 | 184.617 | 140.427
Ne2 1.390 2283 | 1.203 | 0.661 | 0.543
Ne3 85.811 | 42.805 | 22.142 | 11.801 | 10.404
Ned 227.433 | 118.760 | 66.722 | 32.582 | 21.515
Neb 1.182 0.699 | 0344 | 0.187 | 0.147
Neb 26.174 | 13.999 | 7.139 | 3.999 | 2.745

Table 8: Running time of the method PA-500 with multiple threads applied to
Ne problems.

Ratio
Problem 1T/2T | 1T/AT | 1T/8T | 1T/16T
Nel 1.67301 | 3.15362 | 5.53045 | 7.27081
Ne2 1.92254 | 3.64808 | 6.63575 | 8.07794
Ne3 2.00472 | 3.87544 | 7.21640 | 8.24739
Ned 1.91507 | 3.40863 | 6.98027 | 10.5709
Neb 1.69169 | 3.43276 | 6.30851 | 8.05658
Neb6 1.86967 | 3.66637 | 6.54548 | 9.53374

Table 9: Running time ratio between PA-500-1/PA-500-k with k € {2,4, 8,16},
applied to Ne problems.

37

Threads

17T 2T 4T 8T 16T
Problem

Nel 1.13x10% [1.26 x 109 | 1.23 x 10° | 1.25 x 109 | 1.21 x 10°
Ne2 5.41 x 10% | 5.33 x 10% | 5.23 x 10% | 5.26 x 10° | 5.35 x 10°
Ne3 752 x 107 | 7.56 x 107 | 7.59 x 107 | 7.37 x 107 | 7.55 x 107
Ned 1.06 x 109 | 1.02 x 10° | 1.10 x 10Y | 1.10 x 100 | 9.39 x 108
Neb 6.14 x 105 | 6.63 x 10% | 6.19 x 10° | 6.20 x 10% | 6.40 x 10°
Ne6 6.81 x 107 | 6.95 x 107 | 7.11 x 107 | 7.15 x 107 | 6.80 x 107

Table 10: Average number of iterations of the method PA-500 with multiple
threads applied to Ne problems.

38

7.2 Tables - Datasets SC

Threads 17T oT AT 8T 16T
Problem
SC1 0.145980 | 0.085250 | 0.045240 | 0.024530 | 0.018540
SC2 0.224420 | 0.129270 | 0.071410 | 0.039430 | 0.031690
SC3 0.282010 | 0.169530 | 0.096300 | 0.056070 | 0.041420
SC4 6.302630 | 3.607520 | 2.037880 | 1.313480 | 1.036560
SC5 6.317380 | 3.606250 | 2.112590 | 1.308840 | 1.046580
SC6 0.091400 | 0.244840 | 0.380470 | 0.904970 | 0.245390
SC7 0.118780 | 0.074830 | 0.048980 | 0.029830 | 0.023020
SC8 0.004292 | 0.004268 | 0.005229 | 0.007463 | 0.007828
SC9 0.004907 | 0.003343 | 0.002717 | 0.002770 | 0.002330
SC10 0.005533 | 0.003941 | 0.003191 | 0.003359 | 0.002676
SC11 0.100320 | 0.069290 | 0.051630 | 0.047080 | 0.038160
SC12 0.081420 | 0.053590 | 0.038330 | 0.039960 | 0.037020
SC13 2.188110 | 1.261490 | 0.732300 | 0.386250 | 0.326500
SC14 0.206540 | 0.124170 | 0.078240 | 0.049500 | 0.046150
SC15 0.046290 | 0.029180 | 0.017370 | 0.013160 | 0.010590
SC16 0.121760 | 0.075150 | 0.043570 | 0.025970 | 0.022590
SC17 0.059170 | 0.035510 | 0.020630 | 0.013530 | 0.011060
SC18 0.237920 | 0.152000 | 0.095620 | 0.071490 | 0.063080
SC19 0.087520 | 0.053470 | 0.037080 | 0.029250 | 0.024060
SC20 0.456530 | 0.243350 | 0.133080 | 0.070180 | 0.068070
SC21 0.076410 | 0.049050 | 0.033190 | 0.024900 | 0.019000
SC22 0.072410 | 0.047130 | 0.028210 | 0.017120 | 0.012390
SC23 0.092990 | 0.061140 | 0.038710 | 0.025610 | 0.018000
SC24 0.074610 | 0.048170 | 0.028420 | 0.017070 | 0.012660
SC25 0.220670 | 0.176830 | 0.160500 | 0.151380 | 0.141470

Table 11: Running time of the method UBCDM with multiple threads applied to
SC* problems.

39

Ratio
Problem 1T/2Tr | 1T/AT | 1T/8T | 1T/16T
SC1 1.71238 | 3.22679 | 5.95108 | 7.87379
SC2 1.73606 | 3.14270 | 5.69161 | 7.08173
SC3 1.66348 | 2.92845 | 5.02961 | 6.80855
SC4 1.74708 | 3.09274 | 4.79842 | 6.08033
SC5 1.75179 | 2.99035 | 4.82670 | 6.03621
SC6 0.37330 | 0.24022 | 0.10099 | 0.37246
SC7 1.58733 | 2.42507 | 3.98190 | 5.15986
SC8 1.00562 | 0.82080 | 0.57510 | 0.54828
SC9 1.46784 | 1.80604 | 1.77148 | 2.10601
SC10 1.40396 | 1.73394 | 1.64722 | 2.06764
SC11 1.44783 | 1.94306 | 2.13084 | 2.62893
SC12 1.51931 | 2.12418 | 2.03754 | 2.19935
SC13 1.73454 | 2.98800 | 5.66501 | 6.70172
SC14 1.66336 | 2.63983 | 4.17253 | 4.47541
SC15 1.58636 | 2.66494 | 3.51748 | 4.37110
SC16 1.62023 | 2.79458 | 4.68849 | 5.39000
SC17 1.66629 | 2.86815 | 4.37324 | 5.34991
SC18 1.56526 | 2.48818 | 3.32802 | 3.77172
SC19 1.63681 | 2.36030 | 2.99214 | 3.63757
SC20 1.87602 | 3.43049 | 6.50513 | 6.70677
SC21 1.55780 | 2.30220 | 3.06867 | 4.02158
SC22 1.53639 | 2.56682 | 4.22956 | 5.84423
SC23 1.52094 | 2.40222 | 3.63100 | 5.16611
SC24 1.54889 | 2.62526 | 4.37083 | 5.89336
SC25 1.24792 | 1.37489 | 1.45772 | 1.55984

Table 12: Running time ratio between UBCDM-1/UBCDM-k with k € {2,4, 8,16},
applied to SC* problems.

40

Threads

1T 2T 4T 8T 16T
Problem
SC1 956825.60 950272.00 959447.04 956170.24 956825.60
SC2 870318.08 871628.80 878182.40 877527.04 882769.92
SC3 1246494.72 1247805.44 1255014.40 1256325.12 1275985.92
SC4 1032765.44 1079214.08 1097564.16 1187594.24 1390592.00
SChH 1032765.44 1079214.08 1111900.16 1186447.36 1401487.36
SC6 23470.08 31539.20 52838.40 96583.68 183746.56
SC7 657031.26 622336.54 674378.62 652694.42 635347.06
SC8 101970.84 112387.80 128864.19 165763.05 245936.64
SC9 97533.42 96913.34 99625.63 109179.60 128035.71
SC10 114514.46 116623.72 119904.16 136005.889 151275.06
SC11 997507.08 1042447.77 1146428.19 1251289.80 1537676.55
SC12 1078810.48 1143712.18 1176884.16 1414857.06 1890081.73
SC13 16655297.39 | 17563275.36 | 17739450.19 | 18322182.32 | 19189504.56
SC14 1171919.32 1150798.22 1266059.08 1358388.46 1681843.02
SC15 525097.76 537227.44 540357.68 633091.04 705869.12
SC16 471742.40 466846.96 476637.84 484648.56 552739.68
SC17 273367.64 260104.52 262683.46 290683.38 309841.22
SC18 1352837.72 1375908.61 1445612.15 1699882.81 2212841.96
SC19 724651.98 703465.62 785857.02 902774.34 1103260.08
SC20 5889029.12 5937018.88 6094699.52 5827328.00 5895884.80
SC21 589927.75 574562.19 623951.49 671694.48 790228.80
SC22 301811.20 297840.00 303548.60 304789.60 306775.20
SC23 438073.00 437824.80 441051.40 449490.20 466119.60
SC24 303300.40 299577.40 300322.00 301314.80 308264.40
SC25 1224809.85 1340415.35 1589271.40 2060820.15 3036165.50

Table 13: Average number of iterations of the method UBCDM with multiple
threads applied to SC* problems.

41

Threads 17 oT AT 8T 16T
Problem
SC1 0.205980 | 0.191120 | 0.123840 | 0.072854 | 0.043063
SC2 0.447870 | 0.290370 | 0.193110 | 0.111220 | 0.063896
SC3 0.509380 | 0.324010 | 0.217410 | 0.129210 | 0.079972
SC4 12.00500 | 5.951900 | 3.597600 | 2.472100 | 1.790400
SC5 11.98600 | 5.906300 | 3.552500 | 2.439900 | 1.764700
SC6 0.202090 | 0.142180 | 0.185070 | 0.201200 | 0.276520
SC7 0.254240 | 0.252200 | 0.205840 | 0.122730 | 0.105690
SC8 0.010252 | 0.011031 | 0.009100 | 0.009387 | 0.008898
SC9 0.011744 | 0.011236 | 0.009212 | 0.006492 | 0.007697
SC10 0.012542 | 0.012455 | 0.008793 | 0.007369 | 0.006571
SC11 0.154650 | 0.139830 | 0.115110 | 0.064811 | 0.053388
SC12 0.101140 | 0.094578 | 0.070004 | 0.048144 | 0.037675
SC13 5.173100 | 3.091400 | 2.803900 | 1.348100 | 1.022700
SC14 0.455560 | 0.305870 | 0.307030 | 0.164090 | 0.118520
SC15 0.112290 | 0.074498 | 0.058524 | 0.040661 | 0.033170
SC16 0.326960 | 0.140030 | 0.105670 | 0.058428 | 0.044678
SC17 0.112390 | 0.076469 | 0.059944 | 0.033605 | 0.025700
SC18 0.517640 | 0.323400 | 0.229500 | 0.153540 | 0.117300
SC19 0.173340 | 0.085238 | 0.096556 | 0.048751 | 0.054268
SC20 0.997850 | 0.700750 | 0.361880 | 0.254350 | 0.189010
SC21 0.157330 | 0.108840 | 0.088074 | 0.073356 | 0.064766
SC22 0.143000 | 0.094124 | 0.067822 | 0.042223 | 0.029270
SC23 0.167230 | 0.114150 | 0.081809 | 0.050927 | 0.032954
SC24 0.146940 | 0.096429 | 0.069298 | 0.042135 | 0.027952
SC25 0.370390 | 0.267260 | 0.175030 | 0.122200 | 0.089110

Table 14: Running time of the method PCDM with multiple threads applied to
SC* problems.

42

Ratio
Problem 1T/2Tr | 1T/AT | 1T/8T | 1T/16T
SC1 1.54866 | 2.39002 | 4.06265 | 6.15817
SC2 1.54241 | 2.31925 | 4.02688 | 6.50067
SC3 1.57211 | 2.34295 | 3.94226 | 6.36948
SC4 2.01700 | 3.33695 | 4.85620 | 6.70521
SC5 2.02936 | 3.37396 | 4.91250 | 6.79209
SC6 1.42137 | 1.09197 | 1.00442 | 0.73083
SC7 1.00809 | 1.23513 | 2.07154 | 2.40553
SC8 0.92938 | 1.12659 | 1.09215 | 1.15217
SC9 1.04521 | 1.27486 | 1.80900 | 1.52579
SC10 1.00699 | 1.42636 | 1.70199 | 1.90869
SC11 1.10599 | 1.34350 | 2.38617 | 2.89672
SC12 1.06938 | 1.44477 | 2.10078 | 2.68454
SC13 1.67338 | 1.84497 | 3.83733 | 5.05828
SC14 1.48939 | 1.48376 | 2.77628 | 3.84374
SC15 1.50729 | 1.91870 | 2.76161 | 3.38529
SC16 2.33493 | 3.09416 | 5.59595 | 7.31814
SC17 1.46975 | 1.87492 | 3.34444 | 4.37315
SC18 1.60062 | 2.25551 | 3.37137 | 4.41296
SC19 2.03360 | 1.79523 | 3.55562 | 3.19415
SC20 1.42397 | 2.75741 | 3.92314 | 5.27935
SC21 1.44552 | 1.78634 | 2.14475 | 2.42921
SC22 1.51927 | 2.10846 | 3.38678 | 4.88555
SC23 1.46500 | 2.04415 | 3.28372 | 5.07465
SC24 1.52382 | 2.12041 | 3.48736 | 5.25687
SC25 1.38588 | 2.11615 | 3.03101 | 4.15655

Table 15: Running time ratio between PCDM-1/PCDM-k with k € {2,4, 8,16},
applied to NE* problems.

43

Threads

1T 2T 4T 8T 16T
Problem
SC1 917504.0 917504.0 917504.0 851968.0 851968.0
SC2 851968.0 851968.0 851968.0 786432.0 786432.0
SC3 1179648.0 1179648.0 1179648.0 1179648.0 1179648.0
SC4 1089536.0 860160.0 916930.56 1261568.0 1662976.0
SChH 1089536.0 860160.0 916930.56 1261568.0 1664122.88
SC6 20480.0 20480.0 45056.0 90112.0 184320.0
SC7 433684.0 650526.0 650526.0 216842.0 216842.0
SC8 103444.0 141765.3 133254.68 154084.54 153379.24
SC9 85261.0 113009.58 115567.41 75264.5353 155020.0
SC10 102011.0 128847.74 102481.82 122099.32 72898.63
SC11 793071.0 1058309.19 | 1317379.05 969309.0 1061833.95
SC12 721130.0 928815.44 1009582.0 935305.61 871125.04
SC13 16262292.0 | 14907101.0 | 24393438.0 | 16641745.48 | 18037592.21
SC14 1448304.0 1267266.0 | 1563564.86 1206920.0 1206920.0
SC15 665176.0 547792.0 586920.0 504751.2 627221.84
SC16 667560.0 400536.0 480198.16 355141.92 445040.0
SC17 221052.0 218104.64 257894.0 184210.0 201525.74
SC18 1718045.0 | 1473591.74 | 1201649.76 | 1183978.44 1161398.42
SC19 784680.0 470808.0 763101.3 417449.76 669724.38
SC20 5484544.0 4798976.0 3427840.0 3427840.0 2742272.0
SC21 603647.0 384687.77 493893.0 560294.17 579501.12
SC22 273020.0 273020.0 273020.0 273020.0 297840.0
SC23 397120.0 421940.0 420202.6 421940.0 421940.0
SC24 273020.0 273020.0 273020.0 270538.0 273020.0
SC25 1156055.0 1216900.0 1156055.0 1216900.0 1216900.0

Table 16: Average number of iterations of the method PCDM with multiple

threads applied to SC* problems.

44

Threads

1T 2T 4T &T 16T
Problem
SC1 0.047730 | 0.027920 | 0.015170 | 0.008850 | 0.007564
SC2 0.076200 | 0.044280 | 0.024760 | 0.014420 | 0.013210
SC3 0.098590 | 0.059140 | 0.033900 | 0.019760 | 0.015040
SC4 1.383670 | 0.827150 | 0.540110 | 0.419150 | 0.429240
SChH 1.385970 | 0.827140 | 0.525250 | 0.423070 | 0.449980
SC6 0.037660 | 0.071650 | 0.065810 | 0.115420 | 0.032920
SC7 0.086440 | 0.061200 | 0.040360 | 0.027550 | 0.022440
SC8 0.000990 | 0.000880 | 0.001059 | 0.001462 | 0.001455
SC9 0.001271 | 0.000944 | 0.000799 | 0.000802 | 0.000684
SC10 0.001406 | 0.001065 | 0.000926 | 0.000975 | 0.000838
SC11 0.030770 | 0.020530 | 0.014080 | 0.011920 | 0.008833
SC12 0.019670 | 0.013050 | 0.009118 | 0.008638 | 0.007368
SC13 0.649910 | 0.384290 | 0.223760 | 0.134390 | 0.113470
SC14 0.044680 | 0.027690 | 0.018040 | 0.012070 | 0.010620
SC15 0.011370 | 0.007723 | 0.004850 | 0.003374 | 0.002860
SC16 0.049930 | 0.032550 | 0.018790 | 0.011710 | 0.009229
SC17 0.028680 | 0.018390 | 0.011220 | 0.006870 | 0.005567
SC18 0.054500 | 0.037260 | 0.024970 | 0.019670 | 0.015740
SC19 0.022050 | 0.014950 | 0.010710 | 0.008757 | 0.006732
SC20 0.130130 | 0.074630 | 0.042020 | 0.025900 | 0.021660
SC21 0.026680 | 0.018730 | 0.012710 | 0.009806 | 0.006764
SC22 0.026560 | 0.017380 | 0.010240 | 0.006296 | 0.004700
SC23 0.029080 | 0.019460 | 0.012280 | 0.009278 | 0.006623
SC24 0.027110 | 0.017750 | 0.010390 | 0.006369 | 0.004767
SC25 0.044630 | 0.040130 | 0.029740 | 0.026140 | 0.024750

Table 17: Running time of the method PA-10 with multiple threads applied to

SC* problems.

45

Ratio

Problem 2T/1T | AT/1T | 8T/1T | 16T/1T
SC1 1.70953 | 3.14634 | 5.39322 | 6.31015
SC2 1.72087 | 3.07754 | 5.28433 | 5.76836
SC3 1.66706 | 2.90826 | 4.98937 | 6.55519
SC4 1.67282 | 2.56183 | 3.30113 | 3.22353
SC5 1.67562 | 2.63869 | 3.27598 | 3.08007
SC6 0.52561 | 0.57225 | 0.32628 | 1.14399
SC7 1.41242 | 2.14172 | 3.13757 | 3.85205
SC8 1.12500 | 0.93484 | 0.67715 | 0.68041
SC9 1.34640 | 1.59074 | 1.58479 | 1.85819
SC10 1.32019 | 1.51836 | 1.44205 | 1.6778
SC11 1.49878 | 2.18537 | 2.58138 | 3.48353
SC12 1.50728 | 2.15727 | 2.27715 | 2.66965
SC13 1.69120 | 2.90450 | 4.83600 | 5.72759
SC14 1.61358 | 2.47672 | 3.70174 | 4.20716
SC15 1.47223 | 2.34433 | 3.36989 | 3.97552
SC16 1.53395 | 2.65726 | 4.26388 | 5.41012
SC17 1.55954 | 2.55615 | 4.17467 | 5.15179
SC18 1.46269 | 2.18262 | 2.77072 | 3.46252
SC19 1.47492 | 2.05882 | 2.51799 | 3.27540
SC20 1.74367 | 3.09686 | 5.02432 | 6.00785
SC21 1.42445 | 2.09913 | 2.72078 | 3.94441
SC22 1.52819 | 2.59375 | 4.21855 | 5.65106
SC23 1.49435 | 2.36808 | 3.13430 | 4.39076
SC24 1.52732 | 2.60924 | 4.25656 | 5.68701
SC25 1.11214 | 1.50067 | 1.70735 | 1.80323

Table 18: Running time ratio between PA-10-1/PA-10-k with k € {2,4, 8,16},
applied to SC* problems.

46

Threads

1T 2T 4T 8T 16T
Problem
SC1 275251.20 273285.12 275251.20 284182.66 308955.43
SC2 265420.80 265420.80 270663.68 275251.20 312606.72
SC3 393216.00 393216.00 393216.00 393216.00 401080.32
SC4 202424.32 217333.76 248872.96 306216.96 415744.00
SC5 202424.32 220200.96 246005.76 309084.16 428359.68
SC6 8560.64 8765.44 11919.36 16506.88 25600.00
SC7 420673.48 427178.74 427178.74 425010.32 429347.16
SC8 18240.04 19085.32 21358.24 25840.38 35251.33
SC9 21224.15 21511.04 22349.13 23482.98 26844.67
SC10 23165.76 23649.64 24943.29 26929.13 31789.23
SC11 261713.43 263475.81 263475.81 270525.33 289865.13
SC12 220665.78 227155.95 230106.03 255503.82 305419.77
SC13 4146884.46 | 4065573.00 | 4052021.09 | 4038469.18 | 4160436.37
SC14 207590.24 200348.72 213021.38 225090.58 252246.28
SC15 105254.32 108655.45 110201.08 113036.44 124091.66
SC16 126836.40 126836.40 128171.52 131731.84 132695.41
SC17 85105.02 82894.50 85841.86 86048.78 89444.19
SC18 219909.76 220891.50 234144.99 260651.97 300412.44
SC19 133787.94 131826.24 142811.76 153524.35 173524.87
SC20 1446548.48 | 1467115.52 | 1460259.84 | 1487682.56 | 1508249.60
SC21 159692.07 156948.22 159692.07 163032.64 166484.95
SC22 99280.00 99280.00 99280.00 99436.10 99862.63
SC23 124100.00 124348.20 127326.60 148920.00 152043.05
SC24 99280.00 99280.00 99280.00 99280.00 99398.19
SC25 197137.80 242771.55 243380.00 304225.00 425915.00

Table 19: Average number of iterations of the method PA-10 with multiple
threads applied to SC* problems.

47

7.3 Tables - Datasets SR

Threads
Problem 1T 2T 4T 8T 16T
SR1 0.060170 | 0.04674 | 0.03554 | 0.03524 | 0.03864
SR2 0.040430 | 0.03136 | 0.02424 | 0.02313 | 0.02439
SR3 0.072170 | 0.05771 | 0.04363 | 0.04360 | 0.0481
SR4 0.500270 | 0.49184 | 0.43086 | 0.42877 | 0.36076
SR5 0.006308 | 0.01027 | 0.01578 | 0.02741 | 0.00986
SR6 2.301980 | 2.36673 | 2.11020 | 2.01118 | 1.95690
SR7 0.076220 | 0.06340 | 0.05882 | 0.07350 | 0.06652
SR8 0.029830 | 0.03621 | 0.03600 | 0.05208 | 0.04367
SR9 0.098760 | 0.11589 | 0.11614 | 0.14765 | 0.12289
SR10 0.001636 | 0.00152 | 0.00139 | 0.00183 | 0.00194
SR11 0.027170 | 0.02030 | 0.01714 | 0.01695 | 0.02338
SR12 0.022830 | 0.01802 | 0.01500 | 0.01478 | 0.02053
SR13 0.023390 | 0.01873 | 0.01603 | 0.01620 | 0.02256
SR14 0.008403 | 0.00708 | 0.00609 | 0.00642 | 0.00840
SR15 0.002227 | 0.00222 | 0.00220 | 0.00299 | 0.00356
SR16 0.178370 | 0.11570 | 0.07262 | 0.05304 | 0.05929
SR17 4.230360 | 2.36061 | 1.33827 | 0.77799 | 0.73230
SR18 2.845190 | 1.64976 | 0.97123 | 0.56467 | 0.51093
SR19 0.067020 | 0.03432 | 0.01954 | 0.01127 | 0.01004
SR20 10.953400 | 22.7002 | 26.4181 | 30.1164 | 29.5181
SR21 0.001004 | 0.00156 | 0.00253 | 0.00423 | 0.00501
SR22 0.004052 | 0.00543 | 0.00865 | 0.01378 | 0.01590
SR23 0.021560 | 0.02746 | 0.04231 | 0.07728 | 0.07712
SR24 0.043040 | 0.04570 | 0.06990 | 0.11690 | 0.12221

Table 20: Running time of the method UBCDM with multiple threads applied to
SR* problems.

48

Ratio
Problem 1T/2Tr | 1T/4T | 1T/8T | 1T/16T
SR1 1.28733 | 1.69302 | 1.70743 | 1.55719
SR2 1.28922 | 1.66790 | 1.74795 | 1.65765
SR3 1.25056 | 1.65414 | 1.65528 | 1.50042
SR4 1.01714 | 1.16110 | 1.16676 | 1.38671
SR5 0.61421 | 0.39974 | 0.23013 | 0.63956
SR6 0.97264 | 1.09088 | 1.14459 | 1.17634
SR7 1.20221 | 1.29582 | 1.03701 | 1.14582
SRS 0.82380 | 0.82861 | 0.57277 | 0.68307
SR9 0.85218 | 0.85035 | 0.66887 | 0.80364
SR10 1.07349 | 1.17276 | 0.89301 | 0.84069
SR11 1.33842 | 1.58518 | 1.60295 | 1.16210
SR12 1.26693 | 1.52200 | 1.54465 | 1.11203
SR13 1.24880 | 1.45914 | 1.44383 | 1.03679
SR14 1.18603 | 1.37822 | 1.30827 | 1.00000
SR15 0.99331 | 1.01227 | 0.74456 | 0.62450
SR16 1.54166 | 2.45621 | 3.36293 | 3.00843
SR17 1.79206 | 3.16107 | 5.43755 | 5.77366
SR18 1.72461 | 2.92947 | 5.03868 | 5.56865
SR19 1.95280 | 3.42989 | 5.94676 | 6.67530
SR20 0.48252 | 0.41461 | 0.36370 | 0.37107
SR21 0.64071 | 0.39543 | 0.23696 | 0.20019
SR22 0.74553 | 0.46816 | 0.29040 | 0.25484
SR23 0.78514 | 0.50957 | 0.27898 | 0.27956
SR24 0.94179 | 0.61573 | 0.36817 | 0.35218

Table 21: Running time ratio between UBCDM-1/UBCDM-k with k € {2,4, 8,16},
applied to SR* problems.

49

Threads

1T 2T 4T 8T 16T
Problem

SR1 3236.13 3563.31 4189.38 5496.87 8215.17

SR2 2264.43 2483.37 2959.38 3724.44 5259.48

SR3 4409.55 4933.53 5747.79 7575.57 11319.69
SR4 4089.96 4959.36 7284.06 10944.36 14779.80
SR5 2531.32 3043.80 4071.60 6001.20 9382.94

SR6 28794.72 38173.08 61296.33 96988.59 | 158033.97
SR7 9765.28 11109.28 14675.36 21209.44 35086.24
SR8 1168.24 1636.08 2424.20 4111.28 7293.68

SR9 3086.52 4118.92 6917.08 12427.96 23385.64
SR10 2244.42 2549.59 3266.32 4848.45 8007.34

SR11 2805.00 3252.00 4728.00 7566.00 13137.00
SR12 2610.00 3150.00 4458.00 7071.00 12126.00
SR13 3288.00 4002.00 5775.00 9282.00 16107.00
SR14 2621.85 3175.35 4445.46 6888.46 11984.87
SR15 3928.29 4767.91 6506.37 10046.40 17129.19
SR16 151316.76 | 157394.58 | 176256.78 | 229490.10 | 324220.26
SR17 488461.05 | 492307.20 | 508973.85 | 532050.75 | 614956.65
SR18 477756.00 | 491832.00 | 522468.00 | 549378.00 | 602784.00
SR19 820699.87 | 779612.20 | 816485.75 | 822806.93 | 819646.34
SR20 8634.66 16188.78 31116.24 61484.52 | 121368.24
SR21 6413.594 8491.262 12703.60 | 20979.521 | 39082.485
SR22 22566.968 | 28822.087 | 42961.655 | 69578.56 | 127390.40
SR23 63907.20 85311.04 | 131567.68 | 231283.20 | 406672.96
SR24 140052.00 | 165250.75 | 247478.25 | 392039.50 | 659146.25

Table 22: Average number of iterations of the method UBCDM with multiple
threads applied to SR* problems.

50

Threads | 2T AT 8T 16T
Problem
SR1 0.12204 | 0.12296 | 0.11422 | 0.084881 | 0.07406
SR2 0.09174 | 0.08349 | 0.08109 | 0.05328 | 0.04713
SR3 0.15507 | 0.14088 | 0.13083 | 0.11519 | 0.10124
SR4 0.34371 | 1.0583 | 1.0015 | 0.42095 | 0.46745
SR5 0.01458 | 0.01119 | 0.01128 | 0.01088 | 0.01231
SR6 42099 | 25719 | 2.7691 | 3.1289 | 2.4748
SR7 0.18007 | 0.15135 | 0.12963 | 0.11744 | 0.15223
SRS 0.07767 | 0.06294 | 0.05484 | 0.06459 | 0.10173
SR9 0.17433 | 0.10103 | 0.08768 | 0.08335 | 0.05565
SR10 0.00762 | 0.00437 | 0.00357 | 0.00322 | 0.00289
SRI11 0.04584 | 0.04309 | 0.03011 | 0.02309 | 0.01515
SR12 0.03725 | 0.03725 | 0.02650 | 0.01827 | 0.01363
SR13 0.03970 | 0.03610 | 0.02612 | 0.02095 | 0.01419
SR14 0.01734 | 0.01678 | 0.01231 | 0.00997 | 0.00698
SR15 0.00683 | 0.00597 | 0.00457 | 0.00401 | 0.00362
SR16 0.38503 | 0.24950 | 0.19520 | 0.13857 | 0.10617
SR17 6.4437 | 4.1870 | 2.2757 | 1.2959 | 0.95778
SRIS 5.8721 | 3.5825 | 2.2175 | 1.0538 | 0.67153
SR19 0.12541 | 0.11877 | 0.09052 | 0.04643 | 0.03832
SR20 17.756 | 17.026 | 21.898 | 24.447 | 30.689
SR21 0.00370 | 0.00578 | 0.00435 | 0.00370 | 0.00305
SR22 0.00771 | 0.00773 | 0.00853 | 0.00693 | 0.00573
SR23 0.04416 | 0.03126 | 0.02228 | 0.01383 | 0.01703
SR24 0.07214 | 0.06993 | 0.04541 | 0.04876 | 0.02918

Table 23: Running time of the method PCDM with multiple threads applied to
SR* problems.

o1

Ratio
Problem 1T/2Tr | 1T/4T | 1T/8T | 1T/16T
SR1 0.99251 | 1.06846 | 1.43778 | 1.64785
SR2 1.09871 | 1.13125 | 1.72159 | 1.94616
SR3 1.10072 | 1.18528 | 1.34621 | 1.53171
SR4 0.32477 | 0.34319 | 0.81651 | 0.73528
SR5 1.30352 | 1.29266 | 1.33979 | 1.18475
SR6 1.63688 | 1.52031 | 1.34549 | 1.70111
SR7 1.18976 | 1.38911 | 1.53329 | 1.18288
SR8 1.23411 | 1.41631 | 1.20247 | 0.76355
SR9 1.72553 | 1.98825 | 2.09144 | 3.13216
SR10 1.74212 | 2.13343 | 2.36569 | 2.63819
SR11 1.06387 | 1.52238 | 1.98493 | 3.02488
SR12 1.00000 | 1.40575 | 2.03930 | 2.73233
SR13 1.09968 | 1.51991 | 1.89473 | 2.79659
SR14 1.03324 | 1.40814 | 1.73840 | 2.48232
SR15 1.14384 | 1.49311 | 1.69968 | 1.88493
SR16 1.54321 | 1.97249 | 2.77860 | 3.62654
SR17 1.53898 | 2.83152 | 4.97237 | 6.72775
SR18 1.63911 | 2.64807 | 5.57231 | 8.74436
SR19 1.05591 | 1.38542 | 2.70082 | 3.27194
SR20 1.04288 | 0.81085 | 0.72630 | 0.57857
SR21 0.64005 | 0.85129 | 0.99865 | 1.21165
SR22 0.99767 | 0.90393 | 1.11246 | 1.34495
SR23 1.41261 | 1.98223 | 3.19294 | 2.59324
SR24 1.03157 | 1.58875 | 1.4795 | 2.47207

Table 24: Running time ratio between PCDM-1/PCDM-k with k € {2,4, 8,16},
applied to SR* problems.

92

Threads 17 2T AT 8T 16T
Problem
SR1 2952.0 | 5170.92 | 6258.24 | 7165.98 | 7867.08
SR2 2214.0 | 3444.0 | 4466.13 | 4250.88 | 5033.16
SR3 4305.0 | 6642.0 | 8141.37 | 10830.15 | 12315.99
SR4 1260.0 | 8195.04 | 1108548 | 8328.6 | 14467.32
SR5 2160.0 | 2280.6 3434.4 5601.6 7803.0
SR6 30831.0 | 31540.83 | 52591.95 | 106338.27 | 150892.65
SR7 10976.0 | 15444.8 | 20916.0 | 28716.8 | 40237.12
SRS 1360.0 | 1765.96 | 2415.36 4154.8 68%6.36
SR9 2492.0 | 2484.88 | 3560.0 6724.84 | 783556
SR10 3223.0 | 2044.73 | 1758.0 217511 | 2608.81
SRI11 1800.0 | 3294.0 3600.0 4500.0 4500.0
SR12 1500.0 | 3291.0 3303.0 3606.0 4263.0
SR13 2100.0 | 3597.0 3975.0 5397.0 5526.0
SR14 1800.0 | 3291.0 3600.0 4116.0 4332.0
SR15 3280.0 | 4167.46 | 3915.11 | 537243 | 5214.86
SR16 146706.0 | 125748.0 | 125748.0 | 125748.0 | 146706.0
SR17 384615.0 | 384615.0 | 341880.0 | 342307.35 | 427350.0
SR18 538200.0 | 496800.0 | 538200.0 | 401994.0 | 412344.0
SR19 632118.0 | 842824.0 | 1158883.0 | 632118.0 | 737471.0
SR20 7866.0 | 12696.0 | 25325.76 | 45410.28 | 86491.5
SR21 3081.0 | 8842.78 | 5135.0 6280.93 | 3717.33
SR22 0888.0 | 13184.0 | 23170.8% | 20232.83 | 16282.24
SR23 50720.0 | 50720.0 | 40576.0 | 20288.0 | 53357.44
SR24 79575.0 | 132625.0 | 106100.0 | 185675.0 | 106100.0

Table 25: Average number of iterations of the method PCDM with multiple
threads applied to SR* problems.

]

Threads
Problem 1T 2T 4T 8T 16T
SR1 0.02429 | 0.02678 | 0.02431 | 0.02913 | 0.0336
SR2 0.01820 | 0.02011 | 0.01835 | 0.02183 | 0.02546
SR3 0.02629 | 0.02958 | 0.02877 | 0.0334 | 0.04079
SR4 0.19722 | 0.29489 | 0.26163 | 0.27652 | 0.25714
SR5 0.00506 | 0.00859 | 0.01233 | 0.02394 | 0.00950
SR6 0.60193 | 0.90691 | 0.75186 | 0.70294 | 0.65568
SR7 0.02279 | 0.03072 | 0.03349 | 0.04509 | 0.04320
SR8 0.01299 | 0.01961 | 0.01952 | 0.02426 | 0.02445
SR9 0.05282 | 0.07261 | 0.06423 | 0.0702 | 0.06393
SR10 0.00097 | 0.00095 | 0.00095 | 0.00138 | 0.00128
SR11 0.01469 | 0.01099 | 0.00922 | 0.00933 | 0.01218
SR12 0.01219 | 0.00962 | 0.00801 | 0.00836 | 0.01094
SR13 0.01083 | 0.00961 | 0.00823 | 0.00885 | 0.0116
SR14 0.00455 | 0.00382 | 0.00338 | 0.00380 | 0.00455
SR15 0.00094 | 0.00106 | 0.00111 | 0.00166 | 0.00174
SR16 0.07538 | 0.04996 | 0.02997 | 0.02362 | 0.02170
SR17 1.75288 | 0.98794 | 0.56279 | 0.34571 | 0.29011
SR18 1.24088 | 0.71877 | 0.41257 | 0.24972 | 0.21352
SR19 0.02077 | 0.01222 | 0.00705 | 0.00459 | 0.00457
SR20 2.86415 | 6.61739 | 7.38814 | 8.33419 | 7.72298
SR21 0.00041 | 0.00049 | 0.00062 | 0.00083 | 0.00085
SR22 0.00141 | 0.00148 | 0.00193 | 0.00242 | 0.00237
SR23 0.00774 | 0.00737 | 0.00943 | 0.01241 | 0.01129
SR24 0.01813 | 0.01595 | 0.01641 | 0.02417 | 0.02061

Table 26: Running time of the method PA-10 with multiple threads applied to
SR* problems.

o4

Ratio
Problem 2T/1T | 4AT/1T | 8T/1T | 16T/1T
SR1 0.90702 | 0.99917 | 0.83384 | 0.72291
SR2 0.90502 | 0.99182 | 0.83371 | 0.71484
SR3 0.88877 | 0.91379 | 0.78712 | 0.64452
SR4 0.66879 | 0.75381 | 0.71322 | 0.76697
SR5 0.58917 | 0.41046 | 0.21140 | 0.53273
SR6 0.66371 | 0.80058 | 0.85630 | 0.91802
SR7 0.74186 | 0.68050 | 0.50543 | 0.52754
SRS 0.66241 | 0.66547 | 0.53544 | 0.53128
SR9 0.72744 | 0.82235 | 0.75242 | 0.82621
SR10 1.01981 | 1.01981 | 0.70818 | 0.76287
SR11 1.33667 | 1.59328 | 1.57398 | 1.20608
SR12 1.26649 | 1.52071 | 1.45691 | 1.11426
SR13 1.12695 | 1.31464 | 1.22262 | 0.93041
SR14 1.1921 | 1.34564 | 1.19805 | 1.00110
SR15 0.89359 | 0.85112 | 0.57065 | 0.54508
SR16 1.50881 | 2.51518 | 3.19136 | 3.47373
SR17 1.77428 | 3.11463 | 5.07038 | 6.04212
SR18 1.72639 | 3.00768 | 4.96909 | 5.81154
SR19 1.69967 | 2.94359 | 4.51915 | 4.53989
SR20 0.43282 | 0.38766 | 0.34366 | 0.37086
SR21 0.82828 | 0.65390 | 0.49338 | 0.47785
SR22 0.95020 | 0.72933 | 0.58250 | 0.59578
SR23 1.05031 | 0.82142 | 0.62417 | 0.68609
SR24 1.13668 | 1.10481 | 0.75010 | 0.87967

Table 27: Running time ratio between PA-10-1/PA-10-k with k € {2,4, 8,16},
applied to SR* problems.

99

Threads 1T 2T AT 8T 16T
Problem
SRI1 685.11 907.74 1291.50 | 2102.07 | 3713.37
SR2 562.11 709.71 1001.22 | 1627.29 | 2858.52
SR3 880.68 1132.83 | 1725.69 | 274044 | 5109.42
SR4 1120.14 | 1679.58 | 261324 | 4393.62 | 7247.52
SR5 1809.09 | 2384.62 | 3450.60 | 5583.60 | 8894.72
SR6 5384.67 | 7614.54 | 11464.83 | 19043.52 | 31971.03
SR7 1682.24 | 2261.28 | 369040 | 6588.96 | 11966.08
SRS 398.48 584.80 981.92 174352 | 3289.84
SR9 1384.84 | 184052 | 2961.92 | 5283.04 | 10096.16
SR10 783.63 881.53 1127.90 | 1667.35 | 2778.62
SRI11 873.00 960.00 1337.62 | 2069.44 | 3576.00
SR12 852.00 949.04 1269.60 | 1995.00 | 3399.00
SR13 915.00 1122.86 | 1556.56 | 2490.27 | 4374.00
SR14 855.00 953.82 1296.28 | 1984.79 | 3415.091
SR15 989.48 1188.07 | 1616.00 | 2512.20 | 4249.96
SR16 45478.86 | 45059.70 | 45059.70 | 57215.34 | 63921.90
SR17 125640.91 | 126495.60 | 126922.95 | 129059.70 | 131623.80
SRIS 122130.00 | 123786.00 | 124200.00 | 125028.00 | 129582.00
SR19 212813.06 | 214920.12 | 213673.69 | 213605.62 | 215035.58
SR20 1780.20 | 3207.12 | 5964.36 | 11659.62 | 23047.38
SR21 216559 | 2306.94 | 2855.00 | 3753.45 | 5649.38
SR22 6768.90 | 7111.13 | 9269.60 | 11867.20 | 17425.06
SR23 20444.06 | 20959.29 | 28441.12 | 36315.52 | 55589.12
SR24 53050.00 | 53050.00 | 56233.00 | 79575.00 | 106100.00

Table 28: Average number of iterations of the method PA-10 with multiple
threads applied to SR* problems.

96

	Introduction
	Background
	On the sequential Active BCDM
	Parallel Active BCDM
	Descent directions for the method
	Convergence results

	Numerical tests
	A controlled and highly favorable scenario
	A realistic scenario

	Final remarks
	Appendix
	Tables - Datasets Ne
	Tables - Datasets SC
	Tables - Datasets SR

