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Abstract. Sequential optimality conditions for constrained optimization are necessarily
satisfied by local minimizers, independently of the fulfillment of constraint qualifica-
tions. These conditions support the employment of different stopping criteria for prac-
tical optimization algorithms. On the other hand, when an appropriate property on the
constraints holds at a point that satisfies a sequential optimality condition, such a point
also satisfies the Karush-Kuhn-Tucker conditions. Those properties will be called strict
constraint qualifications in this paper. As a consequence, for each sequential optimality
condition, it is natural to ask for its weakest strict associated constraint qualification. This
problem has been solved in a recent paper for the Approximate Karush-Kuhn-Tucker
sequential optimality condition. In the present paper, we characterize the weakest strict
constraint qualifications associated with other sequential optimality conditions that are
useful for defining stopping criteria of algorithms. In addition, we prove all the impli-
cations between the new strict constraint qualifications and other (classical or strict)
constraint qualifications.
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1. Introduction
We will consider finite-dimensional constrained optimization problems defined by

Minimize f (x) subject to h(x)� 0, g(x) ≤ 0, (1)

where f : �n→�, h: �n→�m , and g: �n→�p have at least continuous first-order derivatives.
It is well known that optimization problems like (1) cannot be solved efficiently in the general case. Actually, it

is not even possible to characterize a global, or local, minimum using only information at a single point. Hence,
in many cases, we must settle into searching for feasible points that conform to a condition that is necessary
for optimality. Arguably, the most important of such conditions is the Karaush-Kuhn-Tucker condition (KKT)
which is only guaranteed to hold under special Constraint Qualifications (CQs) (see Bertsekas [10], Nocedal
and Wright [34]).

Algorithms to solve (1) are usually iterative and generate sequences that approximately fulfill a necessary opti-
mality condition. Hopefully such sequences converge to points that satisfy a condition like KKT, that depends
only on information at a single point. This leads directly to the definition of a Sequential Optimality Conditions
(Martínez and Svaiter [31], Andreani et al. [2]). Sequential Optimality Conditions are properties of feasible
points of (1) that are necessarily satisfied by any local minimizer x∗ and are formulated in terms of sequences
that converge to x∗. Typically they are based on an inexact version of a point-based condition that gets closer and
closer to being satisfied. For example, the most popular sequential optimality condition is AKKT (Approximate
Karush-Kuhn-Tucker), which is satisfied by a feasible point x∗ if there exist sequences xk→ x∗, {λk} ⊂ �m , and
{µk} ⊂ �p

+ such that

lim
k→∞

(
∇ f (xk)+

m∑
i�1
λk

i∇hi(xk)+
p∑

i�1
µk

i∇gi(xk)
)
� 0 (2)

and
lim
k→∞

min{µk
i ,−gi(xk)} � 0, for all i � 1, . . . , p. (3)

This condition is clearly associated to KKT.
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Up to our knowledge, Qi and Wei were the first to explicitly talk about approximate KKT conditions while
they were analyzing the convergence of a sequential quadratic programming algorithm (Qi and Wei [35]). After
this work, different sequential optimality conditions were developed, usually in association with the convergence
analysis of computational methods. For example, Scaled AKKT (SAKKT) appeared in Cartis et al. [17, 18]
and Wächter and Biegler [37]. The denomination “sequential optimality condition” was first used by Martínez
and Svaiter [31]. This work also introduced the Approximate Gradient Projection condition (AGP). A textbook
analysis of sequential optimality conditions is given in Birgin and Martínez [12]. The Linear AGP was introduced
in Andreani et al. [2], where many properties of sequential optimality conditions and internal relations were
elucidated. Complementarity AKKT (CAKKT) was given in Andreani et al. [4], together with the proof that,
under a Lojasiewicz inequality, some Augmented Lagrangian methods generate sequences that satisfy it is as
Lojasiewicz inequality (see Łojasiewicz [26] and Bolte et al. [14]).

In contrast to KKT, sequential optimality conditions like AKKT are satisfied by any local minimizer indepen-
dently of the fulfillment of constraint qualifications (see the references cited previously). For instance, the KKT
conditions do not hold at the minimizer of x subject to x2 � 0, but AKKT does. Therefore, it is natural to ask
under which conditions it is possible to “pass into the limit” and ensure the validity of KKT at points that
fulfill a sequential optimality condition. In particular, we may be interested in what condition the description
of the constraints has to fulfill at a point that satisfies a sequential optimality condition to ensure that it also
satisfies KKT, independently of the objective function. These conditions will be called Strict Constraint Qualifica-
tions (Birgin and Martínez [12]). It is important to emphasize that the validity of a strict constraint qualification
would ensure the convergence to KKT points whenever an algorithm generates a sequence conforming to the
respective sequential optimality condition.
Recall that a constraint qualification is a property of feasible points of the constrained optimization problem

that, when satisfied by a local minimizer, implies that such a minimizer satisfies KKT. Since, on the other
hand, all local minimizers satisfy sequential optimality conditions, strict constraint qualifications are, in fact,
constraint qualifications. The reciprocal is not true. For instance, Abadie’s constraint qualification (Abadie [1])
and Quasinormality (Bertsekas [10], Hestenes [24]) are constraint qualifications that are not strict constraint
qualifications related with AKKT (see Andreani et al. [7]).

The strength, or strictness, of a sequential optimality condition is associated with the weakness, or generality,
of the associated strict constraint qualifications. In fact, every sequential optimality condition implies “KKT or
not-SCQ,” for some strict constraint qualifications SCQ. Hence a weak, or general, SCQ corresponds to a strong,
or strict, sequential optimality condition. In this sense, it is also important to ask which is the weakest strict
constraint qualification associated with each sequential optimality condition. For example, in Andreani et al. [7],
it has been proved that the weakest strict constraint qualification associated with AKKT is the so-called Cone
Continuity Property (CCP) (see Andreani et al. [7, definition 3.1]).

In this paper, we aim to discover the weakest strict constraint qualifications associated with a number of
interesting sequential optimality conditions. We also intend to provide geometrical interpretations of the strict
constraint qualifications, as in the case of CCP. We hope that this type of research will be useful from a practical
point of view because sequential optimality conditions are linked in a natural way to stopping criteria for
numerical algorithms. For example, a stopping criterion associated with AKKT may be given by∇ f (xk)+

m∑
i�1
λk

i∇hi(xk)+
p∑

i�1
µk

i∇gi(xk)
 ≤ ε, (4)

‖h(xk)‖ ≤ ε, ‖max{0, g(xk)}‖ ≤ ε and |min{µk
i , gi(xk)}| ≤ ε, for all i � 1, . . . , p , (5)

where xk is the sequence generated by the algorithm under consideration and ε is an error tolerance.
Many optimization algorithms use different approximations of the KKT conditions, like the AKKT condition

presented above, as stopping criterion. This gives rise to an interesting algorithmic question: which is the “best”
form for an approximate KKT condition? This paper starts by analyzing an alternative that became popular in
the last 10 years, which is called Scaled-AKKT (see Section 2 for definitions and details). It shows that Scaled-
AKKT is equivalent to KKT or not-MFCQ, which is an interesting result but not strong enough. Even more,
Scaled-AKKT may hold at points that are very distant from minimizers. The strength of an approximate KKT
condition, or any sequential optimality condition, is related to the constraint qualification that guarantees that
its fulfillment implies first order stationarity. Usually, sequential optimality conditions are equivalent to KKT or
not-CQ, for some constraint qualification CQ. Therefore a weak, or less demanding, CQ would be associated to
a sequential optimality condition that is able to ensure the validity of first order stationarity in more general,
degenerate, cases. The Scaled-AKKT condition is not strong enough because MFCQ is not weak enough. In
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this paper, we study the weakest constraint qualifications associated with AKKT, AGP, and CAKKT, which
are sequential optimality conditions associated with actual numerical algorithms. We also show that these
conditions are in (strict) increasing order of strength, being able to tackle different levels of degeneracy in the
constraints that may appear in real problems formulations and still ensure convergence to first order stationary
points. As a consequence of these results, we present an updated landscape of constraint qualifications, strict
constraint qualifications, and sequential optimality conditions.
This paper is organized as follows. In Section 2, we give a motivating example where we address the only

sequential optimality condition considered in this paper that is weaker than AKKT. It will be instructive to real-
ize that the corresponding strict constraint qualification will be stronger than the strict constraint qualifications
associated with other sequential optimality conditions. In Section 4, we discover the weakest strict constraint
qualifications associated with AGP (Approximate Gradient Projection), CAKKT (Complementary AKKT), LAGP
(Linear AGP) and SAKKT (Strong-AKKT; Haeser and Schuverdt [23]) sequential optimality conditions. In all
these cases, we will stress the geometrical meaning of the strict constraint qualifications so far obtained. Sec-
tion 4 will be preceded by Section 3, in which we introduce the necessary background for the rest of the paper.
In Section 5, we show the relations among the new introduced strict constraint qualifications, whereas in Sec-
tion 6, we establish the relations with well-known constraint qualifications. Finally, in Section 7, we state some
conclusions and lines for future research.

Notation
We will employ the standard notation of Borwein and Lewis [15], Mordukhovich [33], and Rockafellar and
Wets [36]. � denotes the set of natural numbers, and �n stands for the n-dimensional real Euclidean space. We
denote by � the closed unit ball in �n , and by �(x , η) :� x + η� the closed ball with center x and radius η > 0.
�+ is the set of positive scalars, �− is the set of negative scalars, and a+ � max{0, a}, the positive part of a. We
use 〈·, ·〉 to denote the Euclidean inner product, and ‖ · ‖ is the associated norm. We use ‖ · ‖∞ for the supremum
norm. Given a set-valued mapping (multifunction) F: �s⇒�d , the sequential Painlevé-Kuratowski outer/upper limit
of F(z) as z→ z∗ is denoted by

lim sup
z→z∗

F(z) :�
{

w∗ ∈ �d : ∃ (zk ,wk)→ (z∗ ,w∗) with wk ∈ F(zk)
}

(6)

and the inner limit by

lim inf
z→z∗

F(z) :�
{

w∗ ∈ �d : ∀ zk→ z∗ ∃wk→ w∗ with wk ∈ F(zk)
}
. (7)

2. Example: The Scaled-AKKT Condition
The Scaled-AKKT condition provides a simple example for the type of analysis that will be done in this paper
with respect to stronger sequential optimality conditions.
Let us consider feasible sets of the form

{x ∈ �n : h(x)� 0, g(x) ≤ 0}, (8)

where h: �n→�m and g: �n→�p admit continuous first derivatives on �n .
The Scaled-AKKT condition is said to hold at a feasible point x∗ of (1), if there exists a sequence {xk} that

converges to x∗, and sequences {λk} ⊂ �m and {µk} ⊂ �p
+, such that (3) holds and

lim
k→∞

max{1, ‖λk ‖∞ , ‖µk ‖∞}−1

∇ f (xk)+
m∑

i�1
λk

i∇hi(xk)+
p∑

i�1
µk

i∇gi(xk)
� 0. (9)

This property is frequently associated with stopping criteria of modern practical optimization algorithms
like IPOPT (Wächter and Biegler [37]) and new algorithms that motivate interesting complexity results (Cartis
et al. [17]). Clearly, AKKT implies Scaled-AKKT, so Scaled-AKKT is a sequential optimality condition. We will
show that the weakest strict constraint qualification associated with Scaled-AKKT is:

MFCQ or
[{ m∑

i�1
λi∇hi(x∗)+

∑
g j (x∗)�0

µ j∇g j(x∗): λ ∈ �m , µ j ∈ �
p
+

}
��n

]
(10)

where MFCQ is the Mangasarian-Fromovitz Constraint Qualification (Bertsekas [10], Mangasarian and
Fromovitz [27]).
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First, note that (10) is a strict constraint qualification associated with Scaled-AKKT. Indeed, if {∑m
i�1 λi∇hi(x∗)+∑

g j (x∗)�0 µ j∇g j(x∗): λ ∈�m , µ j ∈�
p
+}��n it turns out that the cone generated by the gradients of active constraints

at x∗ is the whole space �n . Then, x∗ satisfies KKT independently of the objective function. Suppose now that
a feasible point x∗ of (1) satisfies the Scaled-AKKT condition (i.e., (3) and (9)) and MFCQ. Then, if the set
{λk , µk , k ∈�} is bounded, KKT follows from (9) and (3) taking limits on an appropriate subsequence. If the set
{λk , µk , k ∈ �} is unbounded, by (9) and (3), we have that

lim
k→∞

[ ∇ f (xk)
max{1, ‖λk ‖∞ , ‖µk ‖∞}

+

m∑
i�1
λ̃k

i∇hi(xk)+
∑

gi (x∗)�0
µ̃k

i∇gi(xk)
]
� 0,

where the set {λ̃k , µ̃k , k ∈ �} is bounded and, for all k, we have that max{‖λ̃k ‖∞ , ‖µ̃k ‖∞} � 1. Therefore, taking
an appropriate subsequence, we have that there exist λ ∈ �m and µ ∈ �p

+ with max{‖λ‖∞ , ‖µ‖∞} � 1, such that
m∑

i�1
λi∇hi(x∗)+

∑
g j (x∗)�0

µ j∇g j(x∗)� 0. (11)

Therefore, x∗ does not satisfy MFCQ. This completes the proof that (10) is a strict constraint qualification
associated with Scaled-AKKT.
Let us prove now that (10) is the weakest strict constraint qualification associated with Scaled-AKKT. Assume

that x∗ satisfies (8) and does not satisfy (10). Then, there exist λ ∈ �m , µ ∈ �p
+ with max{‖λ‖∞ , ‖µk ‖∞} � 1,

such that (11) holds. Since x∗ does not satisfy (10), there exists a nonnull c ∈ �n such that c is not a linear
combination of the gradients ∇hi(x∗) and ∇g j(x∗) for j: g j(x∗) � 0, with nonnegative coefficients corresponding
to the inequality gradients. Therefore, x∗ is not a KKT point of the problem (1) for f (x) � 〈x , c〉, x ∈ �n . Now
take xk � x∗ for all k ∈ �. By (11), for all k we have:

∇ f (xk)+
m∑

i�1
kλi∇hi(xk)+

∑
gi (x∗)�0

kµi∇gi(xk)�∇ f (xk)� c.

So, since max{‖kλ‖∞ , ‖kµ‖∞} � k, we have that the Scaled-AKKT condition holds replacing λk and µk with kλ
and kµ respectively.

3. Definitions and Basic Results
In this section, we review some basic concepts and results that will be used later on.

We say that F is outer semicontinuous (osc) at z∗ if

lim sup
z→z∗

F(z) ⊂ F(z∗). (12)

We say that F is inner semicontinuous (isc) at z∗ if

F(z∗) ⊂ lim inf
z→z∗

F(z). (13)

When F is inner semicontinuous and outer semicontinuous at z∗, we say that F is continuous at z∗. Given
the set S, the symbol z→S z∗ means that z→ z∗ with z ∈ S. For a cone K ⊂ �s , its polar (negative dual) is
K◦ � {v ∈ �s | 〈v , k〉 ≤ 0 for all k ∈K}. We use the notation φ(t) ≤ o(t) for any function φ: �+→ �s such that
lim supt→0+

t−1φ(t) ≤ 0.
Given S ⊂ �n and z∗ ∈ S, define the (Bouligand-Severi) tangent/contingent cone to S at z∗ by

TS(z∗) :� lim sup
t↓0

S− z∗

t
� {d ∈ �n : ∃ tk ↓ 0, dk→ d with z∗ + tk dk ∈ S}. (14)

The (Fréchet) regular normal cone to S at z∗ ∈ S is defined as

N̂S(z∗) :� {w ∈ �n : 〈w , z − z∗〉 ≤ o(|z − z∗ |) for z ∈ S}. (15)

The (Mordukhovich) limiting normal cone to S at x∗ ∈ S is

NS(z∗) :� lim sup
z→S z∗

N̂S(z). (16)
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For general sets, we have the inclusion N̂S(z∗) ⊂ NS(z∗) for all z∗ ∈ S. When S is a convex set, both regular and
limiting normal cones reduce to the classical normal cone of convex analysis and then the common notation
NS(z∗) is used. Furthermore, there is a nice relation between the Euclidean projection and the normal cone, as
the next proposition shows. Recall that the Euclidean projection onto a closed set S, denoted by PS, is defined
as, PS(z) :� arg min Inf{‖z − s‖: s ∈ S}.
Proposition 1 (Rockafellar and Wets [36, Proposition 6.17]). Let C be a nonempty convex closed set and x ∈ C. Then,
ω ∈ NC(x) if and only if PC(x +ω)� x.

Now, denote by Ω the feasible set associated with (1), Ω :� {x ∈ �n | h(x) � 0, g(x) ≤ 0}. Let J(x∗) be the set
of indices of active inequality constraints. Let x∗ ∈ Ω be a local minimizer of (1). The geometrical first-order
necessary optimality condition states that 〈∇ f (x∗), d〉 ≥ 0 for all d ∈ TΩ(x∗) (see for instance Rockafellar and
Wets [36], Borwein and Lewis [15], Bertsekas [10]). In other words,

−∇ f (x∗) ∈ TΩ(x∗)◦. (17)

Associated with the tangent cone, we define the linearized cone LΩ(x∗) as follows.

LΩ(x∗) :�
{

d ∈ �n | 〈∇hi(x∗), d〉 � 0, ∀ i ∈ {1, . . . ,m}, 〈∇g j(x∗), d〉 ≤ 0, ∀ j ∈ J(x∗)
}
. (18)

LΩ(x∗) can be considered as the first-order linear approximation of the tangent cone TΩ(x∗). If x∗ ∈Ω satisfies

TΩ(x∗)◦ � LΩ(x∗)◦ , (19)

we have that, by the geometric first-order necessary optimality condition (17), the KKT conditions hold at x∗.
The condition (19) was introduced by Guignard [22]. Gould and Tolle [21] proved that Guignard’s condition (19)
is the weakest constraint qualification that guarantees that a local minimizer satisfies KKT. Another well-known
CQ is the Abadie’s constraint qualification, which is stronger than Guignard’s CQ and reads LΩ(x∗)� TΩ(x∗).

Several other constraint qualifications have been proposed in the literature; for instance, we can mention
CRCQ (Janin [25]), RCRCQ (Minchenko and Stakhovski [32]), CPLD (Qi and Wei [35], and Andreani et al. [3]),
RCPLD (Andreani et al. [6]), Pseudonormality (Bertsekas and Ozdaglar [11]), Quasinormality (Hestenes [24]),
and CRSC and CPG (Andreani et al. [8]). Recently, the Cone Continuity Property (CCP) was introduced in
Andreani et al. [7], it turns out to be the weakest strict CQ associated with AKKT. CCP states the continuity of
the set-valued mapping x ∈ �n⇒ K(x) at a feasible point x∗, where

K(x)�
{ m∑

i�1
λi∇hi(x)+

∑
j∈ J(x∗)

µ j∇g j(x): µ j ∈ �+ , λi ∈ �
}
. (20)

It is worth to note that the outer semi-continuity of K(x) at x∗ is sufficient to imply the continuity of K(x) at the
same point, since K(x) is always inner semicontinuous at x∗.

4. Weakest Strict Constraint Qualifications Associated with Sequential
Optimality Conditions

The name of the weakest strict constraint qualification associated with AKKT was motivated by its obvious
geometrical meaning. However, in the case of other sequential optimality conditions, the geometrical meaning
of the respective weakest strict constraint qualification is not so obvious. Therefore, we decided to name them
after the corresponding sequential optimality condition. For example, if we apply this rule to the case of AKKT,
we have that “AKKT-regularity” becomes an alternative denomination for CCP. If we apply the same convention
to Scaled-AKKT, we say that “Scaled-AKKT regularity” holds at x∗ iff (10) is valid. The points that satisfy (10)
should be called Scaled-AKKT-regular.

4.1. Weakest Strict Constraint Qualification Associated with the Approximate Gradient
Projection Condition

The AGP optimality condition was introduced by Martínez and Svaiter [31]. Given a scalar γ ∈ [−∞, 0], we say
that a feasible point x∗ ∈Ω, satisfies AGP(γ) for (1) if there is a sequence {xk} with xk→ x∗ such that

PΩ(xk , γ)(xk −∇ f (xk)) − xk→ 0, (21)
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where PΩ(xk , γ) is the orthogonal projection onto the closed convex set Ω(xk , γ), defined as

Ω(xk , γ) :�
z ∈ �n :

〈∇hi(xk), z − xk〉 � 0, for all i ∈ {1, . . . ,m}
〈∇g j(xk), z − xk〉 ≤ 0, if 0 ≤ g j(xk)
g j(xk)+ 〈∇g j(xk), z − xk〉 ≤ 0, if γ < g j(xk) < 0 (when γ , 0)

 . (22)

It was shown in Martínez and Svaiter [31] that AGP(γ) is independent of the parameter γ for γ ∈ [−∞, 0);
that is, if AGP(γ) holds for some γ ∈ [−∞, 0), then AGP(γ′) holds for every γ′ ∈ [−∞, 0). In this case, we just
write AGP instead of AGP(γ). AGP(0) is equivalent to the sequential optimality condition SAKKT (Haeser and
Schuverdt [23]).
The set Ω(xk , γ) can be considered as a linear approximation ofz ∈ �n :

hi(z)� hi(xk), for all i ∈ {1, . . . ,m}
g j(z) ≤ g j(xk), if 0 ≤ g j(xk)
g j(z) ≤ 0, if γ < g j(xk) < 0 (when γ , 0)

 . (23)

One of the attractiveness of AGP is that it does not involve Lagrange multipliers estimates. AGP is the
natural optimality condition that fits stopping criteria for algorithms based on inexact restoration (Martínez [28],
Martínez and Pilotta [30], Fischer and Friedlander [20], Bueno et al. [16], Birgin et al. [13]), and is strictly stronger
than the usual AKKT condition. Consequently, the stopping criteria based on AGP are more reliable that those
based on AKKT.

Note that the natural stopping criterion associated with AGP is:

‖h(x)‖ ≤ εfeas , ‖max{0, g(x)}‖ ≤ εfeas and ‖PΩ(x , γ)(x −∇ f (x)) − x‖ ≤ εopt , (24)

where εfeas and εopt are user-given tolerances.
AGP-regularity constraint qualification is defined below.

Definition 1. We say that AGP-regularity holds at the feasible point x∗ if the set-valued mapping

(x , ε) ∈ �n ×�n⇒NΩ(x ,−∞)(x + ε) (25)

is outer semicontinuous at (x∗ , 0); that is,

lim sup
(x , ε)→(x∗ , 0)

NΩ(x ,−∞)(x + ε) ⊂ NΩ(x∗ ,−∞)(x∗)� LΩ(x∗)◦. (26)

Since the set Ω(x ,−∞) is defined by linear inequality and equality constraints, the normal cone NΩ(x ,−∞)(x+ ε)
admits the geometrical interpretation given by the following proposition.

Proposition 2. Every element of NΩ(x ,−∞)(x + ε) has the form
m∑

i�1
λi∇hi(x)+

∑
j:g j (x)≥0

µ1 j∇g j(x)+
∑

j:g j (x)<0
µ2 j∇g j(x),

where λi ∈ �, µ1 j ∈ �+, µ2 j ∈ �+,

µ1 j(〈∇g j(x), ε〉)� 0, if g j(x) ≥ 0, and µ2 j(g j(x)+ 〈∇g j(x), ε〉)� 0, if g j(x) < 0.

By the polarity theorem in Aubin and Frankowska [9, theorem 1.1.8], the outer semicontinuity of
NΩ(x ,−∞)(x + ε) at (x , ε) � (x∗ , 0) is equivalent to the inner semicontinuity at (x , ε) � (x∗ , 0) of LΩ(x ,−∞)(x + ε), the
tangent cone of Ω(x ,−∞) at x+ ε. That is, for each d ∈ LΩ(x∗), and for arbitrary sequences xk and εk with xk→ x∗

and εk→ 0, there exists a sequence dk ∈ LΩ(xk ,−∞)(xk + εk) such that dk→ d. Figure 1 shows an example where
AGP-regularity holds.
The next Theorem 1 shows that the outer semicontinuity of NΩ(x ,−∞)(x + ε) at (x∗ , 0) is the minimal condition

to guarantee that AGP implies KKT for every objective function. Thus, AGP-regularity is the weakest strict
constraint qualification associated with AGP.

Theorem 1. AGP-regularity is the weakest strict constraint qualification associated with AGP.
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Figure 1. (Color online) Example of the cone mappings associated to the AKKT and AGP conditions.
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Notes. The shaded area is the feasible set composed of the intersection of two circles. The point of interest is x∗ � 0. There are three sample
sequences converging to x∗. The sequences {xk}, {x̂k}, and {x̃k} are infeasible with respect to both constraints, infeasible with respect to
only one constraint, and strictly feasible respectively. AKKT-regularity and AGP-regularity basically state that the possible limits of the
vectors from the respective green cones must belong to the blue cone which is the normal of the linearized cone at x∗. Note that the cones
associated to AKKT always take into account all the active constraints at x∗, while the cones associated with AGP only take into account the
constraints that are binding or violated. It is also interesting to observe the effect of the possible perturbations {εk} allowed in AGP. Their
possible values are represented by the shaded circles in the AGP figure. They allow us to take into account the gradients of constraints that
will be biding at x∗, but for which the sequence is strictly feasible. See, for example, the point x̃k1 in the figure.

Proof. Let us show first that, under AGP-regularity, AGP implies the KKT condition for any objective function.
Let f be an objective function for which AGP(γ) holds at x∗ for some γ ∈ [−∞, 0). Thus, there is a sequence
{xk} ∈�n such that xk→ x∗ and PΩ(xk , γ)(xk −∇ f (xk)) − xk→ 0. Define yk :� PΩ(xk , γ)(xk −∇ f (xk)) and εk :� yk − xk .
Thus, yk � xk + εk . Clearly, limk→∞ ε

k � 0.
By Proposition 1,

ωk :� xk −∇ f (xk) − yk ∈ NΩ(xk , γ)(yk). (27)

Since the inclusion NΩ(xk , γ)(yk) ⊂ NΩ(xk ,−∞)(yk) always holds, we have that

ωk ∈ NΩ(xk ,−∞)(xk
+ εk) and ωk

� xk −∇ f (xk) − yk
�−∇ f (xk) − εk . (28)

Taking limit in the last expression and using the continuity of the gradient of f , we get

−∇ f (x∗)� lim
k→∞

ωk ∈ lim sup
(x , ε)→(x∗ , 0)

NΩ(x ,−∞)(x + ε) ⊂ NΩ(x∗ ,−∞)(x∗). (29)

Thus, −∇ f (x∗) belongs to NΩ(x∗ ,−∞)(x∗)� LΩ(x∗)◦; that is, the KKT condition holds at x∗.
Now, let us prove that, if AGP implies the KKT condition for every objective function, then AGP regularity

holds. Take ω∗ ∈ lim sup(x , ε)→(x∗ , 0)NΩ(x ,−∞)(x + ε). Then by the definition of outer limit, there are sequences {xk},
{ωk} and {εk} such that xk → x∗, εk → 0, ωk → ω∗ and ωk ∈ NΩ(xk ,−∞)(xk + εk). Define the objective function,
f (x) :�−〈w∗ , x〉 for all x ∈�n . We will show that AGP(−∞) holds at x∗ for this choice of f . So, it is sufficient to
show that limk→∞ PΩ(xk ,−∞)(xk −∇ f (xk)) − xk � 0.
Define yk :� xk + εk and zk :� PΩ(xk ,−∞)(xk − ∇ f (xk)) � PΩ(xk ,−∞)(xk + ω∗). Since ωk is in NΩ(xk ,−∞)(yk) we have

PΩ(xk ,−∞)(ωk + yk) � yk (Proposition 1). Using the triangle inequality and the nonexpansivity of the Euclidean
projection, we get

‖zk − yk ‖ � ‖PΩ(xk ,−∞)(xk
+ω∗) −PΩ(xk ,−∞)(ωk

+ yk)‖ ≤ ‖ω∗ −ωk ‖ + ‖yk − xk ‖. (30)

Taking limits in (30), we obtain limk→∞ zk − yk � 0, and as consequence

lim
k→∞

PΩ(xk ,−∞)(xk −∇ f (xk)) − xk
� lim

k→∞
zk − xk

� lim
k→∞
(zk − yk)+ lim

k→∞
(yk − xk)� 0. (31)

Thus, AGP holds at x∗ and, by hypothesis, the KKT condition also holds at x∗; that is, −∇ f (x∗) � ω∗ belongs
to NΩ(x∗ ,−∞)(x∗)� LΩ(x∗)◦. This amounts to AGP-regularity at x∗ and the statement has been proved. �
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4.2. Weakest Strict Constraint Qualification Associated with the Complementary AKKT Condition
A feasible point x∗ satisfies the Complementary AKKT condition (CAKKT) introduced in Andreani et al. [4] if
there exist sequences {xk} ⊂ �n , {λk} ⊂ �m , and {µk} ⊂ �p

+, such that xk→ x∗,

lim
k→∞
∇ f (xk)+

m∑
i�1
λk

i∇hi(xk)+
p∑

j�1
µk

j∇g j(xk)� 0, (32)

and
lim
k→∞

m∑
i�1
|λk

i hi(xk)| +
p∑

j�1
|µk

j g j(xk)| � 0. (33)

The difference between CAKKT and AKKT is that in AKKT we require min{−gi(xk), µk}→ 0 for all i � 1, . . . , p
instead of (33). It has been proven in Andreani et al. [4] that CAKKT is a genuine optimality condition satisfied
by every local minimizer, it is strictly stronger than AKKT, and it is satisfied by every feasible limit point
generated by the Augmented Lagrangian method described in Andreani et al. [5] under a weak Lojasiewicz-like
assumption on the constraints.
An example in which CAKKT does not hold, but both AKKT and AGP hold at a nonoptimal point consists

of minimizing 1
2 (x2 − 2)2, subject to x1 � 0 and x1x2 � 0. Clearly, (0, 2) is the unique minimizer. However, every

feasible point (0, ε), for ε ≥ 0, satisfies AKKT and AGP, although those points do not satisfy CAKKT. This means
that algorithms which guaranteed convergence to, say, AGP points could converge to nonoptimal feasible limits;
whereas algorithms with guaranteed convergence to CAKKT points could not.
The formulation (32)–(33) of CAKKT is useful because, after adding a feasibility condition like

‖h(x)‖ ≤ εfeas and ‖max{0, g(x)}‖ ≤ εfeas ,
it induces a natural stopping criteria to be employed in numerical methods. However, the following equivalent
formulation is more adequate for mathematical proofs. We will say that a feasible point x∗ satisfies the CAKKT
condition for the problem (1), if there exist sequences {xk} ⊂ �n , {λk} ⊂ �m , and {µk} ⊂ �

p
+, with µk

j � 0 for all
j < J(x∗), such that xk→ x∗,

lim
k→∞
∇ f (xk)+

m∑
i�1
λk

i∇hi(xk)+
∑

j∈ J(x∗)
µk

j∇g j(xk)� 0, (34)

and
lim
k→∞

m∑
i�1
|λk

i hi(xk)| +
∑

j∈ J(x∗)
|µk

j g j(xk)| � 0. (35)

In fact, (34)–(35) imply (32)–(33) defining µk
j � 0, j < J(x∗). The other implication follows from the fact that (33)

implies that µk
j→ 0, j < J(x∗). Then, using the assumption that g is continuouslydifferentiable,wemay conclude that

lim
k→∞

∑
j<J(x∗)

µk
j∇g j(xk)� 0.

Finally, (34) follows from (32) after a simple rearrangement of terms.
For all x ∈ �n and r ∈ �+, we define KC(x , r) by:

KC(x , r) :�
{ m∑

i�1
λi∇hi(x)+

∑
j∈ J(x∗)

µ j∇g j(x):
m∑

i�1
|λi hi(x)| +

∑
j∈ J(x∗)

|µ j g j(x)| ≤ r, λi ∈ �, µ j ≥ 0
}
. (36)

The set KC(x , r) is nonempty and convex, with the property αKC(x , r) � KC(x , αr) for all α > 0. Moreover,
KC(x ,∞)� K(x) for all x ∈�n and KC(x , r) coincides with LΩ(x∗)◦ at (x , r)� (x∗ , 0), where K(x) is defined by (20)
and LΩ(x∗) is defined by (18).
We can interpret KC(x , r) as a perturbation of the linearized normal cone LΩ(x∗)◦ around x∗ with the additional

constraint ∑m
i�1 |λi hi(x)| +

∑
j∈ J(x∗) |µ j g j(x)| ≤ r controlling how the complementarity condition is approximated

for points x approaching x∗.
Definition 2. We say that CAKKT-regularity holds at the feasible point x∗ if the set-valued mapping

(x , r) ∈ �n ×�+⇒ KC(x , r)
is outer semicontinuous at (x∗ , 0); in other words, the following inclusion holds:

lim sup
(x , r)→(x∗ , 0)

KC(x , r) ⊂ KC(x∗ , 0)� LΩ(x∗)◦. (37)

For a graphical example, see Figure 2.
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Figure 2. (Color online) Example of the cone mappings associated to the SKKT and CAKKT conditions using the same
feasible set, x∗, and approximating sequences as Figure 1.
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Notes. Once again, SKKT-regularity and CAKKT-regularity basically state that the possible limits of the vectors of the respective green
cones must belong to the blue cone, which is the normal of the linearized cone at x∗. Note that the cones associated with SKKT always take
into account only the constraints that are biding or violated and there is no perturbation εk . See Figure 1 and compare. This is its main
difference with respect to AGP. Moreover, the set associated with CAKKT is the cone associated with AKKT with an extra constraint that
limits the size of the vectors depending on how close the respective constraint is to zero, and how large the parameter rk is. Here, {rk} was
taken to converge 0 at a speed proportional to the speed with which the sequences approach x∗.

Theorem 2. A feasible point x∗ is CAKKT-regular if and only if for every continuously differentiable objective function
such that CAKKT holds at x∗, we have that KKT also holds. (That is, CAKKT-regularity is the weakest strict constraint
qualification associated with CAKKT.)

Proof. We start by proving that, under CAKKT-regularity, CAKKT implies KKT. Let f be a smooth objec-
tive function such that CAKKT holds at x∗. Then, by definition, there exist sequences {xk} ⊂ �n , {λk} ⊂ �m ,
{µk} ⊂ �

p
+ with µk

j � 0 for all j < J(x∗), {ζk} ⊂ �m and {rk} ⊂ �+ such that limk→∞ xk � x∗, ζk :� ∇ f (xk) +∑m
i�1 λ

k
i∇hi(xk)+∑

j∈ J(x∗) µ
k
j∇g j(xk)→0 and rk :�∑m

i�1 |λk
i hi(xk)|+∑

j∈ J(x∗) |µk
j g j(xk)|→0. Defineωk :�∑m

i�1 λ
k
i∇hi(xk)+∑

j∈ J(x∗) µ
k
j∇g j(xk). Clearly, the sequence {ωk} satisfies

ωk ∈ KC(xk , rk) and ωk
� ζk −∇ f (xk). (38)

Since ζk→ 0 and ∇ f (xk)→∇ f (x∗) we get ωk→−∇ f (x∗). From the definition of outer limit

−∇ f (x∗)� lim
k→∞

ωk ∈ lim sup
(x , r)→(x∗ , 0)

KC(x , r) ⊂ KC(x∗ , 0)� LΩ(x∗)◦ , (39)

which implies that the KKT condition holds.
Now, we prove the implication in the other direction, that is if CAKKT implies KKT for any objective function,

then CAKKT-regularity holds. Thus, our aim is to prove the inclusion lim sup(x , r)→(x∗ , 0) KC(x , r) ⊂ LΩ(x∗)◦. We
start by taking ω∗ ∈ lim sup(x , r)→(x∗ , 0) KC(x , r), so there are sequences {xk}, {ωk} and {rk}, such that xk → x∗,
ωk→ω∗, rk→ 0 and ωk ∈ KC(xk , rk). Now, define the linear function f (x) :�−〈w∗ , x〉 for all x ∈�n . Let us see that
CAKKT holds at x∗ with this choice of f . Since ωk is in KC(xk , rk), there are multipliers {λk} ⊂ �m , {µk} ⊂ �

p
+

with µk
j � 0 for j < J(x∗), such that s

ωk
�

m∑
i�1
λk

i∇hi(xk)+
∑

j∈ J(x∗)
µk

j∇g j(xk) (40)

and
m∑

i�1
|λk

i hi(xk)| +
∑

j∈ J(x∗)
|µk

j g j(xk)| ≤ rk . (41)

Since rk→ 0, the expression (35) holds and from ωk→ω∗, ζk :�∇ f (xk)+ωk �−ω∗+ωk→ 0. Thus, CAKKT holds
and, due to the hypothesis, −∇ f (x∗)� ω∗ ∈ LΩ(x∗)◦ � KC(x∗ , 0). This is sufficient for CAKKT-regularity at x∗ and
the statement has been proved. �
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4.3. Weakest Strict Constraint Qualification Associated with the Strong Approximate KKT Condition
We say that a feasible point x∗ satisfies the Strong Approximate KKT condition SAKKT if there exist sequences
xk→ x, {λk} ⊂�m and {µk} ⊂�p

+, such that (2) holds and µk
j � 0 whenever g j(xk)< 0 (Haeser and Schuverdt [23]).

Obviously, this implies (3). SAKKT strictly implies AKKT.
In spite of its strength, SAKKT does not generate practical stopping criteria for constrained optimization algo-

rithms, because reasonable optimization algorithms may generate natural sequences for which the fulfillment of
SAKKT cannot be detected. Consider, for example, the problem of minimizing x subject to −x ≤ 0. A reasonable
sequence generated by (say) an interior point algorithm (e.g., Chen and Goldfarb [19]) could be xk � 1/k (or any
other positive sequence such that xk → 0). However, for this sequence, we have that ∇ f (xk) � 1 and g(xk) < 0
for all k. Therefore, the condition “µk < 0 when g(xk) < 0” imposes that µk � 0 for all k. This means that this
sequence cannot be used to detect SAKKT. In spite of this, SAKKT holds because any negative sequence that
tends to zero (in particular, the constant sequence xk ≡ 0) does detect SAKKT.
However, it is interesting to analyze the strict constraint qualifications under which points that satisfy SAKKT

also fulfill KKT.
Definition 3. Let x∗ be a feasible point. We say that SAKKT-regularity holds at x∗ if the multifunction x ∈ �n⇒
NΩ(x , 0)(x) is outer semicontinuous at x∗; that is,

lim sup
x→x∗

NΩ(x , 0)(x) ⊂ NΩ(x∗ , 0)(x∗)� LΩ(x∗)◦. (42)

Proposition 3. Let x and ε be elements in �m , such that x + ε belongs to Ω(x , 0). Then, every element of NΩ(x , 0)(x + ε)
can be written as

m∑
i�1
λi∇hi(x)+

∑
j: g j (x)≥0

µ j∇g j(x),

where λi ∈ �, µ j ∈ �+ for all i , j and µ j(〈∇g j(x), ε〉)� 0, if g j(x) ≥ 0.
Also, NΩ(x , 0)(x + ε) is a subset of NΩ(x , 0)(x).
By Proposition 3, we can rephrase SAKKT-regularity saying that it is equivalent to the outer semicontinuity of

the set-valued mapping that associates to each point x, the linearized normal cone defined by the gradients of
the equality constraints and the gradients of inequality constraints whenever the point x is not in the interior
of the zero-lower set defined by the corresponding inequality constraint. See an example in Figure 2.
Theorem 3. Let x∗ be a feasible point. Then, SAKKT-regularity holds at x∗ if and only if for every smooth objective
function such that the SAKKT condition holds at x∗, the KKT condition also holds at x∗.
Proof. First, let us show that if SAKKT-regularity holds, SAKKT implies KKT independently of the objective
function. Let f be a function such that SAKKT holds, by the equivalence between AGP(0) and SAKKT (Haeser
and Schuverdt [23, theorem 1.2.6(c)]), there is a sequence {xk} ⊂�n such that xk→ x∗ and PΩ(xk , 0)(xk −∇ f (xk))−
xk→ 0. Define yk :� PΩ(xk , 0)(xk −∇ f (xk)) and εk :� yk − xk . By Proposition 1, we have

ωk
� xk −∇ f (xk) − yk ∈ NΩ(xk , 0)(yk

� xk
+ εk) ⊂ NΩ(xk , 0)(xk), (43)

where the last inclusion comes from Proposition (3). Thus, the sequence {ωk} satisfies

ωk ∈ NΩ(xk , 0)(xk) and ωk
� xk −∇ f (xk) − yk→−∇ f (x∗). (44)

Thus, by definition of outer limit and outer semicontinuity, we can conclude

−∇ f (x∗) ∈ lim sup
x→x∗

NΩ(x , 0)(x) ⊂ NΩ(x∗ , 0)(x∗)� LΩ(x∗)◦ , (45)

proving that x∗ satisfies the KKT condition.
Now,wewill prove if for anyobjective function, SAKKT impliesKKT, thenSAKKT-regularityholds at x∗. Takeω∗∈

limsupNΩ(x ,0)(x), so, there are sequences {xk} and {ωk} such that xk→x∗, ωk→ω∗ e ωk ∈NΩ(xk ,0)(xk). Define f (x):�
−〈w∗ ,x〉 for all x∈�n . We will show that AGP(0) holds at x∗ for f (x)�−〈w∗ ,x〉. Denote zk :�PΩ(xk ,0)(xk−∇ f (xk))�
PΩ(xk ,0)(xk+ω∗). From the nonexpansivity of the projection PΩ(xk ,0)(x) and from PΩ(xk ,0)(ωk+xk)�xk , we have

‖zk − xk ‖ � ‖PΩ(xk , 0)(xk
+ω∗) −PΩ(xk , 0)(ωk

+ xk)‖ ≤ ‖ω∗ −ωk ‖. (46)

The last inequality implies that zk − xk → 0, and as consequence, AGP(0) (or equivalent SAKKT) holds at x∗.
Thus, KKT holds at x∗; that is, −∇ f (x∗)�ω∗ ∈NΩ(x∗ , 0)(x∗)� LΩ(x∗)◦. This amounts to SAKKT-regularity at x∗ and
the assertion has been proved. �
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4.4. Weakest Strict Constraint Qualification Associated with the Linear Approximate
Gradient Projection Condition

When the optimization problem (1) has linear constraints, a variation of AGP, called Linear Approximate Gra-
dient Projection (LAGP) condition has been introduced Andreani et al. [2]. Denote by ΩL the set defined by all
the linear constraints and define ΩNL(xk ,−∞) as follows:

ΩNL(xk ,−∞) :�
z ∈ �n :

〈∇hi(xk), z − xk〉 � 0, for all i ∈ I1
〈∇g j(xk), z − xk〉 ≤ 0, if 0 ≤ g j(xk), j ∈ J1
g j(xk)+ 〈∇g j(xk), z − xk〉 ≤ 0, if g j(xk) < 0, j ∈ J1

 , (47)

where the nonlinear constraints of (1) are defined by {hi , i ∈ I1} and {g j , j ∈ J1}. Thus, we say that a feasible point
x∗ satisfies the LAGP condition for the problem (1) if there is a convergent sequence {xk} ⊂ ΩL, with limit x∗,
such that

PΩNL(xk ,−∞)∩ΩL
(xk −∇ f (xk)) − xk→ 0. (48)

In Andreani et al. [2], it was shown that LAGP is stronger than AGP (and as a consequence, stronger than
AKKT). Now, we will introduce the weakest strict constraint qualification associated with LAGP.

Definition 4. If the set-valued mapping (x , ε) ∈�n ×�n⇒NΩNL(x ,−∞)∩ΩL
(x + ε) is outer semicontinuous relatively

to ΩL ×�m at (x∗ , 0); that is,

lim sup
(x , ε)→(x∗ , 0), x∈ΩL

NΩNL(x ,−∞)∩ΩL
(x + ε) ⊂ NΩNL(x∗ ,−∞)∩ΩL

(x∗)� LΩ(x∗)◦.

we say that LAGP-regularity holds at x∗ ∈Ω.

Following the arguments of Theorem 1, we obtain

Theorem 4. LAGP-regularity is the weakest strict constraint qualification associated with LAGP.

5. Relations Between the New Strict Constraint Qualifications
The results of Section 4, together with the equivalence result proved in Andreani et al. [7], are condensed in
Figure 3, where, for completeness, we also included the equivalence between Guignard and “Local optimizer
implies KKT.” Moreover, by the results proved in Andreani et al. [2, 4], Haeser and Schuverdt [23] we have the
following theorem.

Theorem 5. The following implications hold:
1. CCP implies AGP-regularity;
2. AGP-regularity implies SAKKT-regularity;
3. AGP-regularity implies LAGP-regularity;
4. SAKKT-regularity implies CAKKT-regularity.

Figure 3. (Color online) Equivalence results concerning constraint qualifications.

Guignard’s CQ
Local minimizer

implies KKT

CAKKT-regularity CAKKT implies KKT

SAKKT-regularity SAKKT implies KKT

LAGP-regularity LAGP implies KKT

AGP-regularity AGP implies KKT

Cone-continuity AKKT implies KKT
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Proof. The four parts of the thesis are proved in the same way. We give one example. In Section 4 we proved
that SAKKT-regularity is equivalent to “SAKKT implies KKT.” In other words, SAKKT-regularity is equivalent
to “SAKKT or not-KKT.” Similarly, we proved that CAKKT-regularity is equivalent to “CAKKT or not-KKT.”
But in Haeser and Schuverdt [23], it has been proved that SAKKT implies CAKKT. Therefore, SAKKT-regularity
implies CAKKT-regularity. Now, to see that AGP implies AKKT, see Andreani et al. [2]; for SAKKT implies AGP,
see Haeser and Schuverdt [23]; and for LAGP implies AGP, see Andreani et al. [2]. �

The rest of this section is devoted to show that all the implications in Theorem 5 are strict.

Example 1 (AGP-Regularity is Strictly Weaker Than the Cone Continuous Property). Consider the two-dimensional
Euclidean space �2, the point x∗ � (0, 0) and the feasible set defined by the inequality constraints

g1(x , y)�−x1; g2(x , y)� x1 + x3
1 exp(x2

2).

Clearly, x∗ � (0, 0) is feasible point and both constraints are active at x∗. Furthermore, by direct calculations
we have

∇g1(x1 , x2)� (−1, 0) and ∇g2(x1 , x2)�
(
1+ 3x2

1 exp(x2
2), 2x2x3

1 exp(x2
2)
)
, ∀ (x1 , x2) ∈ �2.

Thus, LΩ(x∗)◦ � {µ1(−1, 0)+ µ2(1, 0): µ1 , µ2 ≥ 0} ��× {0}.
The Cone Continuous Property does not hold at x∗ � (0, 0). Define xk :� 1/k, yk :� 1/k, µk

2 :� (2x2x3
1 exp(x2

2))−1 and
µk

1 :� µk
2(1+ 3x2

1 exp(x2
2)). Note that (xk

1 , x
k
2)→ (0, 0) and µk

1 , µ
k
2 ≥ 0 for all k ∈ �. So,

ωk :� µk
1(−1, 0)+ µk

2
(
1+ 3x2

1 exp(x2
2), 2x2x3

1 exp(x2
2)
)
∈ K(xk

1 , x
k
2). (49)

By direct calculations, ωk � (0, 1) ∀ k ∈ �. Hence, limk→∞ ω
k � (0, 1) is in lim supx→x∗ K(x) but (0, 1) is not in

LΩ(x∗)◦; thus, K(x) cannot be outer semi-continuous at x∗.
AGP-regularity holds at x∗. Take ω∗ � (ω1 , ω2) ∈ lim sup(x , ε)→(x∗ , 0)NΩ(x ,−∞)(x + ε). Then, there are sequences {xk �

(xk
1 , x

k
2)}, {ωk} and {εk � (εk

1 , ε
k
2)} in �2 such that xk→ x∗, εk→(0, 0), ωk→ω∗ and ωk ∈NΩ(xk ,−∞)(xk +εk). To prove

that ω∗ ∈ NΩ(x∗ ,−∞)(x∗) � LΩ(x∗)◦, we must analyze all the different possible cases as xk approaches to x∗ � (0, 0).
We have the possible cases (xk

1 > 0, xk
1 < 0 and xk

1 � 0 for infinitely many indices in �).
Assume that there are infinitely many indices k ∈ � such that
1. xk

1 > 0 holds. In this case, g1(xk
1 , x

k
2) < 0 and g2(xk

1 , x
k
2) > 0. For this case, we define two conditions

condition (g1): if g1(xk
1 , x

k
2)+

〈
∇g1(xk

1 , x
k
2), (εk

1 , ε
k
2)
〉
� 0.

condition (g2): if
〈
∇g2(xk

1 , x
k
2), (εk

1 , ε
k
2)
〉
� 0.

Whether εk � (εk
1 , ε

k
2) satisfies the conditions (g1) and (g2) or not, we have the following subcases:

(a) εk satisfies condition (g1) and condition (g2). Since εk satisfies both conditions (g1) and (g2), we have

εk
1 �−xk

1 and εk
1
(
1+ 3(xk

1)2 exp (xk
2)2

)
+ εk

2
(
2xk

2(xk
1)3 exp (xk

2)2
)
� 0. (50)

Using (50), we get
− 1− 3(xk

1)2 exp (xk
2)2 + εk

2
(
2xk

2(xk
1)2 exp (xk

2)2
)
� 0. (51)

So, if there is an infinite index set such that the expression (51) holds, we obtain a contradiction, by taking limit
in an appropriate subsequence.

(b) εk satisfies condition (g1) but not condition (g2). Since εk does not satisfy condition (g2), we have that the
multiplier associated with ∇g2(xk

1 , x
k
2) for ωk ∈NΩ(xk ,−∞)(xk + εk) is null (see Proposition 2). Thus, ωk � µk

1(−1, 0) ∈
�× {0} for some µk

1 ≥ 0. Now, if there is an infinite index set in this subcase, taking limit (for an appropriate
subsequence), the limit ω∗ must be in �× {0};

(c) εk does not satisfy condition (g1) but satisfies condition (g2). In this case the multiplier associated with
∇g1(xk

1 , x
k
2) is zero. Thus,

ωk :� µk
2
(
1+ 3x2

1 exp(x2
2), 2x2x3

1 exp(x2
2)
)
, for some µk

2 ≥ 0.

Moreover, by condition (g2), we have

εk
1
(
1+ 3(xk

1)2 exp (xk
2)2

)
+ εk

2
(
2xk

2(xk
1)3 exp (xk

2)2
)
� 0.
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Now, we will show that if there is an infinite index set in this subcase, ω∗2 is zero. By contradiction, assume
that ω∗2 is nonzero. For k large enough,

2µk
2 |xk

2(xk
1)3 exp (xk

2)2 | > (1/2)|ω∗2 | > 0, (52)

as consequence xk
2 is a positive number. Using the expression above and the definition of ωk

1 , we have

ωk
1 � µ

k
2 + 3µk

2(xk
1)2 exp (xk

2)2 >
3|ω∗2 |

4|xk
1 xk

2 |
.

Taking limits in this expression for the appropriate subsequence, we obtain a contradiction, since the left side
is bounded.

(d) εk satisfies neither condition (g1) nor condition (g2). In this case, the multipliers associated with
∇g1(xk , yk) and ∇g2(xk , yk) are both zero, hence ωk � (0, 0) ∈�× {0}. Thus, if there is an infinite set of indices k
such that xk > 0 holds, taking limit in the appropriate subsequence, we get that ω∗ ∈ �× {0};

2. xk
1 < 0 holds. In this case, g1(xk

1 , x
k
2) > 0 and g2(xk

1 , x
k
2) < 0. For this case, we define two conditions

condition (g1): if
〈
∇g1(xk

1 , x
k
2), (εk

1 , ε
k
2)
〉
� 0;

condition (g2): if g2(xk
1 , x

k
2)+

〈
∇g2(xk

1 , x
k
2), (εk

1 , ε
k
2)
〉
� 0.

Depending if εk satisfies the conditions above or not, we have the next subcases:
(a) εk satisfies the condition(g1) and the condition (g2). From these conditions we have

εk
1 � 0 and xk

1 + (xk
1)3 exp x2

2 + ε
k
1
(
1+ 3x2

1 exp (xk
2)2

)
+ εk

2(2xk
2
(
xk

1)3 exp (xk
2)2

)
� 0.

Using εk
1 � 0 and dividing by xk

1 in the last expression, we get

1+ (xk
1)2 exp x2

2 + ε
k
2
(
2xk

2(xk
1)2 exp (xk

2)2
)
� 0.

Thus, if there exists an infinite index set such that the expression above holds, taking limits we obtain a
contradiction.

(b) εk satisfies condition (g1) but not condition (g2). Since εk satisfies condition (g1), εk
1 � 0, and since εk

does not satisfy condition (g2), the multiplier associated with ∇g2(xk , yk) is zero; then ωk � µk
1(−1, 0) for some

µk
1 ≤ 0. Taking limit (for an appropriate subsequence) we obtain that ω∗ must be in �× {0};

(c) εk does not satisfy condition (g1) but satisfies condition (g2). Since εk does not satisfy the condition (g1)
the multiplier associated with ∇g1(xk , yk) is zero by Proposition 2. Thus,

ωk
� µk

2
(
1+ 3(xk

1)2 exp (xk
2)2 , 2xk

2(xk
1)3 exp (xk

2)2
)

and
xk

1 + (xk
1)3 exp x2

2 + ε
k
1
(
1+ 3(xk

1)2 exp (xk
2)2

)
+ εk

2
(
2xk

2(xk
1)3 exp (xk

2)2
)
.

Now, if we assume that ω∗2 is not zero, we obtain for k sufficiently large that

ωk
1 � µ

k
2 + 3µk

2(xk
1)2 exp (xk

2)2 >
3|ω∗2 |

4|xk
1 xk

2 |
.

So, if there is an infinite index subset with this property, we get a contradiction, since ωk
1→ ω∗1 and the right-

hand side blows out.
(d) εk satisfies neither condition (g1) nor condition (g2). In this subcase, both multipliers associated with

∇g1(xk , yk) and ∇g2(xk , yk) are zero, and hence ωk � (0, 0). Therefore, if there is an infinite index set such that
xk

1 < 0, taking limit we get that ω∗ belongs to �× {0};
3. xk

1 � 0 holds. For this case, we have g1(xk
1 , x

k
2) � 0 and g2(xk

1 , x
k
2) � 0. After some calculations, we also have

∇g1(xk
1 , x

k
2) � (−1, 0) and ∇g2(xk

1 , x
k
2) � (1, 0). Thus, ωk � µk

1∇g1(xk
1 , x

k
2) + µk

2∇g2(xk
1 , x

k
2) must be in � × {0}. So, if

there is an infinite index set for this subcase, the limit, ω∗ must be in LΩ(x∗)◦ ��× {0}.
From all the possible cases, we have that ω∗ � limk→∞ ω

k must be in �× {0} � NΩ(x∗ ,−∞)(x∗), in other words, x∗ is
AGP-regular. See Figure 4.
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Figure 4. (Color online) Picture associated with Example 1.
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Notes. The feasible set is simply the vertical line that passes through x∗ � 0. Once again the blue cone, which is the horizontal line, represents
the normal of the linearized cone at x∗. The gray areas are the regions associated with the linearization of the constraints at points in {xk}.
The red regions represent the cones associated with AKKT, that appear in the definition of CCP. The green arrows are the directions that
belong the cones associated to AGP. Note that far from the origin the cone associated to AKKT already have two generating directions
(associated to the gradients of both constraints that are active at the origin). Since one of the directions in the AKKT cone is always not
horizontal, this cone always contains vertical vector (0, 1)t . On the other hand, even in points close to the origin the cone associated to AGP
has at most one direction at any point of interest and never contains any vertical vector.

Example 2 (SAKKT-Regularity is Strictly Weaker Than AGP-Regularity). Consider x∗ � (0, 0) in the Euclidean space
�2 and the feasible set defined by the inequality constraints

g1(x1 , x2)�−x1;
g2(x1 , x2)�−x2

1 − x2
2 .

Clearly x∗ � (0, 0) is a feasible point where both constraints are active. By direct calculations, we get

∇g1(x1 , x2)� (−1, 0) and ∇g2(x1 , x2)� (−2x1 ,−2x2), ∀ x � (x1 , x2) ∈ �2.

We also have LΩ(x∗)◦ � {µ1(−1, 0)+ µ2(0, 0): µ1 , µ2 ≥ 0} ��− × {0}.
SAKKT-regularity holds at x∗. Take ω∗ � (ω∗1 , ω∗2) ∈ lim supx→x∗ NΩ(x , 0)(x); then there are sequences {xk � (xk

1 , x
k
2)}

and {ωk} in �2 such that xk→ x∗, ωk→ω∗ and ωk ∈NΩ(xk , 0)(xk). To show that ω∗ ∈NΩ(x∗ ,−∞)(x∗)� LΩ(x∗)◦ we will
analyze all the possible cases. Suppose that there are infinitely many indices k ∈ � such that at least one of the
following cases hold:
1. xk

1 > 0. In this case, we have g1(xk
1 , x

k
2) < 0 and g2(xk

1 , x
k
2) < 0. From Proposition 3, ωk � (0, 0), since the

multipliers associated with ∇g1(xk
1 , x

k
2) and ∇g2(xk

1 , x
k
2) are not zero only when g1(xk

1 , x
k
2) ≥ 0 or g2(xk

1 , x
k
2) ≥ 0.

2. xk
1 < 0. In this case, we have g1(xk

1 , x
k
2)> 0 and g2(xk

1 , x
k
2)< 0. Using Proposition 3, the multipliers associated

with ∇g2(xk
1 , x

k
2) are zero. Thus, ωk takes the form µk

1(−1, 0) for some µk
1 ≥ 0. Clearly, µk

1(−1, 0) ∈ LΩ(x∗)◦ ��−×{0}.
3. xk � 0. In this case, both functions are nonnegative and, depending of the value of xk

2 , g2(xk
1 , x

k
2), can be

strictly negative or zero. Consider the following subcases:
(a) xk

2 � 0 for infinitely many indices. By direct calculations, g2(xk
1 , x

k
2)� 0, so

ωk
� µk

1(−1, 0)+ µk
2(−2xk

1 ,−2xk
2)� µk

1(−1, 0)+ µk
2(0, 0) ∈ �− × {0} � LΩ(x∗)◦.

(b) xk
2 , 0 for infinitely many indices. In this subcase, g2(xk

1 , x
k
2) < 0. From Proposition 3, the multipliers

associated with g2(xk
1 , x

k
2) are zero and ωk � µk

1(−1, 0) ∈ �− × {0} for some µk
1 ≥ 0.

Therefore, in all the possible cases, we obtain (taking an appropriate subsequence) that ω∗ belongs to K(x∗) �
�− × {0}, This amounts to SAKKT-regularity at x∗ as we wanted to show.
x∗ is not AGP-regular. For every k ∈ �, define xk

1 :� 1/k, xk
2 :� 1/k, εk

1 :� −xk
1 , εk

2 :� 0 and multipliers µk
2 :�

(2xk
1)−1 and µk

1 :� 0. Also, define ωk :� µk
1(−1, 0) + µk

2(−2xk
1 ,−2xk

2). Obviously, εk → 0. From Proposition 2, ωk ∈
NΩ((xk

1 , x
k
2 ),−∞)
((xk

1 , x
k
2)+ (εk

1 , ε
k
2)); furthermore, due to the choice of µk

1 and µk
2, ωk � (−1,−1) ∀ k ∈�. Thus, (−1,−1) ∈

lim sup(x , ε)→(x∗ , 0)NΩ(x ,−∞)(x + ε), but (−1,−1) does not belong to LΩ(x∗)◦ � �− × {0}. As a consequence, x∗ is not
AGP-regular.
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Example 3 (LAGP-Regularity is Strictly Weaker Than AGP-Regularity). Define x∗ � (0, 0) and let the feasible set be
given by the equality and inequality constraints

h(x1 , x2)� x1;
g(x1 , x2)� x1 − x2

1x2.

The point x∗ � (0, 0) is feasible and both constraints are active at x∗. By straight calculations, we have that

∇h(x1 , x2)� (1, 0) and ∇g(x1 , x2)� (1− 2x1x2 ,−x2
1), for all x � (x1 , x2) ∈ �2.

Furthermore, LΩ(x∗)◦ � {λ(1, 0)+ µ(1, 0): λ ∈ �, µ ≥ 0} ��× {0}.
x∗ � (0, 0) is LAGP-regular. First, we note that the set of linear constraint, ΩL, is given by the only equality
constraint h(x1 , x2)� 0, so:

ΩL � {(x1 , x2) ∈ �2: h(x1 , x2)� 0} � {(x1 , x2) ∈ �2: x1 � 0} � {0} ×�.

Now, we will show that NΩNL(x ,−∞)∩ΩL
(x + ε) is outer semicontinuous at (x∗ , 0) relatively to ΩL ×�2. Take ω∗ �

(ω1 , ω2) ∈ lim sup NΩNL(x ,−∞)∩ΩL
(x+ ε) relatively to ΩL×�2. From the definition of outer limit, there are sequences

{xk}, {ωk} and {εk} in �2 such that xk→ x∗ , εk→(0, 0), ωk→ ω∗ and

xk ∈ΩL , xk
+ εk ∈ΩNL(xk ,−∞)∩ΩL , and ωk ∈ NΩNL(xk ,−∞)∩ΩL

(xk
+ εk).

To see that ω∗ belongs to NΩNL(x∗ ,−∞)∩ΩL
(x∗+0)� LΩ(x∗)◦, we will analyze all the possible cases. Since xk ∈ΩL and

xk + εk ∈ΩL we have xk
1 � 0 and εk

1 � 0 and, as a consequence, g(xk
1 , x

k
2)� 0 for all k ∈ �. Thus, independently of

the choice of εk
2, the following condition holds:

condition (g):
〈
∇g(xk

1 , x
k
2), (εk

1 , ε
k
2)
〉
� 0.

This is a simple consequence of the following observation:〈
∇g(xk

1 , x
k
2), (εk

1 , ε
k
2)
〉
� εk

1(1− 2xk
1 xk

2)+ εk
2(−(xk

1)2)� 0.(1− 0)+ εk
2 .0 � 0,

whenever xk
1 � ε

k
1 � 0. Since the condition (g) is valid, there exist λk and µk ≥ 0 (not necessary all zeroes) such that

ωk
� λk∇h(xk

1 , x
k
2)+ µk∇g(xk

1 , x
k
2) ∈ NΩNL(xk ,−∞)∩ΩL

(xk
+ εk).

But, since xk � 0, we get ∇h(x1 , x2) � (1, 0) and ∇g(xk
1 , x

k
2) � (1, 0) and, thus, ωk ∈ � × {0} for all k ∈ �, which

implies ω∗ � limk→∞ ω
k ∈ �× {0} � K(x∗).

x∗ � (0, 0) is not AGP-regular. Define xk
1 :� 1/k, xk

2 :� xk
1 , εk

1 :� xk
2(xk

1)2 and εk
2 � xk

2(1−2xk
1 xk

2). Clearly, εk→(0, 0) and
g(xk

1 , x
k
2) � xk

1(1− xk
1 xk

2) > 0 (for k large enough). Define multipliers µk :� ((xk
1)2)−1 ∈ �+ and λk :� −µk(1− 2xk

1 xk
2)

and the sequence {ωk} given by

ωk :� λk∇h(xk
1 , x

k
2)+ µk∇g(xk

1 , x
k
2)� λk(1, 0)+ µk(1− 2xk

1 xk
2 ,−(xk

1)2)� (0,−1).

Since, for all k ∈ �,

〈∇g(xk
1 , x

k
2), (εk

1 , ε
k
2)〉 � εk

1(1− 2xk
1 xk

2)+ εk
2(−(x2

1)k)� xk
2(xk

1)2(1− 2xk
1 xk

2)+ xk
2(1− 2xk

1 xk
2)(−(x2

1)k)� 0,

we have, from Proposition (3), that ωk � (0,−1) ∈ NΩ(xk ,−∞)(xk + εk) for all k ∈ � and limk→∞ ω
k � (0,−1) is in

lim sup(x , ε)→(x∗ , 0)NΩ(x ,−∞)(x + ε), but (0,−1) does not belong to LΩ(x∗)◦ ��× {0}. So, x∗ is not AGP-regular.

Example 4 (CAKKT-Regularity Does Not Imply SAKKT-Regularity). Consider x∗ � (0, 0) and the feasible set defined
by the equality and inequality constraints

h(x1 , x2)� x1; g(x1 , x2)� x1 exp x2.

Obviously, x∗ � (0, 0) is feasible and the inequality constraint is active. Moreover,

∇h(x1 , x2)� (1, 0) and ∇g(x1 , x2)� (exp x2 , x1 exp x2).

From the last expression, we get LΩ(x∗)◦ � {λ(1, 0)+ µ(1, 0): λ ∈ �, µ ≥ 0} ��× {0}.



Andreani et al.: Strict Constraint Qualifications and Sequential Optimality Conditions
708 Mathematics of Operations Research, 2018, vol. 43, no. 3, pp. 693–717, ©2018 INFORMS

x∗ is CAKKT-regular. Take ω∗ � (ω∗1 , ω∗2) ∈ lim sup(x , r)→(x∗ , 0) KC(z , r); then, there exist sequences {xk} and {ωk}
in �2 and scalars rk ≥ 0 such that xk→ x∗, ωk→ ω∗, ωk ∈ KC(zk , rk) and rk→ 0. Since ωk ∈ KC(zk , rk), there are
sequences λk and µk ≥ 0 such that

ωk
� λk∇h(xk)+ µk∇g(xk)� λk(1, 0)+ µk(exp xk

2 , x
k
1 exp xk

2) (53)

and
|λk h(xk)| + |µk g(xk)| � |λk xk

1 | + |µk xk
1 exp xk

2 | ≤ rk . (54)

Using (53) and (54) we get |ωk
2 � µ

k xk
1 exp xk

2 | ≤ rk and ωk
2→ 0. From the last expression we conclude that ω∗ is

in LΩ(x∗)◦ ��× {0} and CAKKT-regularity holds.

x∗ is not SAKKT-regular. Take xk
1 :� 1/k, xk

2 :� xk
1 , µk :� (xk

1 exp xk
2)−1 and λk :� −µk exp xk

2 . Since g(xk
1 , x

k
2) > 0, we

have that
ωk :� λk(1, 0)+ µk(exp xk

2 , x
k
1 exp xk

2)� (0, 1) ∈ NΩ(xk , 0)(xk), for all k ∈ �.

Clearly, limk→∞ ω
k � (0, 1) ∈ lim sup NΩ(x , 0)(x); however (0, 1) is not in �× {0}. Thus, SAKKT-regularity fails.

We showed that all the implications of Theorem 5 are strict. The rest of this section is devoted to show the
independence between LAGP-regularity and the conditions CAKKT-regularity and SAKKT-regularity.

The following example shows that SAKKT-regularity does not imply LAGP-regularity and, as a consequence,
it does not imply CAKKT-regularity either, since CAKKT-regularity is implied by SAKKT-regularity.

Example 5 (SAKKT-Regularity Does Not Imply LAGP-Regularity). Consider the feasible set expressed by the follow-
ing equality and inequality constraints

h(x1 , x2)� x1;
g(x1 , x2)�−x2

1 − x2
1x2

2 − x2
2 .

Clearly, x∗ � (0, 0) is a feasible point and both constraints are active at x∗. By straight calculations we have:

∇h(x1 , x2)� (1, 0) and ∇g(x1 , x2)� (−2x1 − 2x1x2
2 ,−2x2x2

1 − 2x2), for all x � (x1 , x2) ∈ �2

Moreover, LΩ(x∗)◦ � {λ(1, 0)+ µ(0, 0): λ ∈ �, µ ∈ �+} ��× {0}.

x∗ is SAKKT-regular. Our aim is to show that the set-valued mapping NΩ(x , 0)(x) is outer semicontinuous at x∗.
Take ω∗ � (ω∗1 , ω∗2) ∈ lim sup NΩ(x , 0)(x). From the definition of outer limit, there are sequences {xk} and {ωk} in �2

such that xk→ x∗, ωk→ ω∗ and ωk ∈ NΩ(xk , 0)(xk). We have two possible cases.
• There is an infinite set of indices k such that xk

1 , 0. In this case, g(xk
1 , x

k
2) � −(xk

1)2(1+ (xk
2)2) − x2

2 is always
negative; thus, the multipliers associated with ∇g(xk

1 , x
k
2) are zero (Proposition (3)) Then, ωk has the form

λk∇h(xk
1 , x

k
2)� λk(1, 0) ∈ �× {0} for some λk ∈ �. Taking the appropriate subsequence, we get ω∗ ∈ �× {0};

• There is an infinite set of indices k such that xk
1 � 0. In this case, g(xk

1 , x
k
2) � −x2

2. Now, depending of the
values of xk

2 , we obtain the following subcases:
—xk

2 , 0. In this case g(xk
1 , x

k
2) < 0. So, from Proposition (3), the multipliers associated with ∇g(xk , yk) are

zero. Thus, ωk � λk∇h(xk
1 , x

k
2)� λk(1, 0) ∈�× {0} for some λk ∈ �. Taking limit (in an appropriate subsequence),

we get ω∗ ∈ �× {0};
—xk

2 � 0. In this case, g(xk
1 , x

k
2)� (0, 0) and there exist λk ∈� and µk ∈�+ such that ωk � λk(1, 0)+ µk(−2xk

1 −
2xk

1(xk
2)2 ,−2xk

2(xk
1)2 − 2xk

2) � λk(1, 0) ∈ �× {0}, where, in the last equality, we have used (xk
1 , x

k
2) � (0, 0). So, ωk is

in �× {0} and, taking limit for an appropriate subsequence, ω∗ ∈ �× {0}.
In all the analyzed cases, we concluded that ω∗ belongs to �× {0}. This proves the outer semicontinuity of

the multifunction NΩ(x , 0)(x) at x∗ � (0, 0).
x∗ is not LAGP-regular. Since the only linear constraint is given by h (an equality constraint), we have:

ΩL �
{

x � (x1 , x2) ∈ �2: h(x1 , x2)� 0
}
�

{
x � (x1 , x2) ∈ �2: x1 � 0

}
� {0} ×�.

Now, define xk
1 :� 0, xk

2 :� 1/k, εk
1 � 0 and εk

2 �−xk
2/2. Clearly, all these sequences go to zero. For that choice, we

see that xk and xk + εk are in ΩL. Moreover, g(xk
1 , x

k
2) � −(xk

2)2 is a negative scalar and the following expression
holds for all k ∈ �:

g(xk , yk)+
〈
∇g(xk , yk), (εk

1 , ε
k
2)
〉
� 0. (55)
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By (55), we can define µk :� (2xk
2)−1, λk :� 1, so that

ωk :� λk∇h(xk
1 , x

k
2)+ µk∇g(xk

1 , x
k
2)� λk(1, 0)+ µk(0,−2xk

2)� (1,−1) ∈ NΩNL(xk ,−∞)∩ΩL
(xk

+ εk).

Thus, limωk � (1,−1) ∈ lim sup NΩNL(xk ,−∞)∩ΩL
(xk + εk) relatively to ΩL ×�2. Clearly, (1,−1) is not in LΩ(x∗)◦ �

�× {0}. Hence, LAGP-regularity does not hold at x∗.
The next example shows that LAGP-regularity does not imply CAKKT-regularity and, consequently, does not

imply SAKKT-regularity either.

Example 6 (LAGP-Regularity Does Not Imply CAKKT-Regularity). Consider x∗ � (0, 0) and the feasible set defined by
the equality and inequality constraints

h(x1 , x2)� x1;
g(x1 , x2)� x1 − x2

1x2 − x2
2 .

Clearly, x∗ � (0, 0) is feasible and both constraints are active. We also have

∇h(x1 , x2)� (−1, 0) and ∇g(x1 , x2)� (1− 2x1x2 ,−2x2 − x2
1) for all (x1 , x2) ∈ �2.

Hence, LΩ(x∗)◦ � {λ(1, 0)+ µ(1, 0): λ ∈ �, µ ≥ 0} ��× {0}.
x∗ is LAGP-regular. From the equality constraint we get that ΩL � {x � (x1 , x2) ∈ �2: x1 � 0} � {0} × �. We
will show that NΩNL(x ,−∞)∩ΩL

(x + ε) is outer semicontinuous at (x∗ , 0) relatively to ΩL ×�2. Pick ω∗ � (ω1 , ω2) ∈
lim sup NΩNL(x ,−∞)∩ΩL

(x + ε) relatively to ΩL ×�2. Thus, there are sequences {xk}, {ωk} and {εk} in �2 such that
xk→ x∗ , εk→(0, 0), ωk→ ω∗, and

xk ∈ΩL , xk
+ εk ∈ΩNL(xk ,−∞)∩ΩL , ωk ∈ NΩNL(xk ,−∞)∩ΩL

(xk
+ εk).

Since xk ∈ΩL and xk + εk ∈ΩL we have xk
1 � 0 and εk

1 � 0 and, as a consequence, g(xk
1 , x

k
2)�−(xk

2)2 for all k ∈�.
To see that ω∗ belongs to NΩNL(x∗ ,−∞)∩ΩL

(x∗+0)� LΩ(x∗)◦, we will analyze all the possible cases depending on the
value of xk

2 . Assume that there is an infinite set of indices such that:
• xk

2 , 0. In this case, g(xk
1 , x

k
2)�−(xk

2)2 is strictly negative and ωk � λk(1, 0) for some λk ∈�, so, ωk ∈ LΩ(x∗)◦ �
�× {0}.

• xk
2 � 0. In this case, g(xk

1 , x
k
2) � 0, for any value of εk

2 , (1 − 2xk
1 xk

2)εk
1 + (−2xk

2 − (xk
1)2)εk

2 � 0. Then, there are
λk ∈ � and µk ≥ 0 such that

ωk
� λk(1, 0)+ µk(1− 2xk

1 xk
2 ,−2xk

2 − (xk
1)2)� (λk

+ µk , 0) ∈ LΩ(x∗)◦ ��× {0}

where the last equality holds because xk
1 � xk

2 � 0, in this case.
Thus, for all the cases, we conclude that the limit ω∗ must be in LΩ(x∗)◦ ��× {0}.

x∗ is not CAKKT-regular. Take xk
1 :�1/k, xk

2 :�(xk
1)1/2, µk :�(xk

2)−1, λk :�−µk(1−2xk
1 xk

2) and define the sequence {ωk} as

ωk
� λk(1, 0)+ µk (1− 2xk

1 xk
2 ,−2xk

2 − (xk
1)2

)
� (0,−2− (xk

1)3/2) ∈ KC(xk , rk),

where rk :� |µk g(xk
1 , x

k
2)|+ |λk h(xk

1 , x
k
2)|� (xk

1)2+1/2(1−2xk
1 xk

2)(xk
1)1/2. Since xk→ x∗ and rk→ 0, ω :� limωk � (0,−2)

belongs to lim sup(x , r)→(x∗ , 0) KC(x , r) but not in LΩ(x∗)◦ ��× {0}.
Figure 5 shows the implications between the strict constraint qualifications considered in this paper.

Figure 5. (Color online) Implications between strict constraint qualifications.
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AGP-regularity
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6. Relations with Other Constraint Qualifications
Recall that strict constraint qualifications are constraint qualifications. In fact, if a point is a local minimizer, it
satisfies every sequential optimality condition and, if it also satisfies an associated strict constraint qualification,
it necessarily fulfills KKT. Therefore, every local minimizer that satisfies a strict constraint qualification fulfills
the KKT conditions. Therefore, it is natural to establish the relations between strict constraint qualifications and
other constraint qualifications.

6.1. Strict Constraint Qualifications and Abadie’s Constraint Qualification
In this subsection, we will show that both CAKKT-regularity and LAGP-regularity are strictly stronger than
Abadie’s constraint qualification.
Let us start with the following two auxiliary lemmas.

Lemma 1 (Rockafellar and Wets [36, theorem 6.11]). Let x̄ be a feasible point. For every y ∈ T◦
Ω
(x̄), there is a smooth

function F with −∇F(x̄)� y and such that x̄ is a strict global minimizer of F with respect to Ω.
Lemma 2. Take y ∈ T◦

Ω
(x̄), then there are sequences {xk} ⊂ �n , {λk} ⊂ �m and {µk} ⊂ �p

+ such that:
1. {xk} converges to x̄;
2. ωk :�∑m

i�1 λ
k
i∇hi(xk)+∑p

j�1 µ
k
j∇g j(xk)→ y;

3. For all j ∈ {1, .., p}, µk
j is proportional to max{0, g j(xk)};

4. rk :�∑m
i�1 |λk

i hi(xk)| +∑p
j�1 |µk

j g j(xk)| → 0.

Proof. Let y ∈ T◦
Ω
(x̄). From Lemma 1, there exists a smooth function F such that −∇F(x̄) � y and F attains

its strictly global minimum with respect to Ω at x̄. Pick r > 0, and for every k ∈ �, consider the optimization
problem

Minimize Fk(x) :� F(x)+ k
2

( p∑
j�1

max{g j(x), 0}2 +
m∑

i�1
h2

i (x)
)

subject to x ∈ �(x̄ , r). (56)

By Weierstrass’ theorem, there is a solution xk for the optimization problem (56). Using penalty arguments,
we get xk→ x̄,

∇F(xk)+
m∑

i�1
khi(xk)∇hi(xk)+

p∑
j�1

k max{g j(xk), 0}∇g j(xk)� 0, (57)

and
m∑

i�1
khi(xk)2 +

p∑
j�1

k max{g j(xk), 0}2 ≤ F(x∗) − F(xk). (58)

Define λk
i :� khi(xk) for i ∈ {1, . . . ,m} and µk

j :� k max{g j(xk), 0} for j ∈ {1, . . . , p}. Thus, we have that ωk �∑p
j�1 k max{g j(xk), 0}∇g j(xk) +∑m

i�1 khi(xk)∇hi(xk). From the expression (57) and the continuity of ∇F, ωk → y.
Finally, since rk �

∑m
i�1 |λk

i hi(xk)| +∑p
j�1 |µk

j g j(xk)|, from the continuity of F and by (58), we get rk→ 0. �

The next lemma is a variation of the lemma above, useful for the analysis of LAGP-regularity.
Lemma 3. Let y be an element in T◦

Ω
(x̄). Then, there are sequences {xk} ⊂ΩL and {ωk} ⊂�m such that xk→ x̄, ωk→ y

and ωk ∈ NΩNL(xk ,−∞)∩ΩL
(xk).

Proof. Since y belongs to T◦
Ω
(x̄), we have, by Lemma 1, that there exists a smooth function F such that −∇F(x̄)� y

and F attains its strictly global minimum with respect to Ω at x̄. Without loss of generality, we may assume
that {g j : j ∈ {1, .., p1}}(p1 ≤ p) and {hi : i ∈ {1, ..,m1}}(m1 ≤ m) define the nonlinear constraints.
Take r > 0 and for every k ∈ �, consider the optimization problem

Minimize Fk(x) :� F(x)+ k
2

( p1∑
j�1

max{g j(x), 0}2 +
m1∑
i�1

h2
i (x)

)
subject x ∈ �(x̄ , r) ∩ΩL . (59)

where ΩL is the feasible set defined by the linear constraints. From Weierstrass’ theorem, there is a minimizer xk

for (59). Furthermore, by penalty arguments, {xk} converges to x̄; thus, for k large enough, xk ∈ Int(�(x̄ , r)). Using
the geometric optimality condition (17), we get 〈∇Fk(xk), d〉 ≥ 0 for every direction d ∈ TΩL

(xk) or, equivalently,

−∇Fk(xk) ∈ NΩL
(xk)� TΩL

(xk)◦.
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Taking the derivative of Fk at xk , we obtain the following expression:

−
(
(∇F(xk)+

p1∑
j�1

k max{g j(xk), 0}∇g j(xk)+
n1∑
i�1

khi(xk)∇hi(xk))
)
∈ NΩL

(xk). (60)

Define λk
i :� khi(xk) for i ∈ {1, . . . ,m1} and µk

j :� k max{g j(xk), 0} for j ∈ {1, . . . , p1}. We also define ωk
1 :�∑p1

j�1 µ
k
j∇g j(xk)+∑m1

i�1 λ
k
i∇hi(xk) and ωk

2 :� −∇F(xk) −ωk
1 . From the definition of ΩNL(xk ,−∞) and (60), it follows

that ωk
1 ∈NΩNL(xk ,−∞)(xk) and ωk

2 ∈NΩL
(xk). Finally, define ωk :�ωk

1 +ω
k
2 �−∇F(xk). Clearly, ωk→−∇F(x∗)� y and

ωk
� ωk

1 +ω
k
2 ∈ NΩNL(xk ,−∞)(xk)+ NΩL

(xk) ⊂ NΩNL(xk ,−∞)∩ΩL
(xk).

So, the sequence {ωk} satisfies all the required properties. �

The fact that CAKKT-regularity implies Abadie’s constraint qualification is proved in the following theorem.

Theorem 6. CAKKT-regularity implies Abadie’s constraint qualification.

Proof. Abadie’s constraint qualification says that TΩ(x∗) � LΩ(x∗). Since TΩ(x∗) ⊂ LΩ(x∗) always holds, we must
show the other inclusion. In order to show the inclusion LΩ(x∗) ⊂TΩ(x∗) we will first show the inclusion NΩ(x∗) ⊂
LΩ(x∗)◦ or, equivalently, NΩ(x∗) ⊂ KC(x∗ , 0) (Note that for x∗ ∈Ω, we have KC(x∗ , 0)� LΩ(x∗)◦.)
Take y ∈ NΩ(x∗); from the definition of the normal cone (16) there are sequences {xk} ⊂Ω and {yk} such that

xk→ x∗ , yk→ y , and yk ∈ N̂Ω(xk)� T◦
Ω
(xk).

Using Lemma 2, for each yk ∈ T◦
Ω
(xk), we may find sequences with limits xk and yk such that the conclusions

of the Lemma 2 holds. Hence, for each k ∈ �, there is a number j(k) ∈ �, scalars r j(k) and vector x j(k) and ω j(k)

such that
• ‖xk − x j(k)‖ < 1/2k for all k ∈ �;
• ω j(k) �

∑m
i�1 λ

j(k)
i ∇hi(x j(k))+∑p

s�1 µ
j(k)
s ∇gs(x j(k));

• ‖yk −w j(k)‖ < 1/2k for all k ∈ �;
• µ

j(k)
s � j(k)max{gs(x j(k)), 0} for all s ∈ {1, .., p};

• r j(k) �
∑m

i�1 |λ
j(k)
i hi(x j(k))| +∑p

s�1 |µ
j(k)
s gs(x j(k))| ≤ 1/2k for all k ∈ �.

Obviously, the sequences {r j(k)}, {x j(k)} and {ω j(k)} converge, respectively, to 0, x∗ and y. Furthermore, for k
large enough, ω j(k) is in KC(x j(k) , r j(k)), since (for k large ), µ j(k)

s � j(k)max{gs(x j(k)), 0} � 0 for all s < J(x∗). Sum-
ming up, x j(k) → x∗, ω j(k) → y, r j(k) → 0, and ω j(k) ∈ KC(x j(k) , r j(k)). Thus, due to the definition of outer limit
y ∈ lim sup(x , r)→(x∗ , 0) KC(x , r) ⊂ LΩ(x∗)◦ where the last inclusion holds since CAKKT-regularity also holds at x∗.
So, we proved the inclusion NΩ(x∗) ⊂ LΩ(x∗)◦, which implies

LΩ(x∗)� LΩ(x∗)◦◦ ⊂ NΩ(x∗)◦ ⊂ TΩ(x∗),

where the last inclusion follows from Rockafellar and Wets [36, theorems 6.28(b) and 6.26]. �

For LAGP-regularity we have the following theorem.

Theorem 7. LAGP-regularity implies Abadie’s constraint qualification.

Proof. We only need to show the inclusion NΩ(x∗) ⊂ LΩ(x∗)◦. Take y ∈NΩ(x∗). Then, there are sequences {xk} ⊂Ω
and {yk} such that

xk→ x∗ , yk→ y and yk ∈ T◦
Ω
(xk).

Using Lemma 3, for each yk ∈ T◦
Ω
(xk), we have for each k ∈�, a number j(k) ∈� and vectors x j(k) and ω j(k) such

that
• ‖xk − x j(k)‖ < 1/2k for all k ∈ �;
• ω j(k) ∈ NΩNL(x j(k) ,−∞)∩ΩL

(x j(k));
• ‖yk −w j(k)‖ < 1/2k for all k ∈ �;
Clearly, these sequences satisfy {x j(k)} ⊂ΩL, {ω j(k)} ⊂ NΩNL(x j(k) ,−∞)∩ΩL

(x j(k)), x j(k)→ x∗ and ω j(k)→ y. Therefore,
y ∈ lim sup(x , ε)→(x∗ , 0), x∈ΩL

NΩNL(x ,−∞)∩ΩL
(x + ε) Now, by LAGP-regularity, y ∈ NΩNL(x∗ ,−∞)∩ΩL

(x∗) � LΩ(x∗)◦, which
allows us to conclude the inclusion NΩ(x∗) ⊂ LΩ(x∗)◦. Using Rockafellar and Wets [36, theorems 6.28(b) and 6.26],
we have LΩ(x∗)� LΩ(x∗)◦◦ ⊂ NΩ(x∗)◦ ⊂ TΩ(x∗) as we wanted to prove. �
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The following example shows that Abadie’s constraint qualification is strictly weaker than CAKKT-regularity
and LAGP-regularity.

Example 7 (Abadie’s CQ Implies Neither CAKKT-Regularity Nor LAGP Regularity). Consider x∗ � (0, 0) and the feasi-
ble set given by the inequality constraints

g1(x1 , x2)�−x1; g2(x1 , x2)�−x2 exp x2; g3(x1 , x2)�−x1x2.

The point x∗ � (0, 0) is feasible and active for all the constraints. By direct calculations

∇g1(x1 , x2)� (−1, 0), ∇g2(x1 , x2)� (0,−exp x2 − x2 exp x2), and ∇g3(x1 , x2)� (−x2 ,−x1),

for all x � (x1 , x2) ∈ �2. Furthermore, LΩ(x∗)◦ ��− ×�−.
Abadie’s constraint qualification holds at x∗. This follows directly from Ω��2

+
, the form of the gradients of the

constraints at x∗ � (0, 0), and the definition Abadie’s CQ.
CAKKT-regularity does not hold. We will show that KC(x , r) is not outer semicontinuous at (x∗ � (0, 0), 0). Take
xk

1 :� 1/k, xk
2 :�−1/k and define µk

1 :� 0, µk
2 :� 0 and µk

3 :� k. For that choice we obtain that

rk :� |µk
1xk

1 | + |µk
2xk

2 exp(xk
2)| + |µk

3xk
1 xk

2 | �
k
k2 �

1
k
→ 0

and
ωk :� µk

1∇g1(xk
1 , x

k
2)+ µk

2∇g2(xk
1 , x

k
2)+ µk

3∇g3(xk
1 , x

k
2)� k(1/k ,−1/k)� (1,−1).

Hence ωk � (1,−1) ∈ KC(xk , rk) ∀ k ∈ �, (1,−1) belongs to lim sup(x , r)→(x∗ , 0) KC(x , r) but (1,−1) does not belong
to KC((x∗ , 0))��− ×�−. Thus, CAKKT-regularity fails.
LAGP-regularity does not hold. Note that ΩL � {x � (x1 , x2): x1 ≥ 0}. Define xk

1 :� 1/k, xk
2 :� −1/k, εk

1 :� 0, εk
1 :� 0

and multipliers µk
1 :� 0, µk

2 :� 0 and µk
3 :� k. With this choice, we have

ωk :� µk
1∇g1(xk

1 , x
k
2)+ µk

2∇g2(xk
1 , x

k
2)+ µk

3∇g3(xk
1 , x

k
2) ∈ NΩL∩Ω(xk ,−∞)(xk

+ εk).

Clearly, ωk � (1,−1) for all k ∈�, (1,−1) belongs to lim sup(x , ε)→(x∗ , 0), x∈ΩL
NΩL∩Ω(x ,−∞)(x+ ε) and does not belong

to LΩ(x∗)◦, so LAGP fails.

6.2. Relations with Pseudonormality and Quasinormality
In this section, we will prove that Pseudonormality and Quasinormality do not imply and are not implied by
any of the strict CQs defined in the previous section. By Theorem 5, we only need to prove that Pseudonormality
and Quasinormality are independent of CAKKT-regularity and LAGP-regularity.

Let us recall the definition of Quasinormality (Hestenes [24], Bertsekas [10]). We say that the Quasinormality
Constraint Qualification holds at x∗ ∈Ω if whenever ∑m

j�1 λ j∇h j(x∗)+
∑

j∈ J(x∗) µ j∇g j(x∗) � 0 for some λ ∈ �m and
µ j ∈ �+, j ∈ J(x∗), there is no sequence xk→ x∗ such that for every k ∈ �, λi hi(xk) > 0 when λi is nonzero and
g j(xk) > 0 when µ j > 0. Now, if we require the nonexistence of a sequence xk → x∗ such that ∑m

i�1 λ j h j(xk) +∑
j∈J(x∗) µ j∇g j(xk)> 0 for all k ∈� when ∑m

j�1 λ j∇h j(x∗)+
∑

j∈ J(x∗) µ j∇g j(x∗)�0 for some λ ∈�m and µ j ∈�+ for every
j ∈ J(x∗), we say that the Pseudonormality Constraint Qualification holds at x∗ ∈ Ω (Bertsekas [10], Bertsekas
and Ozdaglar [11]). Clearly, from the definitions, Pseudonormality is stronger than Quasinormality.
Let us start with the following example, which shows that Pseudonormality implies neither CAKKT-regularity

nor LAGP-regularity.

Example 8 (Pseudonormality Does Not Imply CAKKT-Regularity and Does Not Imply LAGP-Regularity). Consider the
feasible set given by the equality and inequality constraints defined by

h(x1 , x2)� x2 − x1; g(x1 , x2)� x1 − x2 exp x2.

Clearly, x∗ � (0, 0) is a feasible point and active for both constraints. We also note that:

∇h(x1 , x2)� (−1, 1) and ∇g(x1 , x2)� (1,−exp x2 − x2 exp x2), for all x � (x1 , x2) ∈ �2.

Moreover, we have LΩ(x∗)◦ � {λ(−1, 1)+ µ(1,−1): λ ∈ �, µ ∈ �+} � �(−1, 1), that is, LΩ(x∗)◦ is a linear subspace
generated by (−1, 1).
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Pseudonormality is satisfied at x∗ � (0, 0). First, note that since ∇g(x∗) � −∇h(x∗) � (−1, 1), the expression
µ∇g(x∗)+λ∇h(x∗)� (0, 0) holds with nonzero µ ∈�+, λ ∈� only if µ� λ > 0. Assume by contradiction, that there
is a sequence (xk

1 , x
k
2)→ (0, 0), such that λh(xk

1 , x
k
2)+ µg(xk

1 , x
k
2) > 0 for all k ∈ �. Thus, if λh(xk

1 , x
k
2)+ µg(xk

1 , x
k
2)�

µ(xk
2 − xk

1 + xk
1 − xk

2 exp xk
2)� µ(xk

2 − xk
2 exp xk

2)> 0, then x2 > x2 exp x2 for all k ∈�, but this is impossible since there
is no x2 ∈ � such that x2 > x2 exp x2. Therefore, Pseudonormality holds.
CAKKT-regularity fails at x∗ � (0, 0). Take xk

1 :� 1/k, xk
2 :� xk

1 , µk :� −(1 − exp xk
2 − xk

2 exp xk
2)−1 and λk :� 2 −

µk(−exp xk
2 − xk

2 exp xk
2). Define

ωk :� λk(−1, 1)+ µk(1,−exp xk
2 − xk

2 exp xk
2).

We will show that ωk → (−3, 2), rk :� |λk h(xk
1 , x

k
2)| + |µk g(xk

1 , x
k
2)| → 0 and ωk ∈ KC(xk , rk) ∀ k ∈ �. After some

calculations, ωk
2 � λ

k + µk(−exp xk
2 − xk

2 exp xk
2) � 2 and ωk

1 � −λk + µk � −2+ µk(1− exp xk
2 − xk

2 exp xk
2) � −3. Thus,

limk→∞ ω
k � (−3, 2). Moreover, rk converges to zero:

rk
� |λk(xk

1 − xk
2)| + |µk(xk

1 − xk
2 exp xk

2)| �
|xk

2 − xk
2 exp xk

2 |
|1− exp xk

2 − xk
2 exp xk

2 |
→ 0.

Thus, ωk � (−3, 2) ∈ KC(xk , rk) ∀ k ∈�, and hence, (−3, 2) ∈ lim sup(x , r)→(x∗ , 0) KC(x , r) but (−3, 2) is not in LΩ(x∗)◦ �
�(−1, 1). Thus, CAKKT-regularity does not hold.
LAGP-regularity is not satisfied at x∗ � (0, 0). First, note that ΩL � {(x1 , x2) ∈ �2: x1 � x2}. Now, define xk

1 :� 1/k,
xk

2 :� xk
1 , εk

1 :� −(xk
2 − xk

2 exp xk
2)(1 − exp xk

2 − xk
2 exp xk

2)−1, εk
2 :� εk

1 and multipliers µk :� −(1 − exp xk
2 − xk

2 exp xk
2)−1

and λk :� 2− µk(−exp xk
2 − xk

2 exp xk
2). Also, define

ωk :� λk(−1, 1)+ µk(1,−exp xk
2 − xk

2 exp xk
2).

Let us show that ωk ∈ NΩNL(xk ,∞)∩ΩL
(xk + εk) for all k ∈�. Clearly, xk and xk + εk are in ΩL, µk ≥ 0, εk→(0, 0) and

ωk � (−3, 2) ∀ k ∈ �. Now, we only need to show that there is no restriction for µk ≥ 0. Since xk
1 − xk

1 exp xk
1 < 0

for x1 , 0, we have g(xk
1 , x

k
2) < 0 (xk

1 � xk
2). So, the multiplier associated with ∇g(xk

1 , x
k
2) is free, if g(x1 , xk

2) +
〈∇g(xk

1 , x
k
2), (εk

1 , ε
k
2)〉 � 0; but, for this choice of εk � (εk

1 , ε
k
2),

g(x1 , x
k
2)+ 〈∇g(xk

1 , x
k
2), (εk

1 , ε
k
2)〉 � xk

2 − xk
2 exp xk

2 + ε
k
1 + ε

k
2(−exp xk

2 − xk
2 exp xk

2)
� xk

2 − xk
2 exp xk

2 + ε
k
1(1− exp xk

2 − xk
2 exp xk

2)� 0.

Thus, we can choose µk � −(1 − exp xk
2 − xk

2 exp xk
2)−1 > 0 as multiplier associated with ∇g(xk

1 , x
k
2) and, thus,

ωk � (−3, 2) � λk(−1, 1) + µk(1,−exp xk
2 − xk

2 exp xk
2) ∈ NΩNL(xk ,∞)∩ΩL

(xk + εk). Clearly (−3, 2) � limk→∞ ω
k is in

lim sup(x , ε)→(x∗ , 0), x∈ΩL
NΩNL(x ,∞)∩ΩL

(x + ε) and (−3, 2) < LΩ(x∗)◦. Hence, LAGP-regularity fails.
Since Quasinormality is implied by Pseudonormality, from the last example we have that Quasinormality

implies neither CAKKT-regularity nor LAGP-regularity.
To prove that CAKKT-regularity and LAGP-regularity are independent of Pseudonormality and Quasinor-

mality, it will be sufficient to show that CAKKT-regularity and LAGP-regularity do not imply Quasinormality.
The next example meets this purpose.
Example 9 (Neither CAKKT-Regularity nor LAGP-Regularity Imply Quasinormality). Consider the feasible set defined
by the equality and inequality constraints.

h(x1 , x2)� x1; g1(x1 , x2)� x3
1; g2(x1 , x2)� x1 exp x2.

The point x∗ � (0, 0) is feasible and active for both constraints. Since, for all x � (x1 , x2) ∈ �2, we have

∇h(x1 , x2)� (1, 0), ∇g1(x1 , x2)� (3x2
1 , 0), and ∇g2(x1 , x2)� (exp x2 , x1 exp x2),

we obtain LΩ(x∗)◦ � {λ(1, 0)+ µ1(0, 0)+ µ2(1, 0), λ ∈ �, µ1 ≥ 0, µ2 ≥ 0} ��× {0}.
x∗ is CAKKT-regular. Take ω∗ ∈ lim sup(x , r)→(x∗ , 0) KC(x , r), so there are sequences {xk}, {rk}, and {ωk} with xk �

(xk
1 , x

k
2)→ x∗ � (0, 0), ωk � (ωk

1 , ω
k
2)→ ω∗ such that

ωk
� λk(1, 0)+ µk

1(3(xk
1)2 , 0)+ µk

2(exp(xk
2), xk

1 exp xk
2) ∈ KC(xk , rk) (61)

and
|λk xk

1 | + |µk
1(xk

1)3 | + |µk
2xk

1 exp xk
2)| ≤ rk→ 0, (62)

for some scalars λk , µk
1 , µ

k
2 with µk

1 ≥ 0 and µk
2 ≥ 0. From the expressions (61) and (62) we obtain that

|ωk
2 � µ

k
2xk

1 exp xk
2 | ≤ rk and ωk

2→ 0. Thus, ω∗ � limk→∞ ω
k is in �× {0} and CAKKT-regularity holds.
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x∗ is LAGP-regular. First, we will calculate ΩL. Since the only linear constraint is defined by h, we have:

ΩL

{
x � (x1 , x2) ∈ �2: h(x)� 0

}
�

{
x � (x1 , x2) ∈ �2: x1 � 0

}
� {0} ×�.

Let us show that NΩNL(x ,−∞)∩ΩL
(x + ε) is outer semicontinuous at (x∗ , 0) relative to ΩL ×�2. Take ω∗ � (ω1 , ω2) ∈

lim sup NΩNL(x ,−∞)∩ΩL
(x + ε) relative to ΩL ×�2, so by definition of outer limit, there are sequences {xk}, {ωk},

and {εk} in �2 such that xk→ x∗ , εk→(0, 0), ωk→ ω∗, and

xk ∈ΩL , xk
+ εk ∈ΩNL(xk ,−∞)∩ΩL , ωk ∈ NΩNL(xk ,−∞)∩ΩL

(xk
+ εk).

To show that ω∗ belongs to NΩNL(x∗ ,−∞)∩ΩL
(x∗ + 0) � LΩ(x∗)◦, we will analyze all the possible cases. Since xk ∈ΩL

and xk + εk ∈ΩL we get xk
1 � 0, εk

1 � 0, g1(xk
1 , x

k
2)� 0 and g2(xk

1 , x
k
2)� 0 for k ∈�. We also note that for any possible

value of εk
2 , the following expression always holds:〈

∇g1(xk
1 , x

k
2), (εk

1 , ε
k
2)
〉
� 0 and

〈
∇g2(xk

1 , x
k
2), (εk

1 , ε
k
2)
〉
� 0.

To see this, since xk
1 � ε

k
1 � 0 we have:〈
∇g1(xk

1 , x
k
2), (εk

1 , ε
k
2)
〉
� εk

1(3(xk
1)2)+ εk

2(0)� 0.(3(xk
1)2)+ εk

2 .0 � 0

and 〈
∇g2(xk

1 , x
k
2), (εk

1 , ε
k
2)
〉
� εk

1(exp xk
2)+ εk

2(xk
1 exp xk

2)� 0. exp xk
2 + ε

k
2 .0 � 0.

Thus, there are µk
1 ≥ 0, µk

2 ≥ 0 such that

ωk
� λk∇h(xk

1 , x
k
2)+ µk

1∇g1(xk
1 , x

k
2)+ µk

2∇g2(xk
1 , x

k
2) ∈ NΩNL(xk ,−∞)∩ΩL

(xk
+ εk),

but since xk
1 � 0, we have ∇h(x1 , x2)� (1, 0), ∇g1(xk

1 , x
k
2)� (0, 0), and ∇g2(xk

1 , x
k
2)� (exp xk

2 , 0). Therefore, ωk
2 � 0 for

all k ∈ � and ω∗ � limk→∞ ω
k ∈ �× {0} � K(x∗), as we wanted to show.

Quasinormality does not hold at x∗. For every k ∈�, define xk
1 :� 1/k, xk

1 :� xk
2 , λ :� 0, µ1 :� 1 and µ2 :� 0. For these

choices, we have λ∇h(x∗)+ µ1∇g1(x∗)+ µ2∇g2(x∗) � 0.(1, 0)+ 1.(0, 0)+ 0.(1, 0) � (0, 0) and µ1 g1(xk
1 , x

k
2) � (xk

1)3 > 0
for all k ∈ �. Thus, Quasinormality fails at x∗.

Figure 6 shows the major results obtained in this section. We believe that, up to the present date, this is the
most complete landscape of constraint qualifications with algorithmic implications.

By the examples above, we have that neither CAKKT nor LAGP, under Pseudonormality or Quasinormality,
imply the KKT conditions. We end this section with a specific example of this kind.

Consider the following optimization problem:

Minimize f (x1 , x2) :� 3x1 − 2x2

s.t. h(x1 , x2)� x1 − x2 � 0,
g(x1 , x2)� x1 − x2 exp(x2) ≤ 0. (63)

By Example 8, the constraints satisfy Quasinormality at x∗ � (0, 0) and, thus, Abadie’s CQ but neither CAKKT-
regularity nor LAGP-regularity. Let us see that both CAKKT and LAGP hold for this objective function.

CAKKT holds at x∗� (0, 0). From the Example 8, we have that for xk
1 :� 1/k, xk

2 :� xk
1 , µk :�−(1−exp xk

2−xk
2 exp xk

2)−1

and λk :� 2− µk(−exp xk
2 − xk

2 exp xk
2):

∇ f (x , xk)+ λk(−1, 1)+ µk(1,−exp xk
2 − xk

2 exp xk
2)→ (0, 0)

and rk :� |λk h(xk
1 , x

k
2)| + |µk g(xk

1 , x
k
2)| → 0. Thus, CAKKT holds.
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Figure 6. (Color online) An updated landscape of constraint qualifications.
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LAGP holds at x∗ � (0, 0). Take xk
1 :� 1/k and xk

2 :� xk
1 as in Example 8. Note that (xk

1 , x
k
2) is in ΩL � {(x1 , x2) ∈ �2:

x1 � x2}. If we define εk
1 :� −(xk

2 − xk
2 exp xk

2)(1− exp xk
2 − xk

2 exp xk
2)−1, εk

2 :� εk
1 and multipliers µk :� −(1− exp xk

2 −
xk

2 exp xk
2)−1 and λk :� 2− µk(−exp xk

2 − xk
2 exp xk

2). We have

ωk :� λk(−1, 1)+ µk(1,−exp xk
2 − xk

2 exp xk
2) ∈ NΩNL(xk ,∞)∩ΩL

(xk
+ εk).

Then, by Proposition 1, PΩNL(xk ,∞)∩ΩL
(xk + εk + ωk) � xk + εk Now, since ωk � −∇ f (xk

1 , x
k
2) � (−3, 2), ∀ k ∈ �, we

conclude, from the nonexpansivity of the projection, that PΩNL(xk ,∞)∩ΩL
(xk + εk + ωk) − xk → (0, 0). Thus, the

sequential optimality condition LAGP holds.
The point x∗ � (0, 0) means nothing for the optimization problem (63). The considered point x∗ is neither an

optimal solution nor a stationary point. But it can be attained by an algorithm that generates CAKKT points (as
an augmented Lagrangian method, for instance) or by an algorithm that generates L-AGP points (like inexact
restauration methods). This means that the point (0, 0) fulfills any sensible practical test based on CAKKT or
on L-AGP (stronger than the test based on AKKT) and the algorithm will accept a point which has no relation
with the optimization problem (63). This cannot happen if, instead of the Quasinormality condition, the point
satisfies any constraint qualification which implies respectively CAKKT regularity and L-AGP regularity as
LICQ, MFCQ, CRSC, CPG, CCP etc.

7. Final Remarks
The development of computers in the 20th century made it possible to solve many constrained optimization
problems by means of iterative algorithms. The KKT conditions provided a theoretical basis to the definition of
suitable stopping criteria for these algorithms. Approximate forms of the KKT conditions are used to declare
that an iterate is satisfactory enough for the purposes of practical iterative methods since the fifties, when
the first constrained optimization algorithms appeared. However, if an algorithm does not naturally provide
Lagrange multipliers approximations, stopping criteria based on gradient projections may be preferred. AKKT,
Scaled-AKKT, CAKKT, and SAKKT induce stopping criteria based on the KKT conditions, while AGP and LAGP
are sequential optimality conditions that induce stopping criteria based on gradient projections. For the practical
point of view, the fact that sequential optimality conditions are satisfied by local minimizers independently of
constraint qualifications is very important, since it justifies the decision taken in every optimization software of
not testing constraint qualifications at all.
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Since sequential optimality conditions are genuine necessary conditions for constrained optimization, the
question of their relative strength comes to be relevant. Again, this question is associated with the efficiency of
methods: It can be conjectured that the efficiency of a method is linked to the strength of the optimality condition
that is guaranteed to hold by the cluster points of the generated sequences. Moreover, the possible nonfulfillment
of this conjecture in practical cases could reveal that the analysis of the methods under consideration should
rely on alternative theoretical concepts.

Now, the strength analysis of sequential optimality conditions may be direct or indirect. The direct analysis
proceeds by straight comparison of the optimality conditions, showing the implications between them and the
examples in which one condition holds and other does not at a nonoptimal point. The indirect analysis asks for
the constraint qualifications that must be satisfied by a point that fulfills a sequential optimality condition in
order to be a KKT point. The interest of the indirect analysis relies on the fact that the constraint qualifications
that guarantee that a stationary point (from the point of view of a sequential optimality condition) satisfies KKT
are properties of the feasible points of a constrained optimization problem, whose geometrical meaning and
consequences are instigating. In other words, this analysis provides the classification of systems of equalities
and inequalities from a new point of view, which is completely independent of objective functions.

We believe that future research on strict constraint qualifications associated with sequential optimality con-
ditions will address optimization problems of the form (1) with special characteristics on the function or
the constraints (for example, in the presence of complementarity, equilibrium or cone constraints), problems
of the form (1) with nonsmooth components, and optimization problems that are not given in the form (1). In
the case of complementarity constraints, it is well-known that most standard constrained optimization methods
may converge to nonoptimal points from which obvious descent direction emanate, a fact that motivated the
definition of many alternative point-based optimality conditions whose sequential stopping-criteria counterpart
have not been analyzed yet. This is also the case of bilevel optimization problems. On the other hand, opti-
mization problems that do not attain the form (1) include multiobjective optimization problems, order-value
optimization Martínez [29], semidefinite programming, PDE-constrained optimization and many other problems
with engineering, economics and industrial applications. Much research on these topics should be expected in
the forthcoming years.
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