
Numerical Algorithms 35: 175–184, 2004.
 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Some inexact hybrid proximal augmented Lagrangian
algorithms

Carlos Humes Jr. a,∗, Paulo J.S. Silva a,∗∗ and Benar F. Svaiter b,∗∗∗
a Department of Computer Science, University of São Paulo, Brazil

E-mail: {humes,rsilva}@ime.usp.br
b Instituto de Matemática Pura e Aplicada, Brazil

E-mail: benar@impa.br

Received 30 December 2001; accepted 29 October 2002

In this work, Solodov–Svaiter’s hybrid projection-proximal and extragradient-proximal
methods [16,17] are used to derive two algorithms to find a Karush–Kuhn–Tucker pair of
a convex programming problem. These algorithms are variations of the proximal augmented
Lagrangian. As a main feature, both algorithms allow for a fixed relative accuracy of the solu-
tion of the unconstrained subproblems. We also show that the convergence is Q-linear under
strong second order assumptions. Preliminary computational experiments are also presented.
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1. Introduction

The proximal point algorithm [9–11,13] and its connection to augmented La-
grangian algorithms for nonlinear programming were established in [14]. In this arti-
cle, Rockafellar showed that the augmented Lagrangian method introduced by Hestenes
and Powell [5,12] can be viewed as the proximal point algorithm applied to solve the
dual of a nonlinear programming problem. He also introduced the proximal augmented
Lagrangian, based on the the proximal algorithm used to find a saddle point of the
Lagrangian function, which corresponds to a Karush–Kuhn–Tucker (KKT) pair of the
nonlinear problem. The convergence of the algorithm was proved assuming summable
relative errors in the unconstrained minimization needed at each step. Moreover, under
extra second order conditions, the rate of convergence was shown to beQ-linear.

In this work, based on Solodov–Svaiter’s hybrid methods [16,17], we derive two
variations of Rockafellar’s proximal augmented Lagrangian that share the convergence
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properties, but that require only constant relative accuracy. Some preliminary computa-
tional results are presented.

2. The algorithm

2.1. Definitions and notation

Consider the problem

min f (x)
s.t. g(x) � 0, x ∈ R

n,
(1)

where f : R
n → (−∞,∞] and g(·) has m components gi : R

n → (−∞,∞], i =
1, . . . , m. We assume throughout this paper that f (·) and each component of g(·) are
convex and lower semi-continuous, i.e.

lim inf
x→x̄

f (x) � f (x̄).

We also suppose that the relative interior of their effective domains intersect. Moreover,
we assume that (1) and its dual have solutions.

The extended Lagrangian function of (1) is:

l(x, y) :=



f (x)+

m∑
j=1

yjgj (x), if y ∈ R
m+

−∞, otherwise.

Saddle points of the Lagrangian are the KKT pairs for problem (1) and therefore the
pairs of solutions of (1) and its dual.

Associated to the Lagrangian, l(·, ·), we have the maximal monotone operator
Tl : (x, y) �→ {(u, v) | (u,−v) ∈ ∂l(x, y)}, i.e.:

Tl(x, y)
.=


 ∂f (x)+

m∑
j=1

yj ∂gj(x)

−g(x)+ NR
m+(y)


 ,

where

NR
m+(y)j =




0, if yj > 0,
(−∞, 0], if yj = 0,
∅, if yj < 0.

Due to the convexity assumptions, it is clear that the saddle points of l(·, ·) correspond
to the zeroes of Tl(·, ·).
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In [14], Rockafellar introduces the proximal augmented Lagrangian algorithm to
find a zero of Tl(·, ·). In this method one computes a sequence {xk, yk}, where xk+1 is
an approximate unconstrained minimizer of the function

φk(x)
.= f (x)+ P (

g(x), yk, ck
) + 1

2ck
∥∥x − xk∥∥2

, (2)

P(w, y, c)
.= 1

2c

m∑
j=1

[
(yj + cwj )2+ − (yj )2

]
.1 (3)

Then, one takes yk+1 .= ∇wP (g(xk+1), yk, ck).2

An approximate solution to the minimization of φk(·) is considered acceptable if

dist
(
0, ∂φk

(
xk+1

))
� εk

ck
,

∞∑
i=0

εk < ∞; (4)

or

dist
(
0, ∂φk

(
xk+1

))
�

(
δk

ck

)∥∥(
xk+1, yk+1

) − (
xk, yk

)∥∥, ∞∑
i=0

δk < ∞. (5)

This error tolerance comes directly from the error bounds demanded by the proximal
point algorithm in [13]. In particular, an exact solution, xk+1, of the minimization of
φk(·) and the corresponding yk+1 (=∇wP (g(xk+1), yk, ck)) form the solution of the ex-
act proximal step.

Rockafellar used the criterion (4) to ensure convergence and (5) to prove Q-linear
convergence rate.

2.2. The hybrid algorithms

In [16,17], Solodov and Svaiter introduced two variations of the proximal point
algorithm to compute zeroes of maximal monotone operators. Their main feature is a
less stringent acceptance criterion. To achieve this, a step is done on the direction of an
image of the maximal monotone operator calculated at an approximate solution of the
proximal step.

If we apply these algorithms to find a zero of Tl(·, ·) we have:

1. Initialization: Let (x0, y0) ∈ R
n × R

m+ and σ ∈ [0, 1).
2. Iteration: Given (xk, yk) and ck > 0.

1 As usual, a+ denotes max{0, a}. We shall use a− for the corresponding minimum operation and we
also allow these operations to be applied componentwise to vectors.

2 Observe that P(w, y, c) is Lipschitz continuously differentiable with respect to w, but it is not twice
differentiable at the points at (−1/c)yi .
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(a) Inner step: Find (x̃k, ỹk) and ṽk ∈ Tl(x̃k, ỹk), such that∥∥∥∥ṽk + 1

ck

((
x̃k, ỹk

) − (
xk, yk

))∥∥∥∥ � σ

(
1

ck

)∥∥(
x̃k, ỹk

) − (
xk, yk

)∥∥. (6)

(b) Extragradient step: If ṽk = 0, or (x̃k, ỹk) = (xk, yk), Stop.
Otherwise, make a step in the direction ṽk. The step size must be one of the
following, which characterizes each method:

• Projection-proximal method3

(
xk+1, yk+1) .= (

xk, yk
) − 〈ṽk, (xk, yk)− (x̃k, ỹk)〉

‖ṽk‖2
ṽk. (7)

• Extragradient-proximal method(
xk+1, yk+1

) .= (
xk, yk

) − ckṽk. (8)

Recall, from last section, that the exact minimization of φk(·), gives a solution of
the proximal step, i.e. a pair (x̃k, ỹk) that has a ṽk ∈ Tl(x̃k, ỹk) such that:

ṽk + 1

ck

((
x̃k, ỹk

) − (
xk, yk

)) = 0.

Then, it is natural to use an approximate solution of this minimization problem to per-
form the inner step above. The main difficulty here is how to compute a good element
in Tl(·, ·) that permits to test the inner acceptance criterion (6), and to perform the extra-
gradient step described above. This will be handled by the next two simple results:

Lemma 1. Let x̃ ∈ R
n and y ∈ R

m+ and c > 0. Define

ỹ
.= ∇wP

(
g(x̃), y, c

)
and ν̃

.= (
y + cg(x̃))−.

Then

ν̃ ∈ NR
m+(ỹ),

and, for any γ̃ ∈ ∂xl(x̃, ỹ),

ṽ
.=

[
γ̃

−g(x̃)+ 1
c
ν̃

]
∈ Tl(x̃, ỹ).

Proof. The result follows trivially, observing that ∇wP (g(x̃), y, c) = (y + cg(x̃))+. �

In the last lemma, the definition of ỹ comes directly from the proximal augmented
Lagrangian step described in section 2.1. Moreover, we have carefully selected a special

3 In the projection-proximal method we could use a weaker stopping criterion:

‖ṽk + 1/ck((x̃k, ỹk)− (xk, yk))‖ � σ max{‖ṽk‖, 1/ck‖(x̃k , ỹk)− (xk, yk)‖}.
For more details see [7,16].
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element of NR
m+(ỹ) to define ṽ. This choice simplifies the test of the inner acceptance

criterion (6).

Proposition 1. Let x̃k ∈ R
n and yk ∈ R

m+ and ck > 0. Defining ỹk , ν̃k, γ̃ k and ṽk as
above it follows that:

rk
.= ṽk + 1

ck

((
x̃k, ỹk

) − (x, y)) ∈
[
∂φk

(
x̃k

)
0

]
. (9)

Proof. Clearly, ∂φk(x̃k) = ∂xl(x̃, ỹ)+ 1/ck(x̃k − xk).
On the other hand,

−g(x̃k) + 1

ck
ν̃k + 1

ck

(
ỹk − yk)

= −g(x̃k) + 1

ck

[(
yk + ckg(x̃k))− + (

yk + ckg(x̃k))+ − yk]
= −g(x̃k) + 1

ck

(
yk + ckg(x̃k) − yk) = 0.

This completes the proof. �

Now, using the above definitions, it is easy to present an implementable form of
the hybrid algorithms. Since both algorithms are very similar we will focus the follow-
ing presentation on the hybrid extragradient-proximal algorithm, which is simpler and
performed slightly better in our experiments.4

1. Initialization: Let (x0, y0) ∈ R
n × R

m+ and σ ∈ [0, 1).
2. Iteration: Given (xk, yk) and ck > 0, define P(·, yk, ck) as in equation (3). Define

also

ϕk(x)
.= f (x)+ P (

g(x), yk, ck
)
,

φk(x)
.= ϕk(x)+ 1

2ck
∥∥x − xk∥∥2

.

(a) Inner optimization: Find x̃k approximate solution of the unconstrained mini-
mization of φ(·) such that∥∥∇φk

(
x̃k

)∥∥ � σ

(
1

ck

)∥∥z̃k∥∥, (10)

where

ṽk
.=

[ ∇ϕk
(
x̃k

)
1

ck

(
yk − ỹk)

]
, z̃k

.=
[
x̃k − xk
ỹk − yk

]

4 Moreover, to simplify the presentation we will assume that the objective function and the constraints are
differentiable. From the previous results, the adaptation to non-differentiable case should be straight-
forward.
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with

ỹk
.= ∇wP

(
g
(
x̃k

)
, yk, ck

)
.

(b) Extragradient step: If ṽk = 0, or z̃k = 0, Stop.
Otherwise, (

xk+1, yk+1) .= (
xk, yk

) − ckṽk.
Note that, with our particular choices for ỹk and ṽk, the acceptance criterion (6) becomes
the very simple formula (10).

The main convergence theorems are:

Theorem 1. If the problem (1) and its dual have solutions and the sequence of penal-
ization parameters, {ck}, is bounded away from zero; then the sequence generated by
the inexact hybrid extragradient-proximal augmented Lagrangian converges to a pair of
solutions of these problems (a KKT pair).

Proof. This is a corollary of the convergence of the hybrid extragradient-proximal
point [17, theorem 3.1]. �

Theorem 2. Under the assumptions of theorem 1, if T −1
l (·, ·) is Lipschitz continuous at

the origin then the convergence rate is at least Q-linear.

Proof. The result follows from the convergence rate of the hybrid extragradient-
proximal algorithm [17, theorem 3.2]. �

Note that the Lipschitz continuity of T −1
l (·, ·) can be guaranteed under strong sec-

ond order conditions, as shown in [14, pp. 102, 103].
It is important to stress that, to the authors’ knowledge, this is the first convergence

result of an optimization method similar to the augmented Lagrangian algorithm that
does not require increasing relative accuracy, i.e. the σ is held constant during the whole
process. All the convergence results, so far, asked the relative accuracy to decrease to
zero [1,2,14].

3. Computational experiments

In this section, we present some preliminary computational results to demonstrate
the applicability of the above algorithm. We also compare it to two different algorithms:

1. The ordinary Proximal augmented Lagrangian method, with the stringent error ac-
ceptance criterion (4), presented in the beginning of section 2.5

2. The ordinary augmented Lagrangian with errors, as presented in [1, chapter 5], usu-
ally implemented in practice. We remind the reader that in [14], Rockafellar showed

5 The method described in [14], that does not depend on the extragradient step.
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that this algorithm can be seen as the proximal point method applied to the dual
of (1). We present the algorithm for the sake of completeness:

(a) Initialization: Let (x0, y0) ∈ R
n × R

m+ and {εk} a sequence converging to zero.

(b) Iteration: Given (xk, yk) and ck > 0, define P(·, yk, ck) as in equation (3), and
define ϕk(·) as in the hybrid algorithm:

ϕk(x)
.= f (x)+ P (

g(x), yk, ck
)
.

(i) Inner optimization: Find an approximate solution of the unconstrained op-
timization of ϕk(·), xk+1, such that

∥∥∇ϕk
(
xk+1

)∥∥ � εk

ck

∥∥∇wP
(
g
(
xk+1

)
, yk, ck

) − yk∥∥.
(ii) Multiplier update: Define yk+1 .= ∇wP (g(xk+1), yk, ck).

3.1. Implementation details

We have implemented the methods in Fortran 90. Since they are very similar the
results should not be influenced by implementation details. To solve the unconstrained
optimizations problems, we used the LBFGS-B code from Byrd et al. [3], which is freely
available at the OTC site.6

Moreover, we did not try to fine-tune the parameters of the algorithms to achieve
better performance in each problem. The parameters were chosen to be robust, i.e.
to guarantee convergence in all the problems tested. Some parameters that must be
described are:

1. Initialization. The initial primal–dual pair was chosen randomly in [−2, 2] × [0, 2].
These values are in the order of magnitude of the solutions.

2. Stopping criterion. Since the solutions to all problems are known, we decided to use
as stopping criterion ε-optimality and ε-feasibility. Formally, let xk be an approxi-
mate solution and f ∗ be the optimal value. The point xk is accepted if:∣∣f (x)− f ∗∣∣ � max

(
ε1, ε2|f ∗|);

gi(x) � ε3, ∀i = 1, . . . , m.

Here ε1 = 5.0E−5 and ε2 = ε3 = 1.0E−4.

3. Update of the penalty parameter ck. We have decided to keep ck fixed. Otherwise,
a slower method could force ck to increase faster, hiding its deficiency.

6 The source code is freely available at the site http://www.ece.northwestern.edu/OTC/
OTCsoftware.htm.
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4. Stopping criterion for the inner step in the hybrid method. Instead of using the
original acceptance criterion given in (10), we decided to use a simpler threshold,∥∥∇φk

(
x̃k

)∥∥ � σ
1

ck

∥∥x̃k − xk∥∥,
that is faster to compute. The chosen σ was 0.9. If we had used the original accep-
tance test, smaller values for σ would be better.

5. The error control sequence {εk}. For the ordinary augmented Lagrangian, we have
used

εk
.= 1

1 + k/5 ,
which is based on the harmonic sequence. This sequence was chosen because it
goes slowly to zero and worked well in our tests.
For the proximal augmented Lagrangian, we have used the same sequence squared.7

The code was run on a PC class computer based on the AMD K6-2 300 MHz CPU
and with 128 MB of main memory. Linux was the operating system. The compiler used
was the Intel Fortran Compiler, version 5.0.1. Finally, each problem was solved one
thousand times to minimize start up effects and to randomize the starting point.

3.2. The tests problems

The following convex test problems were used:

• From Hock and Schittkowski collection [6,15]: problems 21, 28, 35, 51, 76, 215,
218, 224, 262, 268, 284, 315, 384;

• From Lasdon [8]: problems 1 and 3.

These are all small scale problems, with up to 15 variables and 10 constraints that
are clearly convex.

3.3. Computational results

Table 1 presents the processing time in seconds used to solve each test problem
a thousand times. We also show the number of unconstrained minimizations used by
each method to find an approximate solution to the constrained problem.8 This value
will be used to better explain the behavior of the methods.

The results confirm that the looser acceptance criterion followed by the extra-
gradient step has a positive effect on the computational time. Actually, considering
the mean behavior in all problems, the hybrid version of the proximal augmented La-
grangian used only 87% of the time used by the version with summable errors, without
increasing the number of unconstrained minimizations.9

7 The error sequence of the proximal augmented Lagrangian method must be summable.
8 The column #min.
9 This mean behavior is the geometric mean of the ratios of the times in both methods.
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Table 1
Performance results.

Aug. Lagrangian Prox. Lagrangian Hybrid
Problem Time #min Time #min Time #min

S21 1.11 4065 2.02 9186 1.94 9260
S215 2.48 16049 4.78 24106 3.71 24653
S218 1.41 4723 2.76 15523 3.46 17004
S224 9.07 34757 8.86 28169 7.80 28785
S262 8.38 9796 13.70 33515 19.20 48263
S268 18.80 3819 16.60 6875 17.30 8164
S28 4.68 3505 5.06 10925 3.78 8181
S284 11.80 8079 15.60 22222 10.80 14677
S315 1.82 6795 3.25 12365 2.65 12403
S35 2.56 7440 4.55 11881 3.79 12113
S384 43.80 38737 71.80 37598 38.40 37611
S51 6.16 15991 8.14 15017 6.63 15462
S76 6.49 14248 12.80 24164 9.83 27405
Lasdon1 2.61 12451 2.50 10743 2.36 11397
Lasdon3 14.40 29682 18.60 28650 16.10 28706

On the other hand, when compared to the augmented Lagrangian without a pri-
mal regularization, the Hybrid method is still slower. This seems to be a consequence
of an increase in the number of unconstrained minimizations required by the methods
using the primal regularization. Actually, the mean time used by the hybrid method is
25% bigger than the one used by the ordinary augmented Lagrangian method and the
number of unconstrained minimizations increased 67%. Hence, although less work is
done at each minimization due to the new acceptance criterion, the higher number of
unconstrained minimizations is still a bottleneck.

This last observation raises the question of whether it is possible to use the hybrid
algorithm to solve directly the dual problem, deriving an augmented Lagrangian method
with a better error criterion. Unfortunately, this is not a straightforward extension of the
ideas presented in this paper. The error criterion and the extragradient step would need
an element in the subgradient of the dual function, which requires a full unconstrained
minimization to compute. This extension should be the subject of further investigation.
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