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Abstract

Many algorithms for solving the problem of finding zeroes of a sum of two maximal mono
operatorsT1 andT2, have regularized subproblems of the kind 0∈ T1(x)+T2(x)+ ∂D(x), whereD
is a convex function. We develop an unified analysis for existence of solutions of these subpro
through the introduction of the concept of convex regularization, which includes several well-k
cases in the literature. Finally, we establish conditions, either onD or on the operators, which assu
solvability of the subproblems.
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1. Introduction

LetX be a reflexive real Banach space, with〈u,x〉 written in place ofu(x), for x ∈X
andu ∈X∗. Moreover, letJ :X⇒X∗ be the normalized duality mapping, defined by
propertyv ∈ Jx if and only if ‖v‖2

X∗ = ‖x‖2
X = 〈v, x〉 for anyx ∈X, where‖ · ‖X denotes

the norm in the spaceX.
A multi-valued mappingT :X⇒X∗ is said to be monotone if

〈u− v, x − y〉 � 0 wheneveru ∈ T (x), v ∈ T (y).
Moreover, it is said to be maximal if its graph is not properly contained in the graph o
other monotone mapping.

Given two maximal monotone operatorsT1, T2 :X⇒X∗, a fundamental problem is th
one of finding a zero ofT1 + T2, i.e., the problem of finding anx ∈X such that

0 ∈ T1(x)+ T2(x). (1)

A wide variety of problems can be regarded as special instances of (1). To na
few, linear and convex programming, solving systems of linear equations or inequa
systems of partial differential equations, finding a point in the intersection of two co
sets, monotone complementarity, variational inequalities, and constrained minimax.
(1) is a model for a variational inequality problem, thenT2 is the normal coneNC of a
closed convex setC. Several algorithms for solving this problem have subproblems o
form

0 ∈ T1(x)+NC(x)+ ∂D(x), (2)

where D is a regularization associated toC [2,3,7,8,10,11,17,19]. Hence gene
conditions under which subproblems (2) have solutions are important from the algor
point of view.

More generally, our aim is to study the existence of solutions to the following prob

0 ∈ T1(x)+ T2(x)+ ∂D(x), (3)

whereD is a regularization. For an example in whichT2 is not the normal coneNC , see,
e.g., [1, Section 3] and [5, Section 3].

2. Convex regularizations

We define below the regularizations that will be considered in problem (3). In order
so, we recall a recent generalization of the concept of a Legendre function [15, Sect
well suited for reflexive Banach spaces.

Definition 1 [4, Definition 5.2]. We say that a proper convex lower semicontinu
functionf :X→ (−∞,+∞] is

(a) essentially smooth, if ∂f is both locally bounded and single valued on its domain;
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(b) essentially strictly convex, if ∂f−1 is locally bounded on its domain andf is strictly
convex on every convex sub-set of dom∂f . Note that the local boundedness of∂f−1

is equivalent to rge∂f (= dom∂f−1) be open [4, Corollary 2.19];
(c) Legendre, if it is both essentially smooth and essentially strictly convex.

We can now introduce the concept of a convex regularization.

Definition 2. Let C be subset ofX with nonempty and convex interior. LetD :X →
(−∞,+∞] be a proper, convex and lower semi-continuous function. We will say
D is aconvex regularization associated toC when it satisfies the following conditions:

(a) intdomD = intC = dom∂D,
(b) D attains its minimum on intC,
(c) D is a Legendre function.

Some examples are:

• X = R
n andC = R

n+. Any ϕ-divergence [18] with center iny ∈ R
n++,

D(x)=
n∑
j=1

yiϕ

(
xi

yi

)
,

is a convex regularization associated toR
n+. In particular, the Kullback–Leible

relative entropyD(x) = ∑n
j=1(xj log(xj/yi) + yj − xj ). Another related exampl

is the recently introduced family of distances based in an second-order homoge
kernels. They are defined asDθ(x) = dθ (x, y) = ∑n

j=1y
2
j θ(xj/yj ), whereθ(·) is a

function with logarithmic-quadratic behavior [2, Section 2]. The same holds for
generalizations presented in [17].

• X is a reflexive smooth and rotund space, so that(1/2)‖x‖2 is a Legendre function
ConsiderC a subset ofX such that intC = {x ∈X: ‖x‖< 1}. The functionsD1(x)=
−√

1− ‖x‖2 if ‖x‖ � 1 and+∞ otherwise, andD2(x) = (1 − ‖x‖2)−1 if ‖x‖ < 1
and+∞ otherwise, are convex regularizations associated toC. Actually, in [4] it is
proved that these are Legendre functions. They achieve their minimum atx = 0. We
point out that in [12], the function 1+D1(x) is considered as a penalty function in t
closed unit ball of center zeroB. This last work deals with the variational inequal
problemVIP(T ,B) on an uniformly convex and uniformly smooth Banach space.

Another nontrivial and important example is given in Proposition 6.
In view of (3) and condition (a) in Definition 2, it will be natural to considerC =

domT2. In this case, it should be clear that any solution to (3) must lie in domT1 ∩
intdomT2. Hence, as our objective is to study the existence of such solutions, we
assume throughout this paper that

domT1 ∩ intdom(T2) �= ∅. (4)

This assumption also ensures thatT1 + T2 is maximal monotone [16, Theorem 1]. No
that, by strict convexity ofD, if (3) has a zero, it must be unique.
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3. Existence of solutions for special convex regularizations

In this section, we will show some reasonable extra assumptions onD, the convex
regularization associated to intdomT2 that can ensure the existence of solutions to (3)

We start by recalling two auxiliary results:

Lemma 3 [14, Lemma 2.1].LetT be a maximal monotone operator andF ⊂X∗ such that

∀u ∈ F, ∃y ∈X, sup
(z,v)∈gphT

〈v − u,y − z〉<∞, (5)

thenconvF ⊂ rgeT and int(convF)⊂ rgeT .

Lemma 4 [8, Lemma 2.7].Let T ,S be monotone operators. Suppose that they satisfy
following conditions:

(1) S is regular, i.e.,∀u ∈ rgeS, y ∈ domS,

sup
(z,v)∈gphS

〈v − u,y − z〉<∞;

(2) domT ∩ domS �= ∅ andrgeS =X∗;
(3) T + S is maximal monotone.

Then,rge(T + S)=X∗.

Now, it is easy to show a generalization of [7, Theorem 1] and part (2) of [2, Pr
sition 2]. This is basically [8, Corollary 3.1] presented in a general setting, not limite
Bregman distances [8]:

Theorem 5. If rge∂D =X∗, then(3) admits a unique solution.

Proof. Since we assumed that rge∂D = X∗, we simply use Lemma 4 withS := ∂D and
T := T1 + T2, remembering that∂D is regular [5, Example 1],(T1 + T2)+ ∂D is maximal
monotone [16, Theorem 1] and that assumption (4) holds.✷

Before we state our next result, we show that an important and well-known kin
regularization is a convex regularization.

Proposition 6. Let f :X→ (−∞,+∞] be a proper closed strictly convex function wh
hasC as effective domain. Assume thatf is differentiable onintC. For y ∈ intC, define

Df (x, y)= f (x)− f (y)−
〈∇f (y), x − y〉 for all x ∈ C,

a Bregman-like distance. ThenDf (·, y) is a convex regularization associated toC if and
only if f is Legendre.

Proof. Assume thatDf (·, y) is a convex regularization associated toC, then by using
Definition 1, we conclude thatf must be Legendre, sinceDf (·, y) and f differ only
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by an affine term. Conversely, assume thatf is Legendre. Since part (c) of Definition
trivially holds, we only have to check conditions (a) and (b). Note that, intC = intdomf =
dom∂f = dom∂Df (·, y), where the second equality holds becausef is Legendre. Then
condition (a) holds. Condition (b) is verified because the minimum ofDf (·, y) is attained
aty. ✷
Corollary 7. Assume that the hypotheses of Proposition6 hold. The Bregman-like distanc
Df (·, y) is a convex regularization associated toC if

(a) rge∂f is open, and
(b) Df is boundary coercive[9, Assumption B6].

Condition(a)above holds ifX is finite dimensional and both conditions are valid whene
f is zone coercive[8].

Proof. By Proposition 6, it is enough to prove thatf is Legendre.
Assume that (a) and (b) hold. Clearly, (a) and the strict convexity off states that it is

essentially strictly convex.
Moreover, let{yk} be a sequence in intC converging to some point in the bounda

of C. AsDf is boundary coercive we know that for everyx ∈ intC〈∇f (yk), x − yk 〉 → −∞.
It follows that‖∇f (yk)‖ → +∞. Using [4, Theorem 5.6] we conclude thatf is essentially
smooth.

Let us prove the last assertion. Assume thatX is finite dimensional andf is strictly
convex. By [15, Theorem 26.3],f ∗ is essentially smooth. Using [15, Theorem 26.1]
conclude that rge∂f = dom∂f ∗ is open.

Finally, if f is zone coercive, this means that rge∂f =X∗, which is open. For checkin
(b), we show first that dom∂f = intC. Otherwise there would be two points, one in t
boundary ofC and the other intC, sharing a sub-gradient, which would contradict
strict convexity off [4, Lemma 5.1(ii)]. Hence, dom∂f = intC = intdomf and∂f is
single valued on its domain. Now, takex ∈ intC and let {yk} be a sequence in intC
converging toȳ in the boundary ofC. Using [4, Theorem 5.6 (iii) and (v)], we conclud
that‖∇f (yk)‖ → +∞. Using the Fenchel equality,〈∇f (yk), x − yk 〉 = 〈∇f (yk), x〉 − f ∗(∇f (yk)) − f (yk).
We observe thatf ∗(·) − 〈·, x〉 is coercive, asx ∈ intdomf [4, Fact 3.1]. Taking limits
above it follows that

lim
k→+∞

〈∇f (xk), x − yk 〉 � −∞ − f (ȳ)= −∞. ✷
In the light of the previous lemma and the examples presented in Section 2, th

theorem is specially interesting. Actually, it generalizes several results that prove
existence of solutions to proximal subproblems in the context of variational inequaliti
particular, we drop the standard requirement of zone coerciveness for Bregman dis
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and replace it by the weaker conditions (a) and (b) from Corollary 7 above. We hig
that condition (a) is void in finite dimension, and condition (b), boundary coercive
is rather natural for interior point methods. The following theorem generalizes
Theorem 4(i)], [7, Theorems 1 and 2], and [8, Corollary 3.1]. Another result, not b
on Bregman functions, that is extended below is [3, Theorem A.1], whose proof ins
our approach.

Theorem 8. Let 0∈ rge(T1 + T2) and, for ally ∈ int domT2 and allw ∈ domT2,

sup
z∈intdomT2

{〈∇D(z)− ∇D(y),w− z〉}<∞. (6)

Then,(3) admits a unique solution. Moreover, ifD is finite ondomT2, (6) holds.

Proof. The proof is divided into four steps:

(1) rge∂D is an open neighborhood of 0.

It holds that 0∈ rge∂D, as we assumed thatD attains its minimum. Moreover, sinceD
is essentially strictly convex andX is a reflexive Banach space,D∗ is essentially smooth
Hence dom∂D∗ = rge∂D is open and nonempty.

(2) 0∈ int(rge(T1 + T2)+ rge∂D).

Since 0∈ int rge∂D, there is anε > 0 such thatB(0, ε) ⊂ rge∂D. Using also tha
0 ∈ rge(T1 + T2), we have thatB(0, ε/2)⊂ rge(T1 + T2)+ rge∂D.

(3) 0∈ int rge(T1 + T2 + ∂D).

Let us apply Lemma 3 withF
.= rge(T1 + T2)+ rge∂D andT

.= T1 + T2 + ∂D. Since
dom(T1 + T2 + ∂D)= domT1 ∩ int domT2, we need to show that

∀u ∈ rge(T1 + T2)+ rge∂D, ∃y ∈X,
sup

{〈v − u,y − z〉 | z ∈ domT1 ∩ int domT2, v ∈ (T1 + T2 + ∇D)(z)}<∞. (7)

For anyu ∈ rge(T1+T2)+ rge∂D, letu0 ∈X∗, y ∈ domT1∩domT2 andỹ ∈ intdomT2
be such that

u= u0 + ∇D(ỹ), u0 ∈ (T1 + T2)(y).

Forz ∈ domT1 ∩ int domT2 andv ∈ (T1 + T2 + ∇D)(z), let v0 ∈ (T1 + T2)(z) be such tha
v = v0 + ∇D(z). Then,

〈v − u,y − z〉 = 〈
v0 + ∇D(z)− u0 − ∇D(ỹ), y − z〉

= 〈v0 − u0, y − z〉 + 〈∇D(z)− ∇D(ỹ), y − z〉
�

〈∇D(z)− ∇D(ỹ), y − z〉 (T1 + T2 is monotone).

Taking the supremum for allz ∈ domT1 ∩ intdomT2 andv ∈ (T1 + T2 + ∇D)(z) above,
we conclude that (6) implies (7).
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Therefore Lemma 3 states that int conv(rge(T1+T2)+ rge∂D)⊂ int rge(T1+T2+∂D).
Finally, using Step 2 above, we learn that 0∈ int rge(T1 + T2 + ∂D). This establishes th
first assertion of the thesis.

(4) Property (6) holds ifD is finite on domT2.

Letw ∈ domT2 andy, z ∈ intdomT2, then〈∇D(z)− ∇D(y),w− z〉 �D(w)−D(z)− 〈∇D(y),w− z〉
=D(w)−D(z)− 〈∇D(y),w〉 + 〈∇D(y), z〉
�D(w)−D(z)− 〈∇D(y),w〉 +D(z)−D(y)+ 〈∇D(y), y〉
=D(w)−D(y)+ 〈∇D(y), y −w〉

,

where we used the gradient inequality. Since the right-hand side does not depend oz, the
supremum in (6) is bounded above.✷

4. Existence of solutions for special problems

In this section, we change the extra assumptions onD for the following assumption on
problem (1):

h(x) := sup
{〈v, x − y〉 | y ∈ domT2, v ∈ (T1 + T2)(y)

}
<∞ (8)

for all x ∈ domT1 ∩ domT2. This inequality was studied in [6, Chapter 3] and
Theorem 2] in the context of variational inequalities in Hilbert spaces. Here we u
in the context of reflexive Banach spaces for problem (1). We should stress that (8)
wheneverT1 = ∂f for some convex function bounded below andT2 =NC for a nonempty,
convex, and closed setC. Therefore, the next theorem also extends [19, Lemma
[10, Proposition 4.1], and [17, Lemma 3.2]. For other conditions that ensure (8) s
Proposition 3.1].

Theorem 9. Assume thatD is a convex regularization associated todomT2. If (8) holds,
then(3) admits a unique solution.

Proof. If dom(T1 + T2 + ∂D) is bounded, then by [13, Theorem 4.1],T1 + T2 + ∂D is
onto, and hence (3) has a solution. Otherwise, letx̄ be the point in intdomT2 whereD
attains its minimum and letα = |h(x̄)|. As the level sets ofD are bounded, there must b
δ > 0 such that

x ∈X, ‖x − x̄‖> δ ⇒ D(x)−D(x̄) > α.
Since dom(T1 + T2 + ∂D) is unbounded, there existsx ∈ dom(T1 + T2 + ∂D) =

domT1 ∩ intdomT2, such that‖x‖ > ‖x̄‖ + δ. For suchx, takev ∈ (T1 + T1 + ∂D)(x),
which may be written in the formv0 + ∇D(x) for somev0 ∈ (T1 + T2)(x). Note thatx
verifies‖x − x̄‖> δ, hence,

〈v, x − x̄〉 = 〈v0, x − x̄〉 + 〈∇D(x), x − x̄〉 � −α + 〈∇D(x), x − x̄〉 � −α+ α = 0.
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It follows from [16, Theorem 5(c)] applied to the zeroes of(T1 + T2 + ∂D), that (3) has a
solution. ✷
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