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Erratum to: New Constraint Qualifications and Optimality Conditions
for Second Order Cone Programs

R. Andreani* E.H. Fukuda† G. Haeser‡ H. Ramı́rez§ D.O. Santos¶ P.J.S. Silva*

T.P. Silveira‡

September 8, 2020

Abstract

In this note we show with a counter-example that all conditions proposed in [Y. Zhang, L. Zhang, New Constraint
Qualifications and Optimality Conditions for Second Order Cone Programs. Set-Valued Var. Anal (2019) 27:693–712]
are not constraint qualifications for second-order cone programming.

Keywords: Constraint qualifications; Optimality conditions; Second-order cone programming; Global convergence. We

consider the (nonlinear) second-order cone programming problem

Minimize f (x),

s.t. g j(x) ∈ Km j , j = 1, . . . , `, (1)

where f : Rn→R and g j : Rn→Rm j , j = 1, . . . , ` are continuously differentiable and the second-order cone Km is defined
as Km := {z := (z0,z) ∈ R×Rm−1 | z0 ≥ ‖z‖} if m > 1 and K1 := {z ∈ R | z≥ 0}. Here ‖ · ‖ is the Euclidean norm.

Given a feasible point x∗, we denote by I0(x∗) := { j ∈ {1, . . . , `} | g j(x∗) = 0} the index set of constraints at the
vertex of the corresponding second-order cone and by IB(x∗) := { j ∈ {1, . . . , `} | [g j(x∗)]0 = ‖g j(x∗)‖ > 0} the index
set of constraints at the non-zero boundary of the corresponding second-order cone. For j ∈ IB(x∗) we define φ j(x) :=
1
2 ([g j(x)]20−‖g j(x)‖2), with ∇φ j(x) = Jg j (x)

T Rm j g j(x), where Jg j (x)
T is the n×m j transposed Jacobian of g j and Rm

is the m×m diagonal matriz with 1 at the first position and −1 at the remaining positions.
In [11], the authors present an extension of the classical constant rank constraint qualification (CRCQ, [9]) for the

second-order cone programming problem (1). It reads as follows:

Definition 1. The Constant Rank Constraint Qualification (CRCQ) as defined in [11] holds at a feasible point x∗ of (1)
if there exists a neighborhood V of x∗ such that for any index sets J1 ⊆ I0(x∗) and J2 ⊆ IB(x∗), the family of matrices
whose rows are the union of Jg j (x), j ∈ J1 and the vector rows ∇φ j(x)T , j ∈ J2 has the same rank for all x ∈V .

When j ∈ IB(x∗), the conic constraint g j(x)∈Km j can be locally replaced by the nonlinear constraint φ j(x)≥ 0, which
is active at x∗ (see e.g. [7, Section 4] for more details). Note also that for j ∈ I0(x∗) such that Km j is one-dimensional,
the constraint g j(x) ∈ Km j is also a standard nonlinear constraint. Hence, the particularity of a second-order cone lies on
the fact that one may have a “multi-dimensionally active” constraint g j(x∗) = 0, which must be treated accordingly since
these are tipically the constraints that are hard to tackle. The first impression one has when reading Definition 1 is that
there is no special treatment for these active constraints. In particular, one would expect some regularity to be assumed
for each constraint g j(x) ∈ Km j when j ∈ I0(x∗). To emphasize this last point, let us consider problem (1) with a single
second-order cone, that is, ` = 1, with constraint g(x) ∈ Km1 . Let x∗ be a feasible point such that g(x∗) = 0. According
to Definition (1), CRCQ holds at x∗ when the set of vectors given by all rows of Jg(x) has constant rank, i.e., the full set
of gradients {∇g0(x), . . . ,∇gm1−1(x)} has constant rank, and no subset of these vectors is considered. However, it is well
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known that the classical CRCQ for nonlinear programming requires that all subsets of active constraints possesses the
constant rank property.

Despite these considerations, the example given below shows that even a strengthen definition of CRCQ, that takes
all these subsets into account, is not a constraint qualification. This thus invalidates all the results proved in [11]. Therein,
the authors also propose a definition for the relaxed-CRCQ (RCRCQ, [10]) and for the Constant Rank of the Subspace
Component (CRSC, [6]), which, being weaker than their definition of CRCQ, are not constraint qualifications either. In
particular, the definition of RCRCQ is done in such a way that only the full set of all gradients in I0(x∗) is considered,
while every subset J2 ⊆ IB(x∗) is considered (namely, J1 is taken to be fixed and equal to I0(x∗) in Definition 1). However,
it is easy to see that this is not a constraint qualification, since when one considers only one-dimensional cones, and
consequently (1) reduces to a nonlinear programming problem, RCRCQ reads identical to the so-called Weak Constant
Rank property from [1], which is not a constraint qualification. Our counter-example is discussed in the sequel.

Consider the following problem of one-dimensional variable:

Minimize f (x) :=−x,

s.t. g(x) ∈ K2, (2)

with

g(x) =
(

g0(x)
g1(x)

)
:=
(

x
x+ x2

)
.

The unique feasible point is x∗ = 0, thus, it is a global solution. Since g(x∗) = 0, the Karush-Kuhn-Tucker conditions
for this problem are given by the existence of µ ∈ K2 such that ∇ f (x∗)− Jg(x∗)T µ = 0, that is

−1−µ0−µ1 = 0, (3)

with µ = (µ0,µ1)
T ∈ K2, or, equivalently, µ0 ≥ |µ1|. Thus, (3) can not hold and the Karush-Kuhn-Tucker conditions

fail. On the other hand Jg(x) =
(

1
1+2x

)
for all x. In particular, ∇g0(x) = 1 and ∇g1(x) = 1+2x for all x. Thus, all

subsets of gradients
{∇g0(x)},{∇g1(x)},{∇g0(x),∇g1(x)}

have constant rank equal to 1 for all x near x∗. This shows that the definition of CRCQ from [11] is not a constraint
qualification, as this property is characterized by the fact that the Karush-Kuhn-Tucker conditions hold at any local
minimizer.

We next briefly point out the possible mistake in the approach followed in [11]. It is based on the proof of RCRCQ
from [10], which is also similar to [1]. It is shown therein that L (x∗)⊆T (x∗), for apropriate definitions of the linearized
cone L (x∗) and tangent cone T (x∗) for second-order cone programming, by means of applying an implicit function-
type theorem (Lyusternik’s theorem [8]). This theorem allows constructing a suitable tangent curve and can be applied
provided the constant rank assumption holds true. However, in the nonlinear programming context, when constraint
g j(x∗) = 0 is analyzed, direction d ∈L (x∗) must be orthogonal to the gradient ∇g j(x∗) in order to ensure the existence
of a tangent curve to {x | g j(x) = 0} along the direction d. This seems to be ignored in [11].

Instead of applying the implicit function approach, constant rank constraint qualifications may be defined using the
approach of sequential optimality conditions [2]. See, for instance, [4, 5, 6]. For this, one would need a proper extension
of the so-called Carathéodory Lemma (see, e.g., [5]), which permits rewriting a linear combination y := ∑

m
i=1 λivi with

λi ∈ R and vi ∈ Rn for all i in the following way: y = ∑i∈I λ̃ivi with I ⊆ {1, . . . ,m}, {vi}i∈I linearly independent, and λ̃i
with the same sign of λi for each i. In the case of second-order cones, for which the vector of scalars (αi)

m
i=1 belongs to

the second-order cone Km, one would want to rewrite the same vector y by only using a linearly independent subset of
{vi}m

i=1 and such that the new scalars still belong to the cone. However, this is not possible in general as the following
examples show.

Example 1. Take y := β0v0 + β1v1 + β2v2, with (β0,β1,β2) := (
√

2,1,1) ∈ K3, v0 :=
(

1
1

)
, v1 :=

(
1
0

)
, v2 :=(

1
0

)
. There is no way of rewriting y using new scalars (β̂0, β̂1, β̂2) ∈ K3 such that β̂i = 0 for some i = 0,1,2.

In the case of more than one block of constraints (` > 1), even assuming more regularity for each block, a conic
variant of Carathéodory’s Lemma seems not possible to obtain.

Example 2. Take y := β0v0 +β1v1 + γ0w0 + γ1w1 with (β0,β1) := (1,1) ∈ K2, (γ0,γ1) := (1,1) ∈ K2, and vectors

v0 :=

 1
1
−1

, v1 :=

 1
0
0

, w0 :=

 0
1
0

, and w1 :=

 0
0
1

.
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It is not possible to rewrite y with new scalars (β̂0, β̂1) ∈ K2, (γ̂0, γ̂1) ∈ K2 in such a way that at least one component
vanishes. Note that both {v0,v1} and {w0,w1} are linearly independent sets, but the necessity of dealing with the product
of two second-order cones makes it impossible to fulfill the desired property.

We end this erratum with the following observation. Since it is well-known that linear second-order cone programs
may possess duality gap, a definition of CRCQ could not be automatically satisfied by linear problems at the vertex. In
[3], a naive proposition of CRCQ is presented where the “multi-dimensionally” active constraints are treated similarly to
Robinson’s CQ while the remaining constraints are treated similarly to CRCQ for nonlinear programming.
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