
Computational Optimization and Applications, 33, 115–156, 2006
c© 2006 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s10589-005-3065-0

Double-Regularization Proximal Methods, with
Complementarity Applications
PAULO J. S. SILVA∗ pjssilva@ime.usp.br
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Abstract. We consider the variational inequality problem formed by a general set-valued maximal mono-
tone operator and a possibly unbounded “box” in R

n , and study its solution by proximal methods whose
distance regularizations are coercive over the box. We prove convergence for a class of double regularizations
generalizing a previously-proposed class of Auslender et al. Using these results, we derive a broadened class
of augmented Lagrangian methods. We point out some connections between these methods and earlier work
on “pure penalty” smoothing methods for complementarity; this connection leads to a new form of augmented
Lagrangian based on the “neural” smoothing function. Finally, we computationally compare this new kind
of augmented Lagrangian to three previously-known varieties on the MCPLIB problem library, and show
that the neural approach offers some advantages. In these tests, we also consider primal-dual approaches that
include a primal proximal term. Such a stabilizing term tends to slow down the algorithms, but makes them
more robust.

Keywords: proximal algorithms, variational inequalities, complementarity

1. Introduction

Let B ⊆ R
n denote the possibly unbounded n-dimensional “box”,

B
def= ([a1, b1] × · · · × [an, bn]) ∩ R

n,

where −∞ ≤ ai < bi ≤ +∞, i = 1, . . . , n. This paper will consider the generalized
variational inequality problem

0 ∈ T (x) + NB(x), (1)

where T is a (possibly set-valued) maximal monotone operator, and NB(x) denotes the
cone of vectors normal to the set B at x.
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Throughout, we will make the standard regularity assumption:

Assumption 1.1. dom T ∩ int B �= ∅.

As an application of this general problem setting, we will be particularly interested
in the complementarity problem

F(x) ≥ 0 x ≥ 0 〈F(x), x〉 = 0 (2)

corresponding to some continuous single-valued function F : R
n → R

n . In our anal-
ysis, we assume that F is monotone, although we will drop this assumption in later
computational experiments. Note that since F is continuous and monotone on R

n , it
must be maximal monotone; see for example [30, Example 12.7].

A straightforward application of (1) to (2) is to set T (x) = {F(x)} for all x ∈ R
n , and

ai = 0, bi = +∞ for i = 1, . . . , n. Then B = R
n
+, the nonnegative orthant in R

n , and
(1) reduces to

0 ∈ F(x) + NR
n+(x), (3)

which is equivalent to 2, and called its primal formulation.
One can obtain an alternative formulation of 3 in the form 1 by applying a simple

duality transformation [1, 16, 23, 26]: given arbitrary set-valued maps U and V, x is a
solution of

0 ∈ U (x) + V (x) (4)

if and only if there exists y such that

y ∈ U (x) −y ∈ V (x). (5)

On the other hand, given some y, the existence of an x such that (5) holds is equivalent
to y solving

0 ∈ U−1(y) − V −1(−y), (6)

where the inverses are taken as point-to-set maps. Applying this duality transformation
to (3) with U = F and V = NR

n+ yields

0 ∈ F−1(y) − (NR
n+)−1(−y),

where inverses are again taken as point-to-set maps. It is easily confirmed that (−I ) ◦
(NR

n+)−1 ◦ (−I ) = NR
n+ , so this problem is identical to the dual formulation

0 ∈ F−1(y) + NR
n+(y), (7)

which is also of the form (1) by letting T (y) = {x | F(x) = y} and ai = 0, bi = +∞
for i = 1, . . . , n. As above, F’s being continuous and monotone implies it is maximal,
which in turn implies T = F−1 is maximal monotone; see e.g. [30, Exercise 12.4].
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This paper will study generalized proximal methods for (1). These methods are
conceptual algorithms in which one takes some generalized distance measure D̃ :
R

n × R
n → (−∞,+∞], strictly convex in its first argument, and computes a sequence

of iterates {xk} via the recursion

0 ∈ αk T (xk+1) + NB(xk+1) + ∇1 D̃(xk+1, xk), (8)

where ∇1 denotes the gradient with respect to the the first argument, and αk > 0 is
some scalar bounded away from 0. D̃ should be finite on int B × int B, but may be
finite elsewhere as well. The original method of this form, the classical proximal point
algorithm [28], takes D̃(x, y) = (1/2)‖x − y‖2. In general, one may have to satisfy (8)
only approximately, but for simplicity we defer this complication to Section 2 .

Applying such an algorithm to the primal formulation (3) of the complementarity
problem, one obtains the recursion

0 ∈ F(xk+1) + NR
n+ (xk+1) + 1

αk
∇1 D̃(xk+1, xk). (9)

Applying the same algorithm to the dual formulation (7) leads to subproblem recursion

0 ∈ F−1(yk+1) + NR
n+ (yk+1) + 1

αk
∇1 D̃(yk+1, yk).

Again applying the duality transformation, but with

U = F−1 V = NR
n+ + (1/αk)∇1 D̃(·, yk),

produces an equivalent subproblem

0 ∈ F(xk+1) − (NR
n+ + ∇1 D̃(·, yk))

−1
(−αk xk+1).

The strict convexity of D̃(·, yk) in its first argument implies that the mapping

P ′(·, yk)
def= (NR

n+ + ∇1 D̃(·, yk))
−1

(10)

is single-valued, so we obtain the equivalent recursions

0 = F(xk+1) − P ′(−αk xk+1, yk) (11)

yk+1 = P ′(−αk xk+1, yk), (12)

which is known as a method of multipliers or generalized augmented Lagrangian
method. First, one solves the system of nonlinear equations (11) —the augmented
Lagrangian—to obtain xk+1, and then one updates the Lagrange multiplier esti-
mates via (12). We use the letter P because P ′(·, yk) plays the same role as the
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gradient of the penalty term in augmented Lagrangian methods for optimization
problems; see for example [14, 29, 32]. Algorithms of this class exist for prob-
lems where the constraint set takes a much more general form than a box, but
we focus here on the simple complementarity case. The augmented Lagrangian
methods of this paper are easily adapted to the more general setting; see for
example [4].

The main subject of this paper is when D̃ is separable and coercive on B, that is,

D̃(x, y) =
n∑

i=1

d̃(xi , yi ) (13)

d̃(xi , yi ) = +∞ if xi �∈ [ai , bi ] (14)

lim
x↓ai

∇1d̃(xi , yi ) = −∞ if ai > −∞ (15)

lim
x↑bi

∇1d̃(xi , yi ) = +∞ if bi < +∞. (16)

In this case, ∇1 D̃(·, xk) acts as a kind of “barrier” in algorithms like (8), keeping
successive iterates within int B. In particular, NB + ∇1 D̃(·, xk) = ∇1 D̃(·, xk), so (8)
reduces to the simpler recursion

0 ∈ αk T (xk+1) + ∇1 D̃(xk+1, xk),

which should be more convenient computationally. For example, the primal comple-
mentarity recursion (9) now reduces to 0 = F(xk+1) + (1/αk)∇1 D̃(xk+1, xk),which is
an equation rather than an inclusion, and inherits whatever smoothness is present in
F and ∇1 D̃(·, xk). This situation may be preferable to the non-coercive case, where
the resulting subproblem may be no easier than the original problem (3). However,
much as in interior-point methods, we must still constrain the definition domain of
xk+1 to the positive orthant, which we denote R

n
++, presenting possible computational

difficulties.
An even more important property of coercive separable distances emerges when they

are applied to the dual formulation (7), and used in the corresponding multiplier method
(11) and (12). Then, the definition (10) reduces to the much simpler

P ′(·, yk) = (∇1 D̃(·, yk))
−1

. (17)

By judicious choice of D̃, one can make the single-valued function P ′(·, yk) finite
everywhere, with any desired degree of smoothness. The augmented Lagrangian equa-
tion system (11) can then be made to have the same definition domain and degree
of smoothness as F. This property may in turn allow solution by standard Newton
methods, a significant advantage. Classical choices of D̃ lead to nonsmooth augmented
Lagrangians. Note, however, that certain non-coercive choices of D̃ can still lead to
limited smoothness of the augmented Lagrangian [16, 21]; Section 6 considers one such
choice and empirically compares it to some coercive choices.
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Given the attractive properties of coerciveness, an unfortunate gap existed for some
time in the theory of coercive proximal algorithms. In early analyses such as [8, 14,
32], convergence of methods like (8) was demonstrated only when either T was the
subgradient map of some convex function f : R

n → (−∞,+∞], or when the distance
regularization D̃(·, xk) was not coercive. The case of a general monotone T and coercive
D̃ remained open.

Subsequent research [9] proved convergence of certain coercive proximal algorithms
when T is paramonotone [19], a condition less stringent than T being a subgradient, but
more restrictive than general monotonicity.

A breakthrough then came with Auslender et al.’s publication of [2], which proved
convergence of a proximal method with a general monotone operator T, and a spe-
cific, coercive form of D̃, the log-quadratic kernel. This D̃ is a weighted sum of a
logarithmic term, one of the standard coercive choices, and a traditional quadratic
term.

Very shortly thereafter, the authors of [2] generalized its analysis in [3]. There,
they proved convergence for a family of possible distance regularizations, the class
�2 of rescaled ϕ-divergences, and also included analyses of dual algorithms like
(11)–(12).

This paper makes three contributions: first, capitalizing on our related work in [31],
we prove convergence for a general maximal monotone operator T of proximal meth-
ods employing a broader class of coercive distance regularization measures D̃ than
in [3]. These distance measures do not have to take the ϕ-divergence form: for ex-
ample, they may instead be certain kinds of rescaled Bregman distances; see Sec-
tion 4.2. Second, we note a relationship between the log-quadratic penalty arising
in [3] and some prior work on pure penalty (or smoothing) methods for comple-
mentarity problems [10]. We study another penalty from [10], the neural network
smooth plus function, and show that it too corresponds to a proximal algorithm and
augmented Lagrangian method. We call the penalty term for this method the neu-
ral penalty, and note that it is essentially the integral of the augmented Lagrangian
penalty term proposed in [25]. The neural penalty yielded superior computational re-
sults to the log-quadratic penalty in the pure penalty environment of [10], so it is
natural to consider whether it might also be superior in an augmented Lagrangian
setting.

The third contribution of this paper is to test a variety of augmented Lagrangian
algorithms on a difficult, realistic test set of complementarity problems, the MCPLIB [11,
12]. Note that the MCPLIB problems are not monotone, as required by our convergence
analysis, but, following the example of [16], we still use them as a computational testing
library. In addition to evaluating the relative merits of the log-quadratic and neural
penalties, we compare them to a variant of the classic exponential penalty and to the
cubic penalty of [16], and consider in each case the effect of adding a primal proximal
term to the augmented Lagrangian.

The remainder of this paper is structured as follows: Section 2 sets forth the class
of distance regularizations D̃ that we analyze, and our PMDR algorithm that employs
them. Generalizing [3], we study distances D̃ of the form

D̃(x, y) = D(x, y) + µ

2
‖x − y‖2,



120 SILVA AND ECKSTEIN

that is, the sum of a coercive term D and µ times the traditional squared Eu-
clidean distance; we assume µ ≥ 1. We then make two sets of assumptions
about this distance: first, D̃ must meet a set of conditions (Assumption 2.1 be-
low) slightly reformulated from our earlier work in [31]. Next, we introduce a
set of conditions on the coercive term D(·, y) (Assumption 2.3 below), that con-
strain its derivative to lie within a certain envelope. In the case B = R

n
+, the

lower bound of this envelope corresponds exactly to the log-quadratic measure
of [2].

Section 3 then presents our convergence analysis. We first prove convergence in the
case µ > 1, as in [3]. In Section 3.1 , however, we consider the case µ = 1, which
requires some strengthened assumptions, but is needed to analyze the neural penalty.
Section 3.2 ends Section 3 by demonstrating a special-case quadratic convergence rate
result like those of [3].

Section 4 gives examples of distance measures meeting our assumptions. These
include the �2 class proposed in [3], but also other possibilities. Next, Section 5 considers
how our class of distance measures manifests itself in the dual setting (11)–(12), and
also (briefly) in primal-dual settings. We show that any penalty term having certain
regularity properties and fitting inside a certain envelope corresponds to one of our
allowed distance measures D̃. The upper bound of this envelope is the log-quadratic
penalty of [3]. The remainder of Section 5 develops the relationship with the work of
Chen and Mangasarian, as well as the properties of the neural penalty, which uses µ = 1.
Finally, Section 6 presents the computational testing.

2. Coercive separable distances and double regularizations

We begin by stating a key set of assumptions adapted from [31]:

Assumption 2.1. For i = 1, . . . , n, the function d̃i : R × (ai , bi ) → (−∞,∞] has the
following properties:

2.1.1. For all yi ∈ (ai , bi ), d̃i (·, yi ) is closed and strictly convex, with its minimum at
yi . Moreover, int dom d̃i (·, yi ) = (ai , bi ).

2.1.2. d̃i is differentiable with respect to its first argument on (ai , bi ) × (ai , bi ), and this
partial derivative is continuous at all points of the form (xi , xi ) ∈ (ai , bi )×(ai , bi ).
Moreover, we will use the notation

d̃ ′
i (xi , yi )

def= ∂ d̃i

∂xi
(xi , yi ).

2.1.3. For all yi ∈ (ai , bi ), d̃i (·, yi ) is essentially smooth [28, Chapter 26].
2.1.4. There exist L , ε > 0 such that if either −∞ < ai < yi ≤ xi < ai + ε or

bi − ε < xi ≤ yi < bi < +∞, then |d̃ ′
i (xi , yi )| ≤ L |xi − yi |.

This assumption is a simple transformation of [31, Assumption 2.1], where each
d̃ i (·, yi ) is divided by d̃ ′′

i (yi , yi ). We note that all the convergence results from [31]
remain true under Assumption 2.1.
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The stipulation that int dom d̃ i (·, yi ) = (ai , bi ) and Assumption 2.1.3’s requirement of
essential smoothness imply that (14)–(16) hold—that is, they guarantee that di (·, yi ) is
coercive on [ai , bi ] ∩ R. Within a proximal algorithm, such a d̃ i (·, yi ) acts as a “barrier”
keeping the iterates within the interval (ai , bi ).

We will use functions d̃ i of this sort as proximal kernels; however, we will obtain
such functions by adding a simple quadratic function to another coercive function di , as
follows:

Definition 2.2. Let µ ≥ 1. For i = 1, . . . , n, let di : R × (ai , bi ) → (−∞,∞] be
continuously differentiable with respect to the first variable. Let

d̃ i (xi , yi )
def= di (xi , yi ) + µ

2
(xi − yi )

2, (18)

and

d̃(x, y)
def=

n∑

i=1

d̃ i (xi , yi ) =
n∑

i=1

di (xi , yi ) + µ

2
(xi − yi )

2. (19)

If each d̃ i conforms to Assumptions 2.1.1–2.1.3, we shall call d̃ the double regulariza-
tion based on D(x, y)

def= ∑n
i=1 di (xi , yi ). Moreover, each d̃ i will be called the double

regularization component based on di .

Note that we did not directly require Assumption 2.1.4. Instead, we make a further
assumption with no analog in [31], and show that it implies Assumption 2.1.4:

Assumption 2.3. For i = 1, . . . , n, let di : R × (ai , bi ) → (−∞,∞] and xi , yi ∈
(ai , bi ). Then,

2.3.1. If ai and bi are both finite as illustrated in Figure 1,

(xi − yi )(yi − ai )

xi − ai
≤ d ′

i (xi , yi ) ≤ (xi − yi )(bi − yi )

bi − xi
.

2.3.2. Otherwise, we take the respective limits as ai → −∞ or bi → ∞ in the above
relation:

2.3.2a. If only ai is finite:

(xi − yi )(yi − ai )

xi − ai
≤ d ′

i (xi , yi ) ≤ xi − yi .

2.3.2b. If only bi is finite:

xi − yi ≤ d ′
i (xi , yi ) ≤ (xi − yi )(bi − yi )

bi − xi
.
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Figure 1. Bounds for the derivatives of di for (ai , bi ) = (0, 2) and yi = 0.75. The derivative of the classical
regularization (1/2)(xi − yi )2 lies in between the limits.

2.3.2c. (ai , bi ) = R:

d ′
i (xi , yi ) = xi − yi .

Lemma 2.4. Suppose di conforms to Assumption 2.3. Let

ε
def= min

i=1,...,n

{
bi − ai

2

}
∈ (0,+∞].

If −∞ < ai < yi ≤ xi < ai + ε or bi − ε < xi ≤ yi < bi < +∞, then |d ′
i (xi , yi )|

≤ 2 |xi − yi |. Therefore, |d̃ ′
i (xi , yi )| ≤ (2 + µ) |xi − yi |, and the double regularization

component d̃i based on di meets Assumption 2.1.4. with L = 2 + µ.

Proof: Suppose −∞ < ai < yi ≤ xi < ai + ε. If bi = +∞, we have

|d ′
i (xi , yi )| = d ′

i (xi , yi ) ≤ xi − yi = |xi − yi | ≤ 2 |xi − yi | .

On the other hand, if bi ∈ R, we get

|d ′
i (xi , yi )| = d ′

i (xi , yi ) ≤ (xi − yi )(bi − yi )

bi − xi
= |xi − yi |(bi − yi )

bi − xi

≤ |xi − yi |(bi − ai )

bi − ai − ε
≤ 2|xi − yi |.

The analysis of the situation bi − ε < xi ≤ yi < bi < +∞ is analogous. �
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We now introduce our proximal method, generalizing the discussion of Section 1 by
allowing approximate computation of the iterates:

Proximal method using double regularization (PMDR): Let d̃ be a double regulariza-
tion based via (19) on a coercive term D conforming to Assumption 2.3, with µ ≥ 1.

1. Initialization: Let k = 0. Choose a scalar α > 0, and an initial iterate x0 ∈ int B.
2. Iteration:

(a) Choose αk ∈ [α,+∞).
(b) Find xk+1 ∈ R

n and some “small” ek+1 ∈ R
n such that

ek+1 ∈ αk T (xk+1) + ∇1d̃(xk+1, xk). (20)

(c) Let k ← k + 1, and repeat.

In order to ensure convergence, we need some conditions on the error sequence {ek},
so that it is indeed sufficiently “small”. We adopt the error criterion from [15]:

Assumption 2.5. The error sequence {ek} should conform to:

∞∑

k=1

‖ek‖ < ∞,

∞∑

k=1

〈ek, xk〉 exists and is finite.

This error assumption will allow us to prove that the PMDR sequence is quasi-Fejér
convergent to the solution set of (1). That is, for any z ∈ (T + NB)−1(0), there is a
summable sequence {εk(z)} such that

‖z − xk+1‖2 ≤ ‖z − xk‖2 + εk(z).

The usefulness of quasi-Fejér convergence is summarized in the following result; see
[6, Theorem 1] and [15, Lemma 4].

Proposition 2.6. Let Z ⊂ R
n be a nonempty set, and {xk} be a sequence such that

‖z − xk+1‖2 ≤ ‖z − xk‖2 + εk(z),

for all z ∈ Z and all k, with {εk(z)} being summable for all z ∈ Z. Then {xk} is bounded,
the sequence {|z − xk}| converges for all z ∈ Z, and if any cluster point of {xk} is in Z,
the entire sequence {xk} converges to that point.

3. Convergence analysis

To prove the quasi-Fejér convergence of a PMDR sequence, will need four technical
lemmas.
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Lemma 3.1. Let α ≤ β and γ ≤ δ be real numbers. Then

(δ − α)(γ − β) ≤ (δ − β)(γ − α),

and this inequality is strict if α �= β and γ �= δ.

Proof: Multiplying the inequality α ≤ β by the nonnegative value δ − γ ,

α(δ − γ ) ≤ β(δ − γ )
⇒ −αγ − βδ ≤ −βγ − αδ

⇒ αβ − αγ − βδ + γ δ ≤ αβ − βγ − αδ + γ δ

⇒ (δ − α)(γ − β) ≤ (δ − β)(γ − α).

The strict inequality assertion follows from the same reasoning, observing that the
first two inequalities are strict when α �= β and γ �= δ. �

Lemma 3.2. Under Assumption 2.3,

sgn (d ′
i (xi , yi )) = sgn(xi − yi ),

where

sgn(x)
def=






−1 if x < 0

0 if x = 0

+1 if x > 0.

Proof: Examining Assumption 2.3, the signs of all the upper and lower bounds on
d ′

i (xi , yi ) are identical to the sign of xi − yi . �

Lemma 3.3. Let di : R×(ai , bi ) → (−∞,∞] be a function conforming to Assumption
2.3 . For all zi ∈ [ai , bi ] ∩ R

n and xi , yi ∈ (ai , bi ),

(zi − xi )d
′
i (xi , yi ) ≤ (zi − yi )(xi − yi ).

Proof: With the help of Lemma 3.2, one can easily confirm the inequality whenever
xi = yi , xi = zi or yi = zi . So, from now on, suppose that xi , yi , and zi are all distinct.

Suppose ai , bi ∈ R. Then we divide the proof into four cases:

1. xi < min(yi , zi ):
If zi < yi , it follows that (zi − xi )d ′

i (xi , yi ) < 0 < (zi − yi )(xi − yi ).
If yi < zi , we apply Lemma 3.1 with α = xi , β = yi , γ = zi , δ = bi and get:

(bi − xi )(zi − yi ) ≤ (bi − yi )(zi − xi )

⇒ (xi − yi )(zi − yi ) ≥ xi − yi

bi − xi
(bi − yi )(zi − xi )

⇒ (xi − yi )(zi − yi ) ≥ d ′
i (xi , yi )(zi − xi ). [Assumption 2.3]
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2. xi > max(yi , zi ) (very similar to case 1):
If zi > yi , we have (zi − xi )d ′

i (xi , yi ) < 0 < (zi − yi )(xi − yi ).
If zi < yi , apply Lemma 3.1 with α = ai , β = zi , γ = yi , δ = xi , yielding

(xi − ai )(yi − zi ) ≤ (xi − zi )(yi − ai )

⇒ (xi − yi )(yi − zi ) ≤ xi − yi

xi − ai
(xi − zi )(yi − ai )

⇒ (xi − yi )(yi − zi ) ≤ d ′
i (xi , yi )(xi − zi ). [Assumption 2.3]

3. zi < xi < yi :
Apply Lemma 3.1 with α = ai , β = zi , γ = xi , δ = yi , resulting in

(yi − ai )(xi − zi ) ≤ (yi − zi )(xi − ai )

⇒ xi − yi

xi − ai
(yi − ai )(xi − zi ) ≥ (xi − yi )(yi − zi )

⇒ d ′
i (xi , yi )(xi − zi ) ≥ (xi − yi )(yi − zi ). [Assumption 2.3]

4. yi < xi < zi :
Again, we apply Lemma 3.1, but now with α = yi , β = xi , γ = zi , δ = bi :

(bi − yi )(zi − xi ) ≤ (bi − xi )(zi − yi )

⇒ xi − yi

bi − xi
(bi − yi )(zi − xi ) ≤ (xi − yi )(zi − yi )

⇒ d ′
i (xi , yi )(zi − xi ) ≤ (xi − yi )(zi − yi ). [Assumption 2.3]

It remains only to consider what occurs if ai = −∞ or bi = ∞. These unbounded
cases follow, similarly to the respective inequalities in Assumption 2.3, by taking limits
in the bounded cases above. �

Lemma 3.4. Let d̃ be a double regularization, A and C be subsets of int B, and z ∈ B.
If for each i = 1, . . . , n, there exists some ζi (zi , A, C) > 0 such that for all x ∈ A and
y ∈ C,

(zi − xi )d
′
i (xi , yi ) ≤ ζi (zi , A, C)(zi − yi )(xi − yi ),

then for all x ∈ A and y ∈ C,

〈z − x,∇1d̃(x, y)〉

≤
n∑

i=1

(
µ + ζi (zi , A, C)

2
((zi − yi )

2 − (zi − xi )
2) − µ − ζi (zi , A, C)

2
(xi − yi )

2

)
.

Proof: If x ∈ A and y ∈ C ,

(zi − xi )∇1d̃(x, y)i = (zi − xi )(d
′
i (xi , yi ) + µ(xi − yi ))

≤ ζi (zi , A, C)(zi − yi )(xi − yi ) + µ(zi − xi )(xi − yi ).
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Using the identities

(zi − yi )(xi − yi ) = (zi − yi )2 − (zi − xi )2 + (xi − yi )2

2

(zi − xi )(xi − yi ) = (zi − yi )2 − (zi − xi )2 − (xi − yi )2

2
,

it follows that

(zi − xi )∇1d̃(x, y)i

≤ µ + ζi (zi , A, C)

2
((zi − yi )

2 − (zi − xi )
2) − µ − ζi (zi , A, C)

2
(xi − yi )

2.

The result follows by adding this inequality for i = 1, . . . , n. �

We can now establish quasi-Fejér convergence:

Lemma 3.5. Let {xk} be a sequence computed by the PMDR conforming to Assumption
2.5. Then {xk} is quasi-Fejér convergent to the solution set of 1. Moreover, if µ > 1 and
the solution set is non-empty, then xk+1 − xk → 0.

Proof: Let z ∈ (T + NB)−1(0). From (20),

−∇1d̃(xk+1, xk) + ek

αk
∈ (T + NB)(xk+1).

Using the monotonicity of T + NB , it follows that

0 ≤ 〈z − xk+1,∇1d̃(xk+1, xk) − ek+1〉.

From Lemma 3.3, it is possible to apply Lemma 3.4 with A = C = int B, x =
xk+1, y = xk and ζi (zi , A, C) = 1 for all i = 1, . . . , n. Therefore,

0 ≤ µ + 1

2

(‖z − xk‖2 − ‖z − xk+1‖2) − µ − 1

2
‖xk+1 − xk‖2 + 〈ek+1, xk+1 − z〉.

Rearranging, multiplying by 2/(µ+1) > 0, and using the Cauchy-Schwartz inequal-
ity,

‖z − xk+1‖2 ≤ ‖z − xk‖2 − µ − 1

µ + 1
‖xk+1 − xk‖2 + 2

µ + 1
〈ek+1, xk+1 − z〉

≤ ‖z − xk‖2 − µ − 1

µ + 1
‖xk+1 − xk‖2 + εk(z), (21)

where we set

εk(z) = 2

µ + 1
(〈ek+1, xk+1〉 + ‖ek+1‖z‖).
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We have µ ≥ 1, and Assumption 2.5 implies {εk(z)} is summable for any z, so (21)
establishes quasi-Fejér convergence.

Finally, to prove that xk+1 − x → 0 whenever µ > 1, we follow the proof of [15,
Lemma 3]. Applying induction to (21), we obtain for all l ≥ 1 that

‖z − xl‖2 ≤ ‖z − x0‖2 − µ − 1

µ + 1

l−1∑

k=0

‖xk+1 − xk‖2 +
l−1∑

k=0

εk(z).

Since {εk(z)} is summable, it follows that Ē(z)
def= supl≥1{

∑l−1
k=0 εk(z)} must be finite.

Therefore,

∞∑

k=0

‖xk+1 − xk‖2 ≤ µ + 1

µ − 1
‖z − x0‖2 + Ē(z) < ∞.

Thus, ‖xk+1 − xk‖ is square summable, and therefore xk+1 − xk → 0. �

With the above results in hand, it is possible to apply the analysis of [26] to prove the
convergence of the PMDR algorithm:

Proposition 3.6. In the PMDR algorithm, suppose d̃ is a double regularization based
on a distance D conforming to Assumption 2.3, where µ > 1. Then the resulting
sequence {xk} converges to a solution of 1, if such a solution exists.

Proof: We will apply [31, Theorem 2.7]. First, we have already shown that any
double regularization that conforms to Assumption 2.3 also conforms to Assumption
2.1, which is identical to [31, Assumption 2.1] after applying a scaling factor. The
regularity condition of Assumption 1.1 is exactly [31, Assumption 2.2]. And finally,
Assumption 2.5 and Lemma 3.5 imply [31, Assumption 2.3] with βk = ‖ek‖∞. Thus,
the assumptions of [31, Theorem 2.7] hold, and so that result asserts subsequential
convergence of {xk}. Via Proposition 2.6, quasi-Fejér convergence implies convergence
of the whole sequence. �

3.1. Analysis of the case µ = 1

Proposition 3.6 omits the case µ = 1. However, in Sections 5 and 6, we will encounter
precisely this case. By strengthening Assumption 2.3, we now develop a convergence
result for the µ = 1 case.

When µ = 1, Lemma 3.5 does not guarantee that the difference of successive iterates
goes to zero, so [31, Assumption 2.3] does not hold, and the proof of Proposition 3.6
is not valid. By strengthening Assumption 2.3, we seek to reestablish the condition
xk+1 − xk → 0, so the logic of Proposition 3.6 will once more apply.

For simplicity, we consider only the case a = 0, b = +∞.

Assumption 3.7. Let B = R
n+. Let di : R × R++ → (−∞,∞], i = 1, . . . , n, be the

coercive terms used to construct a double regularization d̃ . We assume that d ′
i (·, ·) is

continuous and:
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3.7.1 For all xi , yi ∈ R++,

(xi − yi )yi

xi
≤ d ′

i (xi , yi ) ≤ xi − yi ,

and the lower bound is strict if xi �= yi .
3.7.2. Given any ȳi > 0, there exist a constant ζi (ȳi ) ∈ (0, 1), a neighborhood Ai (ȳi )

of 0, and a neighborhood Ci (ȳi ) of ȳi such that, for all xi ∈ Ai (ȳi ) ∩ R++ and
yi ∈ Ci (ȳi ) ∩ R++,

ζi (ȳi )
(xi − yi )yi

xi
≤ d ′

i (xi , yi ). (22)

Assumption 3.7.1 simply restates Assumption 2.3 for the (a, b) = R++ case, with
the additional stipulation of strict inequality for xi �= yi . Note that (22) automatically
holds when xi ≥ yi and both sides are nonnegative, but imposes a stronger bound when
xi < yi and both sides are negative.

Lemma 3.8. Let di : R × R++ → (−∞,∞] be function conforming to Assumption
3.7.1. Suppose zi ≥ 0, and xi , yi > 0 with xi �= yi . Then,

(zi − xi )d
′
i (xi , yi ) < (zi − yi )(xi − yi ).

Proof: Assumption 3.7.1 implies Assumption 2.3 for the case a = 0, b = +∞.
Therefore, Lemma 3.3 gives

(zi − xi )d
′
i (xi , yi ) ≤ (zi − yi )(xi − yi ).

Thus, we need only show that this inequality is strict when xi �= yi . First, if zi = xi , we
have:

(zi − xi )d
′
i (xi , yi ) = 0 < (xi − yi )

2 = (zi − yi )(xi − yi ).

Similarly, if zi = yi ,

(zi − xi )d
′
i (xi , yi ) = (yi − xi )d

′
i (xi , yi ) < 0 = (zi − yi )(xi − yi ).

Now, we can assume xi , yi , and zi are distinct, and thus we can proceed as in the
proof of Lemma 3.3:

1. xi < min(yi , zi ):
If zi < yi , the strict inequality is already present in the proof of Lemma 3.3. If
yi < zi , we repeat the reasoning of the respective case for Lemma 3.3, but take δ to
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be any number strictly greater than xi , yi , and zi . Then,

(xi − yi )(zi − yi ) ≥ δ − yi

δ − xi
(xi − yi )(zi − xi )

> (xi − yi )(zi − xi )

≥ d ′
i (xi , yi )(zi − xi ),

the strict inequality coming from 0 < (δ− yi )/(δ−xi ) < 1 and (xi − yi )(zi −xi ) < 0.
The last inequality follows from Assumption 3.7.1.

2. xi > max(yi , zi ):
This case follows the corresponding case in the proof of Lemma 3.3, but using the
strict inequality from Assumption 3.7.1 in the last step.

3. zi < xi < yi :
Again, we follow the respective case in Lemma 3.3, but use the strict inequality from
Assumption 3.7.1 in the last step.

4. yi < xi < zi :
As in the first case, we use the reasoning of the corresponding part of Lemma 3.3,
but take any δ > xi , yi , zi . Then

(xi − yi )(zi − yi ) ≥ δ − yi

δ − xi
(xi − yi )(zi − xi )

> (xi − yi )(zi − xi )

≥ d ′
i (xi , yi )(zi − xi ).

�

Lemma 3.9. Let {xk} be a PMDR sequence where µ = 1 and the double regularization
is based on coercive terms di conforming Assumption 3.7. Then, if the solution set of
(1) is non-empty, one has xk+1 − xk → 0.

Proof: Let z be a solution of the variational inequality (1). The quasi-Fejér convergence
of the PMDR sequence, shown in Lemma 3.5, implies that {xk} is bounded, so the
sequence {xk+1 − xk} is also bounded. Thus, it suffices to show that 0 is its only possible
limit point. Let K ⊂ N be any infinite index set over which xk+1 − xk is convergent.
By passing to subsequences, we may assume without loss of generality that {xk} and
{xk+1} converge over K as well. Let x̄ and x̃ be the respective limit points of {xk} and
{xk+1}. Since xk+1 − xk →K x̃ − x̄ , we need only demonstrate that x̃ = x̄ . Define two
index sets

I (x̄, x̃)
def= {i | x̄i = x̃i } J (x̄, x̃)

def= {i | x̄i �= x̃i }.

We claim that for any i ∈ J (x̄, x̃), there exist a scalar ηi ∈ (0, 1), a neighborhood Ai

of x̄i , and a neighborhood Ci of x̃i such that, for all xi ∈ Ai ∩ R++ and yi ∈ Ci ∩ R++,

(zi − xi )d
′
i (xi , yi ) ≤ ηi (zi − yi )(xi − yi ). (23)

To establish the claim, consider three possibilities:
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1. x̄i , x̃i > 0. Lemma 3.8 gives

(zi − x̄i )d
′
i (x̄i , x̃i ) < (zi − x̃i )(x̄i − x̃i ).

Thus, there exists an ε ∈ (0, 1) such that

(zi − x̄i )d
′
i (x̄i , x̃i ) < (1 − ε)(zi − x̃i )(x̄i − x̃i ).

Since both sides of this inequality are continuous in xi and yi , there must be neigh-
borhoods Ai � x̄i and Ci � x̃i where the inequality (23) holds with ηi = 1 − ε.

2. 0 = x̄i < x̃i . This situation can be analyzed by subcases considering the relative
position of zi :

• 0 = zi = x̄i < x̃i . In this case, (23) is a direct consequence of Assumption 3.7.2.
• 0 = x̄i < zi < x̃i . Here, one may simply use the signs of the terms appearing in

(23). For any xi sufficiently close to x̄i = 0 and yi sufficiently close to x̃i , one
has

(zi − xi )d
′
i (xi , yi ) < 0 < (1/2)(zi − yi )(xi − yi ).

• 0 = x̄i < x̃i ≤ zi . For xi close enough to x̄i = 0 and yi close enough to x̃i ,

d ′
i (xi , yi ) ≤ xi − yi [by Assumption 3.7.1]

⇒ (zi − xi )d
′
i (xi , yi ) ≤ (zi − xi )(xi − yi ) [since zi − xi > 0]

≤ (1/2)(zi − yi )(xi − yi ),

where the last inequality follows from xi −yi < 0 and 0 < (1/2)(zi −xi ) < zi −xi .

3. 0 = x̃i < x̄i . Once again, we consider the relative position of zi :

• 0 = x̃i = zi < x̄i . For xi close enough to x̄i and yi close enough to x̃i = 0, yi < xi ,
then

yi (xi − yi )

2xi
<

yi (xi − yi )

xi
≤ d ′

i (xi , yi )

⇒ (1/2)yi (xi − yi ) ≤ xi d
′
i (xi , yi )

⇒ (1/2)(zi − yi )(xi − yi ) ≥ (zi − xi )d
′
i (xi , yi ).

• 0 = x̃i < zi < x̄i . Once again, an argument based only on signs suffices. For xi

sufficiently close to x̄i and yi sufficiently close to x̃i ,

(zi − xi )d
′
i (xi , yi ) < 0 < (1/2)(zi − yi )(xi − yi ).

• 0 = x̃i < x̄i ≤ zi . Let ε ∈ (0, 1) be small enough that

(zi − x̄i ) < (1 − ε)(zi − x̃i ).
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By continuity, there exist neighborhoods Ai � x̄i and Ci � x̃i such that for
xi ∈ Ai and yi ∈ Ci ∩ R++, one has (zi − xi ) < (1 − ε)(zi − yi ), and thus, since
0 < d ′

i (xi , yi ) ≤ xi − yi ,

(zi − xi )d
′
i (xi , yi ) < (1 − ε)(zi − yi )d

′
i (xi , yi ) ≤ (1 − ε)(zi − yi )(xi − yi ).

Therefore, we conclude that (23) holds. For i ∈ I (x̄, x̃), define Ai = Ci = R++.
Then define Cartesian product neighborhoods

A
def= A1 × A2 × · · · × An C

def= C1 × C2 × · · · × Cn

of x̄ and x̃ , respectively, along with η̄
def= maxi∈J (x̄,x̃){ηi } ∈ (0, 1). Finally, let ζ ∈ R

n be
given by

ζi
def=

{
1, if i ∈ I (x̄, x̃),

η̄, if i ∈ J (x̄, x̃).

Then, using Lemma 3.4 with the above definitions of A and C, we observe that for
k ∈ K large enough,

〈z − xk+1,∇1d̃(xk+1, xk) − ek+1〉

≤
n∑

i=1

{
1 + ζi

2

((
zi − xk

i

)2 − (
zi − xk+1

i

)2) − 1 − ζi

2

(
xk+1

i − xk
i

)2
}

+ 〈ek+1, xk+1 − z〉.

Recalling that z is a solution of (1), we may use reasoning similar to Lemma 3.5’s to
establish, for sufficiently large k ∈ K, that

0 ≤
n∑

i=1

{
1 + ζi

2

((
zi − xk

i

)2 − (
zi − xk+1

i

)2) − 1 − ζi

2

(
xk+1

i − xk
i

)2
}

+〈ek+1, xk+1 − z〉.

Taking limits over k ∈ K, and recalling that x̄i = x̃i for i ∈ I (x̄, x̃), one obtains:

0 ≤
∑

i∈J (x̄,x̃)

{
1 + η̄

2
((zi − x̄i )

2 − (zi − x̃)2) − 1 − η̄

2
(x̃i − x̄i )

2

}
+ 〈0, x̃ − z〉.

Using once more the definition of I (x̄, x̃), we recover

0 ≤
n∑

i=1

{
1 + η̄

2
((zi − x̄i )

2 − (zi − x̃)2) − 1 − η̄

2
(x̃i − x̄i )

2

}
,
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or equivalently,

1 − η̄

2
‖x̃ − x̄‖2 ≤ 1 + η̄

2
(‖z − x̄‖2 − ‖z − x̃‖2).

Quasi-Fejér convergence implies, via Proposition 2.6, that limk→∞ ‖z − xk‖ exists.
Since both x̃ and x̄ are limit points of {xk}, we conclude that ‖z − x̃‖ = ‖z − x̄‖.
Therefore, one has ‖x̃ − x̄‖ ≤ 0, that is, x̃ = x̄ . �

Lemma 3.9 implies that, under Assumption 3.7, the hypotheses of [31, Theorem 2.7]
continue to hold when µ = 1. Then, by essentially identical reasoning to Proposition
3.6, we may assert:

Proposition 3.10. The sequence computed by the PMDR using a double regularization
with µ = 1, and based on coercive terms conforming to Assumption 3.7, converges to a
solution of (1), if any exist.

3.2. A quadratic convergence rate result

We now consider the special case of applying the PMDR when T = ∂ f , the subgradient
mapping of a closed proper convex function f. In this case, problem (1) is equivalent
to minimizing f over B. Suppose further that the solution set X∗ = Arg minx∈B{ f (x)}
constitutes a set of weak sharp minima [7, 17], that is, there exists a scalar ν > 0 such
that

dist(x, X∗) ≤ ν( f (x) − f ∗) ∀x ∈ B, (24)

where f ∗ is the value of f at any optimal solution. Results similar to the following
proposition are established in [3] for the �2 class of ϕ-divergence regularizations, which
we show in Section 4.1 below to be a special case of our general double regularization
approach.

Proposition 3.11. Suppose the PMDR algorithm is applied in the case that T is the
subgradient of a closed proper convex function f whose nonempty set of minima X∗ over
B is weak sharp. If all iterates are computed exactly, that is, ek ≡ 0, then { f (xk)} and
{xk} converge globally Q-quadratically to the optimal value f ∗ and to a point in X∗,
respectively.

Proof: The proof resembles that of [3, Theorem 6.1]. For a given k, let wk denote
the unique point in X∗ such that ‖wk − xk‖ = dist(xk, X∗). From (20) with ek+1 = 0
and T = ∂ f , we obtain −(1/αk) ∇1 D(xk+1, xk) ∈ ∂ f (xk+1). Applying the subgradient
inequality,

f ∗ ≥ f (xk+1) + 〈wk − xk+1,−(1/αk)∇1 D(xk+1, xk)〉
⇔ f (xk+1) − f ∗ ≤ 1

αk
〈wk − xk+1,∇1 D(xk+1, xk)〉.
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Employing Lemma 3.4 with x = xk+1, y = xk, z = wk , and ζi (yk, A, C) = 1 for all
i = 1, . . . , n, which is possible by Lemma 3.3, and using the lower bound αk ≥ α,

f (xk+1) − f ∗ ≤ µ + 1

2αk

(‖wk − xk‖2 − ‖wk − xk+1‖2)

≤ µ + 1

2α
‖wk − xk‖2

= µ + 1

2α
dist(xk, X∗)2.

Substituting the weak sharp minimum condition (24) on the right and left sides of this
inequality, respectively, we obtain

f (xk+1) − f ∗ ≤ (µ + 1)ν2

2α
( f (xk) − f ∗)

2

dist(xk+1, X∗) ≤ (µ + 1)ν

2α
dist(xk, X∗)

2
.

Since k is arbitrary, these inequalities establish global Q-quadratic convergence. �

We remark that in the case B = R
n , in which case our assumptions require the

classical choice D(x, y) = (1/2)‖x − y‖2, [17] shows that the weak sharp minimum
condition implies finite convergence.

Sufficient conditions implying that (24) holds include f being a proper polyhedral
convex function [7, Corollary 3.6]. Thus, the quadratic convergence result will hold in
both primal and dual applications of the PMDR to linear programming problems. In
fact, the results of [3, Section 6] only explicitly consider linear programming, but the
analysis immediately generalizes to any situation satisfying (24).

4. Examples of double regularizations

This section presents examples of coercive regularizations that conform to Assumption
2.3, and may thus be used to build double regularizations for convergent proximal
methods.

We will focus on the case (a, b) = R++; given a regularization for R++, it is
straightforward to use argument translations and sign changes to produce regularizations
for the cases (a,∞) and (−∞, b), where a, b ∈ R. For an arbitrary finite interval (a, b),
the following simple construction applies:

Lemma 4.1. Let d+, d− : R×R++ → (−∞,∞] be functions conforming to Assump-
tion 2.3 for the domain R++. Then, given a, b ∈ R, a < b and ζ ∈ (0, 1),

d(x, y)
def= ζd+(x − a, y − a) + (1 − ζ )d−(b − x, b − y)

conforms to Assumption 2.3, but for (a, b).
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Proof: Let x, y ∈ (a, b). Using Assumption 2.3 for d we have

ζ (x − a − y + a)(y − a)

x − a
≤ ζd ′

+(x − a, y − a) ≤ ζ (x − a − y + a),

and

(1 − ζ )(b − x − b + y)(b − y)

b − x
≤ (1 − ζ )d ′

−(b − x, b − y)

≤ (1 − ζ )(b − x − b + y).

Simplifying, multiplying the second inequality by −1, and adding, we arrive at

ζ (x − y)(y − a)

x − a
+ (1 − ζ )(x − y)

≤ ζd ′
+(x − a, y − a) − (1 − ζ )d ′

−(b − x, b − y)

≤ (1 − ζ )(x − y)(b − y)

b − x
+ ζ (x − y).

On the other hand, since x, y ∈ (a, b), we also have

(x − y)(y − a)

x − a
≤ x − y x − y ≤ (x − y)(b − y)

b − x
.

Hence,

(x − y)(y − a)

x − a
≤ ζd ′

+(x − a, y − a) − (1 − ζ )d ′
−(b − x, b − y)

≤ (x − y)(b − y)

b − x
.

Finally, differentiating the definition of d with respect to x and observing that the chain
rule inverts the sign of the d− term, we obtain

(x − y)(y − a)

x − a
≤ d ′(x, y) ≤ (x − y)(b − y)

b − x
,

for all x, y ∈ (a, b). �

4.1. ϕ-divergences

As already discussed, the results of this paper may be seen as generalizing ideas in [2, 3].
There, Auslender et al. obtain double regularizations for the positive orthant by adding
the squared Euclidean norm to rescaled ϕ-divergences.

We now show that Assumption 2.3 generalizes the �2 class from [3]. There, the
coercive part of the double regularization components have the form

di (x, y) = y2ϕ

(
x

y

)
,
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for some ϕ : R+ → R. In this case, Assumption 2.3 becomes

∀x, y ∈ R++ :
(x − y)y

x
≤ yϕ′

(
x

y

)
≤ x − y.

The simple change of variables t = x/y converts this condition into

∀t > 0 : (1 − 1/t) ≤ ϕ′(t) ≤ (t − 1),

which is precisely the condition defining the �2 class. From [3], we have the following
examples of functions conforming to this last inequality:

1. ϕ(t) = t ln(t) − t + 1;
2. ϕ(t) = 2(

√
t − 1)2;

3. ϕ(t) = − ln(t) + t − 1.

In particular, the function ϕ(t) = − ln(t) + t − 1 generates the log-quadratic
regularization, the first double regularization studied in the literature [2]. Moreover, this
regularization has

d ′
ϕ(x, y) = (x − y)y

x
,

so its derivative coincides with the lower bound imposed by Assumption 2.3.

4.2. Bregman distances

Another standard construction for producing regularization distances for proximal meth-
ods is the Bregman distance

d(x, y) = h(x) − h(y) − h′(y)(x − y),

where h is some strictly convex function.
We now present some functions that can be used to derive Bregman distances con-

forming to Assumption 2.3 after rescaling by h′′
i (yi ) [31, Section 2.2.1]. One may solve

monotone variational inequality problems using such Bregman distances without resort-
ing to additional problem assumptions like paramonotonicity [9, 19]. We note that [31,
Section 4] presents similar results, but under the stronger rescaling

α(y) = max
i=1,...,n

{h′′
i (yi )}, d̃(x, y) =

n∑

i=1

hi (xi ) − hi (yi ) − h′
i (yi )(xi − yi )

α(y)
.

In this case, the rescaling factor α(y) may go to infinity very quickly, and uniformly
for all coordinates, including coordinates that remain bounded away from their interval
endpoints. We expect that this approach would not be practical in comparison to the
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double regularization technique suggested here. We first introduce a lemma making it
easier to verify whether Assumption 2.3 holds:

Lemma 4.2. Let h : R → (−∞,∞], int dom h = R++. If h′′(x) is nonincreasing and
x2h′′(x) is nondecreasing over x ∈ R++, then the rescaled Bregman distance

d(x, y)
def= h(x) − h(y) − h′(y)(x − y)

h′′(y)

conforms to Assumption 2.3 for (a, b) = R++.

Proof: Letting (a, b) = R++, and substituting the definition of d(x, y) above, the
lower bound for d ′(x, y) in Assumption 2.3 reduces to

h′′(y)(x − y)
y

x
≤ (h′(x) − h′(y)).

To show that this inequality holds, we consider two cases:

1. If 0 < x < y,

h′(y) − h′(x) =
∫ y

x
h′′(z)dz

≤
∫ y

x

y2h′′(y)

z2
dz [since x2h′′(x) nondecreasing]

= h′′(y)

(
− 1

y
+ 1

x

)
y2

= h′′(y)
y − x

xy
y2

= h′′(y)(y − x)
y

x
.

2. If 0 < y < x , similar reasoning produces

h′(x) − h′(y) =
∫ x

y
h′′(z)dz ≥

∫ x

y

y2h′′(y)

z2
dz = h′′(y)(x − y)

y

x
,

where the inequality again results from x2h′′(x) being nondecreasing.

The upper bound from Assumption 2.3 reduces to h′(x)−h′(y) ≤ h′′(y)(x − y). Once
again, we analyze two possibilities: If 0 < xi < yi ,

h′(y) − h′(x) =
∫ y

x
h′′(z)dz ≥

∫ y

x
h′′(y)dz = h′′(y)(y − x),

where the inequality follows from h′′(x) being nonincreasing. The case 0 < y < x is
analogous. �
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Two examples for Bregman functions that meet the hypotheses of Lemma 4.2 are:

1. h(x) = dilog(ex ) + x ln(ex − 1), where dilog(·) is the dilogarithm function [22]:

dilog(z)
def=

∫ z

1

ln(t)

1 − t
dt.

In this case,

h′′(x) = ex

ex − 1
,

which is clearly nonincreasing.
To show that x2h′′(x) is nondecreasing, we calculate

d

dx
x2h′′(x) = ex x(2ex − x − 2)

(ex − 1)2
.

For x > 0, this function has the same sign as 2ex − x −2. Now, 2ex − x −2 evaluates
to 0 at x = 0, and is strictly increasing for x > 0. Hence, the derivative of x2h′′(x)
is nonnegative, and therefore x2h′′(x) is nondecreasing.

2. h(x) = xα − xβ, α ≥ 1, β ∈ (0, 1). In this case,

h′′(x) = α(α − 1)xα−2 + β(1 − β)xβ−2.

x2h′′(x) = α(α − 1)xα + β(1 − β)xβ.

Clearly, x2h′′(x) is nondecreasing on R++. Also h′′(x) is nonincreasing if and only
if α ≤ 2. Hence, the Bregman distance given by this choice of h conforms to
Assumption 2.3 when α ∈ [1, 2] and β ∈ (0, 1).

5. Penalties and multiplier methods

Suppose one applies a generalized proximal method with distance kernel d(x, y) to the
dual of a complementarity problem or variational inequality. Then, as noted in Section
1, one obtains a generalized augmented Lagrangian method involving the penalty term
P ′(·, yk) defined in (10), simplifying to (17) in the coercive case. Since P ′(·, yk) is
the inverse of the mapping ∇1d̃(·, yk), its componentwise integral P(·, yk) is, up to
a constant, equal to the convex conjugate [27, Chapter 12] (d̃(·, y))∗ of the function
d̃(·, yk).

We now investigate the properties of such conjugates. In particular, we consider which
functions P(·, y) can be expressed as conjugates of double regularizations conforming
to Assumption 2.3.

Proposition 5.1. Let µ ≥ 1. Let Pi : R × R++ → R, and denote by P ′
i (·, yi ) its

derivative with respect to the first argument. If P ′
i (·, yi ) is continuous, P ′

i (·, yi ) is both
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strictly increasing and strictly positive for each yi > 0, and one has for all u ∈ R that

u

µ + 1
+ yi ≤ P ′

i (u, yi ) ≤
u + (µ − 1)yi +

√(
u + (µ − 1)yi

)2 + 4µy2
i

2µ
, (25)

then there is a double regularization component d̃i conforming to Assumption 2.3 such
that Pi (·, yi ) = (d̃ i (·, yi ))∗, where the symbol ∗ denotes the convex conjugacy operator
[27, Chapter 12].

Proof: Take any yi > 0. Since P ′
i (·, yi ) is strictly increasing, Pi (·, yi ) is strictly convex.

Let us denote the convex conjugate of this function by d̃ i (·, yi ). We then have:

1. d̃ i (·, yi ) is closed, strictly convex, and essentially smooth, since it is the conjugate of
a differentiable, strictly convex function on [27, Theorem 26.3].

2. int dom d̃ i (·, yi ) = dom d̃ ′
i (·, yi ) = rgeP ′

i (·, yi ) = R++. Here, the first equality
follows from [27, Theorem 26.1], the second from [27, Corollary 23.5.1], and the
third from the bounds on P ′

i (·, yi ).
3. d̃ i (·, yi ) attains its minimum at yi : since both bounds on P ′

i (·, yi ) are equal to yi at 0,
we have P ′

i (0, yi ) = yi . Then, d̃ ′
i (yi , yi ) = 0 [27, Corollary 23.5.1].

Now define di (xi , yi )
def= d̃ i (xi , yi )−(µ/2)‖xi − yi‖2. In view of the three facts above,

we need only prove that di meets the bounds imposed by Assumption 2.3, and that d̃ ′
i is

continuous. We begin with the bounds:

1. Take any xi > 0, and let

u = (µ + 1)(xi − yi ).

The lower bound on P ′
i (·, yi ) implies that

u

µ + 1
+ yi ≤ P ′

i (u, yi ) ⇔ xi ≤ P ′
i ((µ + 1)(xi − yi ), yi ).

As P ′
i (·, yi ) is strictly increasing, so is its inverse, d̃ ′

i (·, yi ) [27, Corollary 23.5.1].
Applying this function to both sides of the above inequality, and using the definition
of di ,

d̃ ′
i (xi , yi ) ≤ (µ + 1)(xi − yi )

⇔ d ′
i (xi , yi ) + µ(xi − yi ) ≤ (µ + 1)(xi − yi )

⇔ d ′
i (xi , yi ) ≤ (xi − yi ).

2. Again, take any xi > 0. We follow similar logic, but define u via

u = yi (xi − yi )

xi
+ µ(xi − yi ).
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Multiplying through by x > 0, we obtain a quadratic equation in x. Applying the
quadratic formula,

xi =
u + (µ − 1)yi ±

√
(u + (µ − 1)yi )2 + 4µy2

i

2µ
.

Since µ ≥ 1 and yi > 0, there is only one positive solution, and we obtain

xi =
u + (µ − 1)yi +

√
(u + (µ − 1)yi )2 + 4µy2

i

2µ
.

The hypothesized upper bound on P ′
i (·, yi ) guarantees

P ′
i (u, yi ) ≤

u + (µ − 1)yi +
√

(u + (µ − 1)yi )2 + 4µy2
i

2µ
.

Substituting the definition of u and applying the strictly increasing function d̃ ′
i (·, yi )

to both sides yields

yi (xi − yi )

yi
+ µ(xi − yi ) ≤ d̃ ′

i (xi , yi ) ⇔ yi (xi − yi )

xi
≤ d ′

i (xi , yi ).

Thus, the bounds on di are satisfied. Finally, consider the continuity of d̃ ′
i . Let

xk
i → x̄i > 0 and yk

i → ȳi > 0 be convergent sequences in R++. Let uk = d̃ ′
i (x

k
i , yk

i ).
Then by the inverse properties of the conjugate, xk

i = P ′
i (uk, yk

i ). By the bounds we
have just established,

yk
i

(
xk

i − yk
i

)

yk
i

+ µ
(
xk

i − yk
i

) ≤ uk ≤ xk
i − yk

i ,

so {uk} is bounded. Let ū be one of its limit points and K ⊂ N be the respective index
set. We then have xk

i →K x̄i , yk
i →K ȳi and uk →K ȳi , so the continuity of P ′

i ensures
that x̄i = P ′

i (ū, ȳi ), and thus ȳi = d̃ ′
i (x̄i , ȳi ). Thus, uk is bounded and all its limit points

are equal to d̃ ′
i (x̄i , ȳi ), so it converges to d̃ ′

i (x̄i , ȳi ). �

Hence, if P : R
n × R

n++ → R
n is composed of components conforming to the

assumptions of the above Proposition, the generalized augmented Lagrangian method
given by (11)–(12) is equivalent to the PMDR applied to the dual problem (7), with ek ≡
0. Figure 2 illustrates Proposition 5.1’s penalty bounds. We summarize the properties
of the augmented Lagrangian method in the following proposition:

Proposition 5.2. Let F be a continuous monotone function R
n → R

n and assume
that the complementarity problem (2) has a solution. Suppose P : R

n × R
n++ → R
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Figure 2. Limits given in Proposition 5.1 for the derivatives of a penalty based on a double regularization.

conforms to the hypotheses of Proposition 5.1 with µ > 1, and {xk}, {yk} ⊂ R
n

conform to the recursions (11)–(12). Then {yk} converges to a dual solution of (2),
that is, to a limit y∗ ≥ 0 such that y∗ = F(x∗) and 〈x∗, y∗〉 = 0 for some x∗ ≥ 0
solving (2). Furthermore, lim infk→0 xk ≥ 0 (interpreted componentwise), F(xk) → y∗,
〈xk, yk〉 → 0, and all limit points of {xk} are solutions of (2).

Proof: Proposition 5.1 asserts that P(·, yk) = (d̃(·, y))∗, and hence that (17) holds,
where d̃(·, ·) is a double regularization conforming to Assumption 2.1. Thus, as demon-
strated in Section 1, the recursions (11)–(12) are equivalent to applying the PMDR
method to the dual formulation (7) of (2). As also seen in Section 1, existence of so-
lution to (2) implies a solution to (7) exists. Since µ > 1, Proposition 3.6 asserts the
convergence of {yk} to a solution y∗ of (7).

It remains to prove the assertions about {xk}. Substituting (12) into (11), we obtain
yk+1 = F(xk+1), and thus yk = F(xk) for all k ≥ 1, and F(xk) → y∗.

Next, substituting (12) into the first inequality in (25), we obtain for i = 1, . . . , n and
all k > 0 that

−αk xk
i

µ + 1
+ yk

i ≤ yk+1
i ⇔ xk

i ≥ µ + 1

αk

(
yk

i − yk+1
i

)
.

Since {yk
i } converges and αk is bounded below, we obtain that lim infk→∞ xk

i ≥ 0, so
lim infk→∞ xk ≥ 0 componentwise.

Lemma 3.3 allows us to apply Lemma 3.4 under the substitutions B ← R
n+, A, C ←

R
n++ = int B, z ← 0 ∈ B, x ← yk+1, y ← yk , and ζ (zi , A, C) ← 1 for all
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i = 1, . . . , n to obtain

〈−yk+1,∇1d̃(yk+1, yk)〉 ≤ µ + 1

2
(‖yk‖2 − ‖yk+1‖2) − µ − 1

2
‖yk+1 − yk‖2.

Next, note that applying the conjugacy relation to (12) yields ∇1d̃(yk+1, yk) =
−αk xk+1, which we substitute into the above inequality to obtain

〈yk+1, xk+1〉 ≤ µ + 1

2αk
(‖yk‖2 − ‖yk+1‖2).

Since {yk} converges and {αk} is bounded below, we obtain lim supk→∞〈xk, yk〉 ≤ 0.
On the other hand, since yk → y∗ ≥ 0, yk > 0 for all k by the positivity of the P ′

i (·, ·),
and lim infk→∞ xk ≥ 0, it follows that lim infk→0〈xk, yk〉 ≥ 0. Combining the lim inf
and lim sup inequalities, we have 〈xk, yk〉 → 0.

Finally, let x∞ be any limit point of {xk}. Taking limits over an appropriate sub-
sequence, and using the continuity of F, the just-established properties of {xk} imply
F(x∞) = y∗ ≥ 0, x∞ ≥ 0, and 〈x∞, y∗〉 = 0, so x∞ is a solution to (2). �

In the interest of simplicity, Proposition 5.2 assumes exact solution of (11). However,
by allowing ek �= 0 in the PMDR algorithm, the analysis can be extended to allow
approximate solution of (11) using the criterion proposed in [16, Theorem 2].

We note also that our multiplier method convergence results should still hold in the
more general setting where F is multivalued—that is, we simply take B = R

n
+ in (1),

and consider the dual problem T −1(y) + NR
n+(y) � 0 in the manner of (7). In this case,

we obtain the augmented Lagrangian inclusion 0 ∈ T (x) − P ′(−αk xk, yk) in place of
(11); we omit the details of this generalization in the interest of simplicity.

5.1. Proximal methods of multipliers

We now briefly describe an alternative way to apply the PMDR algorithm to (2). Writing
the “optimality” conditions for (3) in the form (5), we have y = F(x),−y ∈ NR

n+(x).
Rewriting the latter condition as x ∈ N−1

R
n+

(−y) and then −x ∈ NR
n+(y), followed by

some rearrangment, we obtain

0 = F(x) − y 0 ∈ x + NR
n+ (y).

This set of conditions is equivalent to problem (1) formulated in R
2n , where T :

(x, y) �→ {(F(x)− y, x)} and B = R
n ×R

n+. It is easily confirmed that if F : R
n → R

n

is continuous and monotone, T defined in this manner is maximal monotone. We now
consider applying the PMDR in R

2n to this problem. Note that for i = 1, . . . , n, we
have ai = −∞ and bi = ∞, so Assumption 2.3.2c requires d ′

i (xi , yi ) = xi − yi . For
i = n + 1, . . . , 2n, on the other hand, the d ′

i should take the customary forms for R+.
Shifting notation slightly so that the iterate sequence is denoted {(xk, yk)} and d̃(·, ·)
denotes the distance measure for just the last n components, the PMDR recursions
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become

0 = F(xk+1) − yk+1 + µ + 1

αk
(xk+1 − xk) (26)

0 = x + 1

αk
∇1d̃(yk+1, yk). (27)

Rewriting (27) as −αk xk = ∇1d̃(yk+1, yk), applying the conjugacy transformation to
obtain yk+1 = P ′(−αk xk+1, yk), and substituting into (26), we arrive at

0 = F(xk+1) − P ′(−αk xk+1, yk) + µ + 1

αk
(xk+1 − xk) (28)

yk+1 = P ′(−αk xk+1, yk), (29)

which is identical to (11)–(12), except for the additional term ((µ + 1)/αk)(xk+1 − xk).
This kind of method is known as a proximal method of multipliers, with a history
extending back to (29). We omit a formal result in interest of brevity, but it is easily
shown in this case that {(xk, yk)} converges to (x∗, F(x∗)), where x∗ is some solution to
(2); see for example [16, Theorem 4] or [4, Theorem 4.6] for similar results. Approximate
solution of (28) is straightforward to include, as in [16, Theorem 4].

5.2. Connections to the work of Chen and Mangasarian

The penalty derivative upper bound in (25) corresponds to the lower bound in Assump-
tion 2.3, and is proposed as the penalty term for a log-quadratic multiplier method in
(3).

Examining the penalty derivative upper bound (25), we remark on a connection to
[10]. The bound is exactly the Chen-Harker-Kanzow-Smale plus function, defined by

P ′(w, β)
def= w +

√
w2 + 4β2

2
, (30)

computed at w = u+(µ−1)yi and β = √
µyi . The experiments in [10] use this function

in a smoothing method—essentially a pure penalty algorithm with no explicit Lagrange
multipliers—for complementarity problems. One may consider the log-quadratic mul-
tiplier method of [3] to be a related algorithm introducing explicit duality and Lagrange
multipliers. Incidentally, this kind of penalty can be traced back even earlier, to the
unpublished work of Xavier [34].

The Chen-Harker-Kanzow-Smale plus function was not the only smoothing function
studied in [10]. Thus, it is natural to consider whether other penalties from [10] could
be used to generate double regularizations and associated methods of multipliers. In
particular, we consider the neural network smooth plus function, since it yielded the best
numerical results in [10].

5.3. The neural network smooth plus function

In this section, we show that the neural network smooth plus function gives rise to a
penalty corresponding to a double regularization. To do so, however, it appears nec-
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essary to set µ = 1. To be assured of convergence, we must thus check whether the
corresponding distance conforms not only to Assumption 2.3, but also to Assumption
3.7. Then, Proposition 3.10 will assure convergence.

Let us recall the formula for the neural network smooth plus function from [10]:

P ′(w, β)
def= β ln(ew/β + 1).

We now consider whether a penalty of this form can made to conform to the hypotheses
of Proposition 5.1. The analysis for the case µ > 1 appears difficult, so we concentrate
on µ = 1. If one follows the transformation used to obtain the log-quadratic penalty
from (30) with µ = 1, one sets w = u and β = yi , producing

P ′
i (u, yi ) = yi ln(eu/yi + 1). (31)

However, this function cannot possibly conform to the bound (25), which requires
P ′

i (0, yi ) = yi , whereas (31) implies P ′
i (0, yi ) = ln(2)yi . However, a simple change of

scale w = u, β = yi/ ln(2) remedies this difficulty, producing

P ′
i (u, yi ) = yi log2(2u/yi + 1). (32)

We proceed by letting d̃ i be the convex conjugate of Pi (·, yi ) as defined in (32), and
then define di implicitly via (18) with µ = 1, that is,

d̃ ′
i (·, yi ) = (P ′

i (·, yi ))
−1 (33)

d ′
i (xi , yi ) = d̃ ′

i (xi , yi ) − (xi − yi ) (34)

Since µ = 1, we seek to show that the di implicitly defined by integrating meets
Assumption 3.7. Then, Proposition 3.10 will guarantee that the proximal method based
on the double regularization components d̃ i is convergent. This convergence will imply
convergence of the corresponding multiplier method using the penalty (32).

Lemma 5.3 The function di defined by (32)–(34) conforms to Assumption 3.7.

Proof: Inserting the definition (32) into (33) and solving for d̃ ′
i (xi , yi ), we obtain the

explicit expression

d̃ ′
i (xi , yi ) = yi log2(2xi /yi − 1). (35)

As d̃ ′
i (·, ·) is clearly continuous, it remains to confirm Assumptions 3.7.1 and 3.7.2.
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Let us first consider Assumption 3.7.1. It is easily confirmed that the bounds hold
when xi = yi , so is suffices to prove, for all xi , yi > 0, xi �= yi , that

(xi − yi )yi

xi
< d ′

i (xi , yi ) ≤ xi − yi

⇔ (xi − yi )yi

xi
< yi log2(2xi /yi − 1) − (xi − yi ) ≤ xi − yi

⇔ x2
i − y2

i

xi
< yi log2(2xi /yi − 1) ≤ 2(xi − yi )

⇔ xi

yi
− yi

xi
< log2(2xi /yi − 1) ≤ 2

(
xi

yi
− 1

)
.

If we define t
def= xi/yi , these bounds are equivalent to

∀t > 0, t �= 1 : t − 1/t < log2(2t − 1) ≤ 2t − 2. (36)

The upper bound is easily proved, as 2t−2−log2(2t −1) is a strictly convex function with
its minimum at 1 and minimum value 0. The lower bound is equivalent to 2−t +2−1/t ≤ 1,
with equality only for t = 1, as established in [24, Problem 23]. Thus, Assumption 3.7.1
holds.

Finally, we turn to Assumption 3.7.2. Take any ȳi > 0, select some ζ ∈ (0, 1), and

define Ci
def= (ȳi/2, 2ȳi ). We will show for any yi ∈ Ci and xi small enough,

ζ
(xi − yi )yi

xi
≤ d ′

i (xi , yi ) = yi log2(2xi /yi − 1) − (xi − yi ). (37)

Since ζ < 1 and xi < yi for small xi , inequality (37) is implied by

ζ
(xi − yi )yi

xi
≤ yi log2(2xi /yi − 1) − ζ (xi − yi ) (38)

⇔ ζ
x2

i − y2
i

xi
≤ yi log2(2xi /yi − 1)

⇔ ζ ≥ xi yi log2(2xi /yi − 1)

x2
i − y2

i

⇔ ζ ≥ xi

yi
log2(2xi /yi − 1)

y2
i

x2
i − y2

i

. (39)

Once again, we introduce the change of variables t = xi/yi , which reduces the above
expression in xi and yi to t log2(2t − 1)/(t2 − 1). We next claim that

lim
t↓0

t log2(2t − 1)

t2 − 1
= 0. (40)
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As limt↓0 1/(t2 − 1) = −1, it suffices to show that

lim
t↓0

t log2(2t − 1) = 0.

Writing t log2(2t −1) = log2(2t −1)/(1/t) and applying L’Hôpital’s rule, one obtains

lim
t↓0

t log2(2t − 1) = lim
t↓0

−t22t

2t − 1
.

Since limt↓0 2t = 1, it is sufficient to prove that

lim
t↓0

−t2

2t − 1
= 0,

which follows from a second use of L’Hôpital’s rule. Thus, we have verified that the
limit (40) holds. Therefore, there exists a t̄ > 0 such that for 0 < t ≤ t̄

t log2(2t − 1)

t2 − 1
≤ ζ.

Define Ai
def= (0, t̄ ȳi/2). For xi ∈ Ai and yi ∈ Ci , we have xi/yi < t̄ , and hence

xi

yi
log2(2xi /yi − 1)

y2
i

x2
i − y2

i

≤ ζ.

Since inequality (39) is equivalent to (38), which implies (37), we conclude that As-
sumption 3.7.2 holds. �

Proposition 5.4. Let F be a continuous monotone function R
n → R

n and assume that
the complementarity problem (2) has a solution. Suppose that {xk}, {yk} ⊂ R

n conform
to the recursions (11)–(12) with P ′

i (u, yi ) = yi log2(2u/yi + 1). Then {yk} converges to a
dual solution of (2), lim infk→0 xk ≥ 0 , F(xk) → y∗, 〈xk, yk〉 → 0, and all limit points
of {xk} are solutions of (2).

Proof: Lemma 5.3 establishes that P ′
i (u, yi ) = yi log2(2u/yi + 1) corresponds to a

µ = 1 distance kernel d̃ ′
i (xi , yi ) = d ′

i (xi , yi ) + xi − yi meeting Assumption 3.7. so
Proposition 3.10 implies convergence of {yk} to a solution y∗ of (7).

It remains to prove the properties of the primal sequence {xk}. We note that if the first
inequality in (25) holds with µ = 1, the properties of {xk} follow in exactly the same
manner as in the proof Proposition 5.2, since those arguments did not depend on µ > 1.

Therefore, it is sufficient to establish that u/2 + yi ≤ yi log2(2u/yi + 1) for all u ∈
R, yi > 0. Substituting s = u/yi , this condition is equivalent to s/2 + 1 ≤ log2(2s + 1)
for all s ∈ R. This inequality in turn is equivalent to the upper bound in (36) by
observing that if f, g : R → R are two strictly increasing functions, f (t) ≤ g(t) for all
t is equivalent to f −1(s) ≥ g−1(s) for all s. �
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One can also show convergence under approximate computation of (11) and/or an
additional proximal term as in (28).

We conclude this section by relating our neural penalty method to the prior literature.
First, we note from (35) that the regularization kernel d̃ i of our neural method is a rescaled
ϕ-divergence, as its derivative d̃ ′

i (xi , yi ) has the form yiϕ
′(xi/yi ) for ϕ′(t) = log2(2t −1).

However, we have used µ = 1, and thus the convergence results of [3], which require
µ > 1, do not apply.

Finally, there is also a connection with the log-sigmoid method of multipliers proposed
in [25]. The method of [25] uses a penalty of the general form β ln(ew/β + 1), and thus
a penalty derivative of the form ew/β/(ew/β + 1); here, in rough terms, we may think
of β as relating to the Lagrange multiplier, and w to the constraint violation. To make
the penalty derivative approach infinity as w → ∞ in [25], it is truncated and smoothly
continued with a linear function; thus the penalty itself is smoothly continued with a
quadratic function. The difference in our approach is that the neural penalty derivative,
not the penalty, takes the form β ln(ew/β + 1). Thus, the penalty of [25] is essentially
the derivative of our neural penalty, and conversely our proposed neural penalty is
essentially the integral of [25]’s. For this reason, our penalty derivative does not require
truncation and replacement by a linear function for large w.

6. Computational tests

We conclude with some preliminary computational experiments with augmented La-
grangian methods for complementarity problems. Our original objective was to study
the behavior of the neural penalty as compared to the log-quadratic penalty. However,
we also include in the results two other penalties, the smooth cubic penalty of [16]
and a variant of the classic exponential penalty. Our goal here is to compare double
regularization methods to other proximal approaches, both coercive and non-coercive.
We did not include the classic quadratic penalty, since it would cause the system of
equations (11) to be nonsmooth.

Our tests of the cubic penalty in (11)–(12) revealed sizable discrepancies from [16],
mainly because [16] instead tests a variant of the primal-dual algorithm (28)–(29). To
better understand these differences, we tested not only an implementation of (11)–(12),
but also of (28)–(29), using all four penalties.

We coded the algorithms in MATLAB and applied them to all the nonlinear com-
plementarity problems in the MATLAB version of MCPLIB [11, 12] except the pgvon
problems, which are especially badly behaved, with F ill-defined at the solution. We
treated the remaining problems as being in the form (2). Considering differing starting
points, the test set has 77 problems, most of which are not monotone. Even though our
convergence analysis requires monotonicity, performance on the MCPLIB may still be
considered a reasonable benchmark of practical performance, as in [16].

To improve the numerical behavior of these models, we introduce a positive diagonal
scaling matrix S, with diagonal elements Sii , along with a change of variables w = S−1x ,
and cast the problem as

F(Sw) ≥ 0 w ≥ 0 〈F(Sw), w〉 = 0.
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Under this scaling, the recursions (11)–(12) become

0 = F(Swk+1) − P ′(−αkw
k+1, yk)

yk+1 = P ′(−αkw
k+1, yk),

or, after changing back to the original variables x = Sw,

0 = F(xk+1) − P ′(−αk S−1xk+1, yk) (41)

yk+1 = P ′(−αk S−1xk+1, yk). (42)

In the case of an additional proximal term, we similarly alter (28)–(29) to

0 = F(xk+1) − P ′(−αd
k S−1xk+1, yk) + 1

α
p
k

S(xk+1 − xk) (43)

yk+1 = P ′(−αd
k S−1xk+1, yk). (44)

Note also that we use different stepsizes α
p
k and αd

k for the primal and dual portions
of the regularization. Briefly, by altering our analysis to use a scaled distance kernel
and quasi-Féjer convergence in a scaled norm, this modification is compatible with
theoretical convergence if α

p
k and αd

k remain in a fixed proportion, or αd
k /α

p
k only

changes a finite number of times. We tested the following penalties:

1. The log-quadratic penalty:

P ′
i (ui , yi ) =

ui + (µ − 1)yi +
√

(ui + (µ − 1)yi )2 + 4µy2
i

2µ
.

2. The neural penalty:

P ′
i (ui , yi ) = yi log2(2ui /yi + 1).

3. The cubic penalty of [16]:

P ′
i (ui , yi ) = max{√yi + ui , 0}2.

This penalty is not coercive, but is specially constructed so that the system of equa-
tions (41) or (43) will nonetheless be first-order smooth if F is.

4. A modified exponential penalty:

P ′
i (ui , yi ) =

{
yi eui /yi , if ui/yi ≤ 1

ui e, if ui/yi ≥ 1.
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We initially tested the classic exponential penalty P ′
i (ui , yi ) = yi eui /yi for all ui (see

for example [5, 33]), but this function grows so rapidly for large ui that its value
was often not representable in MATLAB. Therefore, we truncated it and continued
it smoothly with a linear function. Note that, with or without this modification,
theoretical convergence with this penalty requires more assumptions than F being
monotone, and may not permit the additional proximal term of (43).

We employed a Newton algorithm with Armijo line search, specifically the nsola
code of [20], to solve the systems of nonlinear equations (41) and (43). In order to
deal with nearly singular Jacobians, we incorporated the modified Cholesky Factoriza-
tion described in [18]. All nonlinear equations were solved essentially exactly, with
residual no more than 10−8. Other details of the implementation implementation are as
follows:

• The initial multipliers were set to 1, since they must be strictly positive and this choice
gave us good empirical results.

• For the dual method (41)–(42), we set the initial stepsize α0 to 10. If, after successful
solution of the nonlinear equations, the feasibility of the primal solution or its com-
plementarity with the multipliers did not improve by a factor of 0.5, we multiplied the
stepsize by 10. Otherwise, we multiplied it by 1.05 in order to speed up convergence.
Such strategies are usual in multiplier methods, see for example [16].

• For the primal-dual method (43)–(44), we adjust the stepsizes α
p
k , α

d
k similarly to [16].

Initially, we set α
p
0 = max{10, |x0|} and αd

0 = 10. If the nonlinear equation solver
fails, we divide α

p
k by 10 and set αd

k to its initial value. Otherwise, if ‖xk+1 − xk‖ >

100‖yk+1 − yk‖, αd
k is multiplied by 5. If 100‖xk+1 − xk‖ < ‖yk+1 − yk‖, αd

k is set
to max{‖yk‖, 1.0}. If α

p
k and αd

k are still unchanged, we multiply both α
p
k and αd

k by
1.05 or 5 depending on whether the primal feasibility and complementarity slackness
has improved by a factor of at least 0.5 or not. In our experiments, as in [16], the
number of times α

p
k and αd

k are updated idependently is very small, and hence our
convergence theory still holds after the last independent update.

• As suggested in [10, 16], the scaling matrix S was determined by the initial solution
x0 via

Sii
def= 1

max
(
0.1‖∇Fii (x0)‖, 10

) .

Finally, we have chosen the total number of Newton steps as our benchmark, since our
code is preliminary and MATLAB is an interpreted language, meaning that reporting
run time may be misleading. We graphically present our test results using performance
profiles [13]. Complete test results appear in Tables 1–4.

To make a fair comparison between the log-quadratic penalty and the other penalties,
we must first study how adjusting µ affects the log-quadratic penalty performance. For
the neural penalty, µ is fixed at 1. The other two penalties are not double regularizations
and therefore do not have a µ parameter.

We tested the log-quadratic penalty with µ = 5, 1.5, 1.05, and 1. Figure 3 displays
the performance profile of this test, in terms of Newton iterations.1 Clearly, performance
tends to improve as µ decreases. Therefore, we should use the smallest possible µ when
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Table 1. Number of Newton steps for pure dual method, part 1.

Log-quad Log-quad Log-quad Log-quad

Problem µ = 5.0 µ = 1.5 µ = 1.05 µ = 1.0 Cubic Expon Neural

bertsekas1 fail 40 78 41 78 82 48

bertsekas2 26 22 25 26 21 54 22

bertsekas3 26 36 41 37 408 216 221

bertsekas4 40 78 41 78 82 48

bertsekas5 27 24 24 24 21 39 24

bertsekas6 29 26 25 25 22 39 24

colvdual1 fail fail 670 fail fail 110 fail

colvdual2 32 fail fail fail fail 64 20

colvdual3 16 16 17 17 11 22 15

colvdual4 fail fail fail 21 fail 125 fail

colvnlp1 24 21 22 23 24 88 22

colvnlp2 19 19 21 21 21 37 19

colvnlp3 16 16 17 17 11 22 15

colvnlp4 18 20 22 22 34 41 25

colvnlp5 18 20 22 22 33 38 25

colvnlp6 16 14 15 15 13 23 13

cycle1 4 4 4 4 3 3 3

explcp1 17 23 22 21 6 15 13

hanskoop10 24 25 23 23 fail fail 34

hanskoop2 24 25 23 23 fail fail 34

hanskoop4 24 25 23 23 fail fail 34

hanskoop6 24 25 23 23 fail fail 34

hanskoop8 24 25 23 23 fail fail 34

josephy1 16 18 16 16 fail 65 15

josephy2 19 fail fail fail fail fail fail

josephy3 fail fail fail fail fail fail fail

josephy4 fail 18 17 17 fail 60 16

josephy5 15 16 14 14 11 58 14

josephy6 19 22 18 20 19 fail 63

josephy7 fail fail fail fail fail fail fail

josephy8 13 15 13 13 11 58 13

kojshin1 450 450 450 450 fail 300 300

kojshin2 450 fail fail fail fail fail fail

kojshin3 450 fail fail fail fail fail fail

kojshin4 450 18 14 14 13 63 14

kojshin5 450 21 16 16 fail 109 17

kojshin6 554 fail fail 244 fail fail fail

kojshin7 450 450 450 450 fail fail 300

kojshin8 450 450 450 450 fail 250 300

comparing the penalties. In our subsequent testing, we used µ = 1.05, since we have
only proved convergence of the log-quadratic method when µ > 1. The performance of
this case is very close to the limiting case µ = 1.
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Table 2. Number of Newton steps for pure dual method, part 2.

Log-quad Log-quad Log-quad Log-quad

Problem µ = 5.0 µ = 1.5 µ = 1.05 µ = 1.0 Cubic Expon Neural

mathinum1 10 9 9 9 6 5 6

mathinum2 9 9 9 9 5 5 5

mathinum3 fail 13 13 13 9 9 9

mathinum4 10 10 10 10 6 6 6

mathinum5 16 16 16 17 12 12 13

mathinum6 11 11 11 11 7 7 7

mathisum1 17 15 14 14 10 57 13

mathisum2 16 13 13 13 11 26 13

mathisum3 450 450 450 450 fail 250 300

mathisum4 19 16 14 14 11 57 13

mathisum5 1 1 1 1 1 1 1

mathisum6 30 22 19 19 14 63 19

mathisum7 400 350 350 350 1082 200 250

nash1 9 9 9 9 6 6 6

nash2 8 8 8 8 6 6 6

nash3 7 7 7 7 6 6 5

nash4 6 6 6 6 3 3 3

powell1 103 103 103 103 17 51 52

powell2 51 105 51 51 16 51 100

powell3 51 151 103 51 20 21 29

powell4 143 51 151 51 19 51 50

powell5 fail fail 758 fail fail fail fail

powell6 103 103 103 103 14 50 52

scarfanum1 21 23 22 22 20 23 19

scarfanum2 23 26 26 26 23 27 24

scarfanum3 23 fail 27 fail 27 33 26

scarfanum4 21 23 23 22 14 20 18

scarfbnum1 fail 36 51 52 88 61 89

scarfbnum2 206 fail 209 141 62 fail fail

scarfbsum1 37 34 41 41 992 fail fail

scarfbsum2 fail fail fail fail fail fail fail

sppe1 14 16 17 17 18 28 17

sppe2 14 16 15 15 17 21 17

sppe3 10 11 10 10 11 18 10

tobin1 23 24 23 23 33 112 45

tobin2 28 36 34 41 95 962 50

tobin3 50 43 53 45 179 fail 55

tobin4 17 16 14 14 11 39 13

Next, Figure 4 presents a performance profile comparing all four penalties for the
dual method (41)–(42). It also shows three two-method profiles, each comparing one
of the other penalties to the neural penalty. In these comparisons, the neural penalty
acquits itself well, comparing favorably to the other methods in most respects; however,
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Table 3. Number of Newton steps for primal-dual method, part 1.

Problem Cubic Exponential Log-quad (µ = 1.05) Neural

bertsekas1 54 78 79 45

bertsekas2 37 69 29 32

bertsekas3 140 114 36 142

bertsekas4 54 78 79 45

bertsekas5 22 33 27 26

bertsekas6 33 54 30 30

colvdual1 898 168 467 504

colvdual2 621 92 453 28

colvdual3 13 31 22 20

colvdual4 621 124 444 1706

colvnlp1 35 121 23 23

colvnlp2 24 78 23 26

colvnlp3 13 31 21 20

colvnlp4 27 35 25 24

colvnlp5 27 35 25 24

colvnlp6 16 39 20 18

cycle1 7 7 7 7

explcp1 15 24 12 23

hanskoop10 41 22 23 31

hanskoop2 41 22 23 31

hanskoop4 41 22 23 31

hanskoop6 77 22 23 31

hanskoop8 41 22 23 31

josephy1 227 58 16 17

josephy2 228 1593 227 224

josephy3 450 801 442 449

josephy4 227 59 17 17

josephy5 12 58 15 15

josephy6 35 299 226 46

josephy7 226 647 226 228

josephy8 12 58 14 13

kojshin1 235 477 634 228

kojshin2 249 833 344 392

kojshin3 358 762 470 547

kojshin4 13 1010 17 16

kojshin5 fail 963 20 19

kojshin6 276 620 335 483

kojshin7 220 492 634 215

kojshin8 fail 442 634 227

the log-quadratic method is slightly more reliable on this test set. The cubic method
fails most often, but tends to run quickly when it does not fail. The modified exponential
method is clearly the least desirable, tending to be very slow, but only slightly more
reliable than the cubic.
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Table 4. Number of Newton steps for primal-dual method, part 2.

Problem Cubic Exponential Log-quad (µ = 1.05) Neural

mathinum1 11 13 13 13

mathinum2 10 10 11 10

mathinum3 15 15 13 15

mathinum4 12 12 12 12

mathinum5 19 20 17 18

mathinum6 13 13 13 13

mathisum1 11 57 15 14

mathisum2 12 22 13 13

mathisum3 fail 576 421 511

mathisum4 12 57 15 14

mathisum5 1 1 1 1

mathisum6 16 61 20 20

mathisum7 97 495 297 378

nash1 10 10 10 10

nash2 10 10 9 10

nash3 9 9 9 9

nash4 5 5 6 5

powell1 14 15 322 21

powell2 58 19 322 19

powell3 20 19 259 20

powell4 60 19 18 20

powell5 fail fail fail fail

powell6 15 14 323 14

scarfanum1 22 27 29 25

scarfanum2 28 36 32 28

scarfanum3 33 48 31 35

scarfanum4 18 25 28 24

scarfbnum1 103 154 fail 395

scarfbnum2 89 151 fail 140

scarfbsum1 100 146 56 65

scarfbsum2 fail fail 196 fail

sppe1 27 50 23 23

sppe2 19 35 17 18

sppe3 12 57 11 11

tobin1 40 141 24 37

tobin2 64 183 37 42

tobin3 103 179 53 56

tobin4 11 39 14 14

Figure 5 shows the effect of adding a “prox” term to the both the neural and exponential
penalties, that is, executing (43)–(44) instead of (41)–(42). Although the proximal term
slows down the method somewhat, it appears to have a significant stabilizing effect,
resulting in much greater robustness; note in particular the much greater reliability it
imparts to the exponential method.
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Figure 3. The impact of µ on the performance of the log-quadratic penalty.
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Figure 4. Pure dual augumented Lagrangian methods.

Figure 6 compares all four penalties in the primal-dual setting (43)–(44). The robust-
ness effect of the additional prox term applies to all the methods, greatly increasing their
reliability. The exponential methods remains the slowest, and while the other methods
are quite comparable, the neural penalty still seems to be the preferred approach.
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Figure 5. Comparision between primal-dual and pure dual generalized augmented Lagrangians.
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Figure 6. Primal-dual augumented Lagrangian methods.

Note

1. Following [13], let s(p, m) denote the number of Newton steps required by method m on problem instance
p, and let s∗(p) = minm{s(p, m)} be the smallest number of steps on instance p required by any method
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in the profile. Define r (p, m) = s(p, m)/s∗(p). The plots display the fraction of problems p for which
r (p, m) ≤ r , r being displayed on the horizontal axis.
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1. H. Attouch and M. Théra, “A general duality principle for the sum of two operators,” Journal of Convex
Analysis, vol. 3, pp. 1–24, 1996.

2. A. Auslender, M. Teboulle, and S. Ben-Tiba, “A logarithmic-quadratic proximal method for variational
inequalities,” Computational Optimization and Applications, vol. 12, pp. 31–40, 1999.

3. A. Auslender, M. Teboulle, and S. Ben-Tiba, “Interior proximal and multiplier methods based on second
order homogeneous kernels,” Mathematics of Operations Research, vol. 24, pp. 645–668, 1999.

4. A. Auslender and M. Teboulle, “Lagrangian duality and related multiplier methods for variational in-
equality problems,” SIAM Journal on Optimization, vol. 10, pp. 1097–1115, 2000.

5. D.P. Bertsekas, Nonlinear Programming. Athena Scientific, 1995.
6. R. Burachick, M.G. Drummond, A.N. Iusem, and B.F. Svaiter, “Full convergence of the steepest descent

method with inexact line searches,” Optimization, vol. 10, pp. 1196–1211, 1995.
7. J.V. Burke and M.C. Ferris, “Weak sharp minima in mathematical programming,” SIAM Journal on

Control and Optimization, vol. 31, pp. 1340–1356, 1993.
8. Y. Censor and S.A. Zenios, “Proximal minimization algorithm with D-functions,” Journal of Optimization

Theory and Applications, vol. 73, pp. 451–464, 1992.
9. Y. Censor, A.N. Iusem, and S.A. Zenios, “An interior point method with Bregman functions for the

variational inequality problem with paramonotone operators,” Mathematical Programming, vol. 81, pp.
373–400, 1998.

10. C. Chen and O.L. Mangasarian, “A class of smoothing functions for nonlinear and mixed complementarity
problems,” Computational Optimization and Applications, vol. 5, pp. 97–138, 1996.

11. S.P. Dirkse and M.C. Ferris, “MCPLIB: A collection on nonlinear mixed complementarity problems,”
Optimization Methods and Software, vol. 2, pp. 319–345, 1995.

12. S.P. Dirkse and M.C. Ferris, “Modeling and solution environments for MPEC: GAMS & MATLAB,” in
Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods (Lausanne, 1997),
Applied Optimization, vol. 22. Kluwer Academic Publisher, Dordrecht, 1999, pp. 127–147.
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