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ABSTRACT
We present a framework for analyzing convergence and local rates of convergence of a class of

descent algorithms, assuming the objective function is weakly convex. The framework is general,
in the sense that it combines the possibility of explicit iterations (based on the gradient or a
subgradient at the current iterate), implicit iterations (using a subgradient at the next iteration,
like in the proximal schemes), as well as iterations when the associated subgradient is specially
constructed and does not correspond neither to the current nor the next point (this is the case of
descent steps in bundle methods). Under the subdifferential-based error bound on the distance
to critical points, linear rates of convergence are established. Our analysis applies, among other
techniques, to prox-descent for decomposable functions, the proximal-gradient method for a sum of
functions, redistributed bundle methods, and a class of algorithms that can be cast in the feasible
descent framework for constrained optimization.
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1 Introduction

We consider algorithmically generated descent sequences that aim at solving problems of the form

min f(x), x ∈ Rn , (1)

where
f : Rn → R ∪ {+∞} is weakly convex.

The class of weakly convex functions is fairly broad and covers many problems of interest. It
includes convex functions, differentiable functions with Lipschitzian gradient, certain compositions
of convex functions with smooth functions, among others. We refer the readers to the discussion
in [13], and §2 below. The case of constrained optimization will be handled by including into the
objective function the indicator function of the feasible set.

We are interested in stating conditions that ensure global convergence and local linear con-
vergence rates for algorithms whose sequence of iterates {xk} involves the Clarke’s subgradient
information about f , possibly collected along iterations. Together with the algorithmically gener-
ated sequence {xk} ⊆ Rn, we shall also consider a certain theoretical sequence {zk} ⊆ Rn, with
associated perturbation parameters {εk} ⊆ [0,+∞). These objects are introduced to account for
the fact that, to compute the iterate xk, one often minimizes a model/approximation of f . This
operation yields a subgradient of the model, which for some methods in general is not a subgradi-
ent of f itself at any point in the sequence {xk}. We show that model subgradients can, however,
be “transported” to a nearby point, where they are subgradients of f . For convex functions, this
is the well-known transportation formula in [23, Ch.XI, § 4.2]. For weakly convex functions, a
similar result requires a delicate construction, given in § 5 below. In particular, we think of {zk}
as a (potential) perturbation, not necessarily computed by the algorithm, of the actual sequence
{xk} which is computed indeed.

Formally, we shall consider frameworks with the following relations valid (again, recall that
{xk} is the generated sequence, while {zk} is a theoretical one):

f(xk) + a(‖xk − xk−1‖2 + εk−1) ≤ f(xk−1), for a > 0 ; (2a)

∃gk ∈ ∂f(zk−1) ∪ ∂f(zk), ‖gk‖ ≤ b
(
‖xk − xk−1‖+ ‖xk − zk‖

)
, for b > 0 ; (2b)

both ‖xk − zk‖ and {εk} tend to 0 as k →∞ . (2c)

Some remarks are in order. To start with, notice that condition (2a) ensures that the sequence
of functional values {f(xk)} is non-increasing. By contrast, the theoretical sequence {f(zk)} is
not necessarily non-increasing.

To continue, consider first the simplest instance, with zk = xk and εk = 0. Then the conditions
in (2c) are automatic, while (2b) becomes

‖gk‖ ≤ b‖xk − xk−1‖ ,

for some subgradient gk of f at either xk−1 or xk. In the first case, it is natural to think of the
scheme as being explicit (one obvious example is the gradient descent iteration, if f is differentiable:
xk = xk−1 − tk∇f(xk−1), with a suitable stepsize tk > 0). In the second case, the scheme is in
general implicit, and becomes essentially that of [2, § 2.3] if further gk ∈ ∂f(xk) is taken. A
prototypical instance is given by the proximal point iteration:

xk ∈ arg min f(x) +
1

2tk
‖x− xk−1‖2, for tk > 0 , (3)

which means that xk = xk−1 − tkgk, for some gk ∈ ∂f(xk).
Next, note that in the nonsmooth case, even the convex one, an explicit scheme with gk ∈

∂f(zk−1) and zk−1 = xk−1 in (2b) does not guarantee the descent condition (2a). Indeed, this
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would be just the basic subgradient method, which is not of descent. General-purpose algorithms
for nonsmooth optimization that build descent sequences are bundle methods [28, 23, 6]. Other
nonsmooth methods can also be of descent, if they use more specific problem structure. Some
examples are the prox-descent method for composite functions [30] and proximal-gradient methods
for sums [3], considered together with the bundle method in § 5 below. It is precisely for treating
those type of methods that the theoretical iterate zk and associated perturbation εk were intro-
duced in our framework (2). Essentially, such schemes compute the proximal point of a convex
model of the function f . Thanks to our transportation formula for weakly convex functions, this
amounts to performing an explicit step, using a subgradient of f at a perturbed point, that plays
the role of zk in (2). This relation holds as long as the model-functions satisfy general conditions
stated in § 5. Therein, the process is developed in full details for model-based proximal methods,
including bundle algorithms for weakly convex functions.

Our convergence analysis recovers, from a unified perspective, various (but not necessarily all)
results in sources like [32], [2], and [13]. We also give new results, related to bundle methods for
weakly convex functions. As stated in the concluding section of [38], developing a convergence
theory along the lines of [2] for bundle methods based on practical oracles was an open question.
We close this gap in § 5, most notably by stating the linear convergence of bundle methods with
downshifted models that are typical in the nonconvex setting; we refer to § 5.1 for details. When
the objective in (1) is convex, linear rates for bundle-like methods can be traced back to [26] and
[42]; see also the efficiency estimates in [27]. The topic was revisited more recently in [16] and
[10], respectively considering strongly convex functions and multi-cut models, and the classical
proximal bundle method for convex optimization.

The rest of the paper is organized as follows. In § 2 we collect some facts on weakly convex
functions, to be used in the sequel. Error bounds are briefly discussed in § 3. We proceed in
§ 4 with some general global convergence and local linear rate of convergence properties of the
framework given by (2). In § 5 these results are applied to model-based algorithms, including
prox-descent for composite functions, proximal-gradient methods for sums, Taylor-based models,
and finally the bundle methods. In § 6 we show how our analysis applies to the class of feasible
descent methods for constrained optimization considered in [32].

We conclude this section with some notation and definitions. By 〈·, ·〉 we denote the Euclidean
inner product (where the space is always clear from the context), with ‖ · ‖ being the associated
norm. By B(0, ε) we denote the closed ball of radius ε ≥ 0, centered at the origin.

For a proper, lower semicontinuous, and locally Lipschitz-continuous function f : Rn → R ∪
{+∞}, the Clarke subdifferential of f at x ∈ dom(f) = {x ∈ Rn | f(x) < +∞} is given by

∂f(x) = conv {g ∈ Rn | ∃ {yk} ⊂ Df : yk → x, ∇f(yk)→ g},

where Df is the set of points at which f is differentiable, and where convD stands for the convex
hull of a set D. For x ∈ dom(f), ∂f(x) is a nonempty closed convex set, and ∂f is an upper
semicontinuous mapping; see [7]. Note also that from [36, Proposition 3.1], [36, Theorem 3.6]
and Proposition 2.2(iv) below, the so-called limiting subdifferential and the Clarke subdifferential
coincide for weakly convex functions, the class of our interest. This is the reason why we define
and use the Clarke subdifferential only. If f is a smooth function, ∂f(x) reduces to the gradient
∇f(x), while in the case of f being convex, ∂f(x) is the subdifferential of f at x in the usual
convex analysis sense. For f convex and ε ≥ 0, the ε-subdifferential of f at x ∈ dom(f) is given
by

∂εf(x) = {g ∈ Rn | f(y) ≥ f(x) + 〈g, y − x〉 − ε ∀ y ∈ Rn}.

For (possibly nonconvex) closed setD, we denote the associated (possibly set-valued) projection
mapping by

PD(x) = arg min
y∈D
‖y − x‖ .

Then the distance from x to D is given by

d(x,D) = ‖x− p‖, for any p ∈ PD(x) .
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For a nonempty closed convex set X ⊆ Rn, iX denotes the indicator function of the set X,
i.e., iX(x) = 0 if x ∈ X and iX(x) = +∞ otherwise. The normal cone to X at x ∈ X is given by
NX(x) = ∂iX(x) = {u ∈ Rn | 〈u, y − x〉 ≤ 0 for all y ∈ X}. If x 6∈ X then NX(x) = ∅.

Denote by S := (∂f)−1(0) the set of critical points of f , i.e., points x such that 0 ∈ ∂f(x).
The following property [32, Condition B] will play a role in our analysis.

Definition 1.1 (Proper separation of isocost surfaces). A closed function f : Rn → R ∪ {+∞}
has properly separated isocost surfaces if there exists ε > 0 such that

x̄ ∈ S, ȳ ∈ S, f(x̄) 6= f(ȳ) =⇒ ‖x̄− ȳ‖ ≥ ε .

This property is very natural; we refer the readers to [32] for a discussion and sufficient condi-
tions for it to hold.

2 Weakly convex functions

We start with the definition.

Definition 2.1 (Weakly convex functions). We say that f : Rn → R∪{+∞} is ρ−weakly convex,

for ρ > 0, if f(·) +
ρ

2
‖ · ‖2 is a convex function.

The class of weakly convex functions is contained in some larger classes of nonsmooth functions,
such as the generalized differentiable functions in the sense of Norkin [39], or the semismooth
functions [35].

The following are some equivalent characterizations of weak convexity; see [9, Theorem 2.1],
[8, Theorem 3.1].

Proposition 2.2 (Alternative characterizations of weak convexity). For a lower semicontinuous
function f : Rn → R ∪ {+∞} and ρ > 0, the following statements are equivalent:

(i) For any z ∈ Rn, f(·) + ρ
2‖ · −z‖

2 is a convex function.

(ii) For any x, y ∈ Rn, such that ∂f(y) 6= ∅, any g(y) ∈ ∂f(y) satisfies

f(y) + 〈g(y), x− y〉 ≤ f(x) +
ρ

2
‖x− y‖2

or, equivalently,

`y,g(y)(x) ≤ f(x) +
ρ

2
‖x− y‖2 ,

where `y,g(y)(·) := f(y) + 〈g(y), · − y〉 is the linearization of f at the point y.

(iii) For all x, y ∈ Rn, and λ > 0,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) +
ρλ(1− λ)

2
‖x− y‖2 .

Note that in Proposition 2.2(i), by taking z = 0, we retrieve Definition 2.1, which means that
f is convex up to a quadratic perturbation. Proposition 2.2(i) is completely equivalent to this way
of defining weakly convex functions, since it states that f is convex up to a quadratic perturbation
with a linear term. Regarding some other notions of nonconvexity in the literature, it is important
to note that for a function to be weakly convex, Proposition 2.2(ii) must hold for all subgradients
at all points. By contrast, for prox-regular functions ([43, Definition 13.27]), also known as lower-
C2 functions, the inequality holds only locally for subgradients, points and functional values. As
a result, weak convexity is equivalent to the function being prox-regular everywhere, and the
parameter of prox-regularity being the same for all points, or simply uniformly prox-regular.

As already commented, the class of weakly convex functions is quite broad and includes many
settings of interest, whose nonconvexity is benign, in the parlance of [49]. One example is the class
of decomposable functions in [45], that contains max-functions, maximal eigenvalue functions, and
norm-1 regularized functions; see also [30] and [44].

4



Definition 2.3 (h ◦ c decomposable functions). Given a continuously differentiable mapping c :
Rn → Rm such that c(x̄) = 0, and a finite-valued positively homogeneous convex function h :
Rm → R, the real-valued function f is h ◦ c decomposable at x̄ ∈ Rn, if there exists a neighborhood
U of x̄ such that for all x ∈ U ,

f(x) = f(x̄) + h(c(x)) .

If c is a C1 function with Lipschitz-continuous Jacobian, then such f is weakly convex. To
see this, apply [15, Lemma 4.2]. Since h is finite-valued and sublinear, it is then convex and
Lipschitz-continuous (see [23, V(1.2.6)]), while c is C1 with Lipschitz-continuous Jacobian from
the assumptions. Therefore the composition h ◦ c and, hence, the function f(·) = f(x̄) + h ◦ c(·),
are weakly convex.

In association with other notions related to weak convexity, we further remark that all real-
valued prox-regular functions (or, in our terminology, real-valued locally weakly convex functions)
can also be locally decomposed as a sum of a convex continuous function and a concave quadratic
function (in line with Definition 2.1), and can also be expressed as a composition of a convex con-
tinuous function with a differentiable function with locally Lipschitz gradient, see [8, Proposition
3.5, Remark 3.6].

We next give an example of weak convexity for extended real-valued functions, that will play
a role in § 6 to include the class of feasible descent methods of [32] (for constrained optimization)
into our framework.

Proposition 2.4. Let f : Rn → R be a continuously differentiable function with L−Lipschitz
continuous gradient on the nonempty closed convex set X ⊆ Rn. Then, f + iX is a L−weakly
convex function.

Proof. Since f has Lipschitz-continuous gradient with constant L on X, then (e.g., from [25,
Lemma A.11]), for all x, y ∈ X it holds that

f(y) + 〈∇f(y), x− y〉 − L

2
‖x− y‖2 ≤ f(x) .

Furthermore, for x ∈ X, and y ∈ Rn such that ∂(f + iX)(y) 6= ∅, that is, for y ∈ X, and for all
w ∈ NX(y), we have that ∇f(y) + w ∈ ∂(f + iX)(y), and

(f + iX)(y) + 〈∇f(y) + w, x− y〉 − L

2
‖x− y‖2 ≤ (f + iX)(x) .

If x /∈ X, the above inequality holds trivially, because y needs to be an element of X to ensure
that the subdifferential ∂(f + iX)(y) is nonempty (see Proposition 2.2(ii)). Therefore, f + iX is
L−weakly convex.

3 Error bounds

Error bounds are (upper) estimates of the distance to solutions (or critical points) of a given
problem. Their role is paramount for various reasons, among which is convergence rate analyses;
see, e.g., [41, 17, 25, 51].

In this work, we shall mostly employ the following subdifferential-based error bound. See,
however, the end of this section for the so-called natural residual error bound [17] for constrained
problems, and its relation with the subdifferential-based bound.

Definition 3.1 (Subdifferential error bound). We say that the subdifferential error bound holds
for problem (1) where f : Rn → R ∪ {+∞} is bounded below, if for every v ≥ infx∈Rn f(x), there
exist ε, ` > 0 such that whenever x ∈ Rn, f(x) ≤ v, and w ∈ ∂f(x)∩B(0, ε), the following is true:

d(x, S) ≤ `‖w‖ , where S = (∂f)−1(0) is the set of critical points of f .
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The error bound above is related to various other notions that appear in the literature, such as
the Kurdyka- Lojasiewicz inequality [29, 5], and quadratic growth of f around the set of its critical
points [11, 12], or the set of minimizers when the function is convex [1, 50]. These conditions
assure some regularity of the function near a critical point. Furthermore, the subdifferential error
bound is related to metric subregularity of ∂f (see [24, Definition 3.17]).

Note that the error bound in Definition 3.1 uses the Clarke subdifferential, while in [2] the lim-
iting subdifferential appears. As mentioned, for weakly convex functions these two subdifferentials
coincide.

Another comment is that weak convexity, combined with the subdifferential error bound, entails
the  Lojasiewicz inequality with exponent θ = 1

2 [11, Proposition 3.8], and quadratic growth around
the set of critical points [12, Theorem 3.1]. Furthermore, [11, Theorem 3.7] states that a variant
of the  Lojasiewicz inequality implies the error bound. In the convex setting, the quadratic growth
condition is actually equivalent to the subdifferential error bound [1, Theorem 3.3].

We next turn our attention to constrained smooth optimization problems, the framework of
[32], dealt with in § 6. Consider the problem

min
x∈X

f(x) , (4)

where X is a closed convex set, and f : Rn → R is finite-valued and smooth. An equivalent
problem is to handle constraints by adding to f the indicator function of the feasible set. It turns
out that these two equivalent formulations are in fact different when it comes to error bounds,
and some subtle issues arise.

Specifically, as is well known, criticality of a point x in the sense of

0 ∈ ∂(f + iX)(x) = ∇f(x) +NX(x)

is equivalent to the condition
x− PX(x−∇f(x)) = 0 .

Hence, one can attempt to measure the distance to the set of critical points S by the violation
of the projection equality above, or by the violation of the subdifferential inclusion above. It so
happens that, at least in general, these are not the same. We next review the relations between
the corresponding error bounds.

The subdifferential error bound would just read exactly the same as in Definition 3.1, re-
defining therein f := f + iX (then w ∈ ∇f(x) +NX(x)). The projection-based error bound states
the following.

Definition 3.2 (Projection error bound). We say that the projection error bound holds for problem
(4) where f : Rn → R is differentiable and bounded below, if for every v ≥ infx∈X f(x), there exist
ε, ` > 0 such that whenever x ∈ X, f(x) ≤ v, and ‖x−PX(x−∇f(x))‖ ≤ ε, the following is true:

d(x, S) ≤ `‖x− PX(x−∇f(x))‖ .

The projection error bound is a natural way to measure violation of stationarity in convexly-
constrained problems, used in many developments; see, e.g., [32, 48, 47].

Clearly, for problem (4) with smooth f , Definitions 3.1 and 3.2 amount to the same if X = Rn
(or if S is in the interior of X). For constrained problems, there are two cases when these error
bounds are equivalent. The first case is when the critical point is isolated, see [17, Proposi-
tion 6.2.4], [25, Proposition 1.31]. In that case, the projection error bound means the semistability
property [25, Definition 1.29]. The second case when the two bounds are equivalent is when X
is a generalized box in Rn, i.e., X is defined by bound constraints on the variables (some bounds
can be infinite), see [18, Theorem 2]. To the best of our knowledge, in other cases the relations
between the subdifferential and projection error bounds are not known. However, the following
simple argument shows that when the gradient of f is Lipschitz-continuous, the projection residual
is bounded above by a multiple of d(x, S), always. Then, if the subdifferential error bound holds,
the right-hand side therein is of order no less than the projection residual. Hence, in principle,
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the subdifferential error bound can hold when the projection one does not. Indeed, for each x let
p(x) ∈ PS(x). Then,

‖x− PX(x−∇f(x))‖ = ‖x− PX(x−∇f(x))− (p(x)− PX(p(x)−∇f(p(x)))‖
≤ ‖x− p(x)‖+ ‖PX(x−∇f(x))− PX(p(x)−∇f(p(x)))‖
≤ d(x, S) + ‖x−∇f(x)− (p(x)−∇f(p(x)))‖
≤ (2 + L)d(x, S) ,

where L is the Lipschitz constant of the gradient of f .

4 General asymptotic relations in the algorithmic pattern

In the sequel, we shall need the following technical result.

Lemma 4.1. Let {ak} ⊆ Rn and {bk} ⊆ [0,+∞) be two sequences such that for all k it holds:

‖ak − ak−1‖ ≤ α1bk−1

and
bk ≤ α2bk−1 ,

where α1 > 0 and α2 ∈ (0, 1).
Then, there exists a∗ ∈ Rn such that, for any k̄, there exist r ∈ (0, 1) and c > 0, such that for

all k ≥ k̄,
‖ak − a∗‖ ≤ cαk2

with c =
α1b0

1− α2
. In particular, {ak} converges to a∗ R-linearly.

Proof. First, by direct induction, for all k it holds that bk ≤ b0(α2)k. By making a telescopic sum,
for all j ≥ 1,

‖ak+j − ak‖ ≤
k+j∑

n=k+1

‖an − an−1‖ ≤
α1b0
α2

k+j∑
n=k+1

(α2)n ≤
(
α1b0

1− α2

)
(α2)k , (5)

where to obtain the last inequality we use that

k+j∑
n=k+1

(α2)n = (α2)k
j∑

n=1

(α2)n ≤ (α2)
k α2

1− α2
,

since α2 ∈ (0, 1). Therefore, {ak} ⊆ Rn is a Cauchy sequence, and thus {ak} converges to some
a∗. By taking the limit in (5) when j →∞, we obtain that ‖ak − a∗‖ ≤ cαk2 , as claimed.

Regarding our problem of interest, if f in (1) is bounded below, the monotonically non-
increasing sequence {f(xk)} from (2) converges, without any further assumptions (to some value,
not necessarily a critical one). We next show that, for weakly convex functions satisfying the sub-
differential error bound of Definition 3.1 and the isocost surfaces condition of Definition 1.1, the
sequence of functional values of the projections of the theoretical sequence {zk} onto S stabilizes
at a critical value (value of f at a critical point).

In the statements (iv) and (v) below, the index i ∈ {0, 1} is used to unify the analysis for
explicit and implicit options in (2). Specifically, i = 1 refers to explicit methods (zk−i = zk−1, so
that gk ∈ ∂f(zk−1)), while i = 0 refers to implicit methods (zk−i = zk, so that gk ∈ ∂f(zk)).

Lemma 4.2 (Convergence to critical points and technical relations). Let f : Rn → R ∪ {+∞} be
a ρ−weakly convex function, such that inf f > −∞. Then for any algorithmic scheme satisfying
(2), the following holds:
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(i) {f(xk)} monotonically converges to some value f̃ ∈ R.

(ii) xk − xk−1 → 0, zk − zk−1 → 0 and gk → 0, as k → +∞.

Suppose, in addition, that f satisfies the proper separation of isocost surfaces condition (Defini-
tion 1.1) and the subdifferential error bound (Definition 3.1). Then,

(iii) {f(zk)} converges to f∗, where f∗ ∈ R is a critical value (i.e., f∗ = f(x) for some x ∈ S).

(iv) For i ∈ {0, 1}, defining p̃k−i ∈ PS(zk−i), for all k sufficiently large the distance from zk−i
to S can be estimated as

‖zk−i − p̃k−i‖2 ≤
2`2b2

a
(f(xk−1)− f(xk)) + 2`2b2‖xk − zk‖2 .

(v) For the functional value errors vk := f(xk)− f∗, it holds that

vk ≤
2`b2

a
(vk−1 − vk) + 2`b2‖xk − zk‖2 + Θk−i ,

where
Θk−i := f(xk−i)− f(zk−i) +

ρ

2
‖p̃k−i − zk−i‖2 .

Proof. In view of (2a) and εk ≥ 0, {f(xk)} is non-increasing. Since f is bounded below, item (i)
follows immediately. Then also f(xk−1)− f(xk)→ 0.

As, by (2a),

‖xk − xk−1‖2 ≤
1

a
(f(xk−1)− f(xk))− εk−1 , (6)

it follows that xk − xk−1 → 0 in item (ii). Then (2b) and (2c) yield that gk → 0 and, zk − zk−1 =
(zk − xk) + (xk − xk−1) + (xk−1 − zk−1)→ 0. Item (ii) is proven.

For the remaining items, we apply the subdifferential error bound at the tail of the auxiliary
sequence {zk}. The starting point is (2b), for which we use that f is a ρ−weakly convex function,
considering the two possibilities i = 0 and i = 1 at the same time.

Since gk ∈ ∂f(zk) ∪ ∂f(zk−1), for i ∈ {0, 1} it holds that

f(zk−i) + 〈gk, xk − zk−i〉 ≤ f(xk) +
ρ

2
‖zk−i − xk‖2 .

In view of the fact that f(xk) decreases to f̃ , gk → 0, zk−i − xk → 0, we have that for all ε > 0,
and all sufficiently large k, f(zk−i) ≤ f̃+ ε and gk ∈ ∂f(zk−i)∩B(0, ε). Thus, by the error bound,

‖zk−i − p̃k−i‖ = d(zk−i, S) ≤ `‖gk‖ , (7)

for i ∈ {0, 1}.
Since gk → 0, it follows from (7) that zk−i − p̃k−i → 0, and then zk − p̃k → 0 as k → +∞.

Combining this with the fact that zk − zk−1 → 0, yields that p̃k − p̃k−1 → 0. Moreover, the
property of separation of the isocost surfaces implies that f(p̃k) = f∗ eventually, for a critical
value f∗ of f . To complete the proof of item (iii), we apply weak convexity of f for 0 ∈ ∂f(p̃k),
obtaining that for all sufficiently large k it holds that

f∗ = f(p̃k) + 〈0, zk − p̃k〉 ≤ f(zk) +
ρ

2
‖zk − p̃k‖2 .

Hence,

−ρ
2
‖zk − p̃k‖2 ≤ f(zk)− f∗ . (8)

Notice that, in addition, gk ∈ ∂f(zk−i) implies, for i ∈ {0, 1}, that

f(zk−i) + 〈gk, p̃k−i − zk−i〉 ≤ f(p̃k−i) +
ρ

2
‖p̃k−i − zk−i‖2 = f∗ +

ρ

2
‖p̃k−i − zk−i‖2 , (9)
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where the last equality holds for all k sufficiently large.
Next, combining (8) and (9), we obtain that

−ρ
2
‖zk − p̃k‖2 ≤ f(zk)− f∗ ≤ 〈gk+i, zk − p̃k〉+

ρ

2
‖p̃k − zk‖2 .

Then, taking the limit as k →∞ yields that f(zk)→ f∗.
Next, weak convexity implies that for i ∈ {0, 1} and any d ∈ ∂f(xk−i),

f(xk−i) + 〈d, zk−i − xk−i〉 ≤ f(zk−i) +
ρ

2
‖zk−i − xk−i‖2 .

Also, as gk ∈ ∂f(zk−i),

f(zk−i) + 〈gk, xk−i − zk−i〉 ≤ f(xk−i) +
ρ

2
‖xk−i − zk−i‖2 .

Combining the two relations above, we obtain that

〈gk, xk−i − zk−i〉 −
ρ

2
‖xk−i − zk−i‖2 ≤ f(xk−i)− f(zk−i) ≤ 〈d, xk−i − zk−i〉+

ρ

2
‖zk−i − xk−i‖2 .

Taking the limit in the last relation as k → +∞, Lemma 4.2(ii) and (2c) imply that f(xk−i) −
f(zk−i)→ 0. Since {f(xk)} is a convergent sequence, and f(zk)→ f∗, the sequences {f(xk)} and
{f(zk)} both have the same limit. Thus, {f(xk)} is a non-increasing sequence converging to the
critical value f∗, and {vk} is a nonnegative sequence.

To show statements (iv) and (v), recall that (a + b)2 ≤ 2a2 + 2b2, for all real numbers a, b.
Then from (2b) we obtain that

‖gk‖2 ≤ b2(‖xk − xk−1‖+ ‖xk − zk‖)2
≤ 2b2‖xk − xk−1‖2 + 2b2‖xk − zk‖2

≤ 2b2

a
(f(xk−1)− f(xk)) + 2b2‖xk − zk‖2 ,

(10)

where the last inequality follows from (6). In this manner, since gk ∈ ∂f(zk−i) for i ∈ {0, 1}, from
(7) and (10) it follows that

‖zk−i − p̃k−i‖2 ≤
2`2b2

a
(f(xk−1)− f(xk)) + 2`2b2‖xk − zk‖2 ,

which is statement (iv).
On the other hand, from (9), (7), and the fact that for all sufficiently large k it holds that

f(p̃k−i) = f∗, we obtain that

f(zk−i)− f∗ ≤ ‖gk‖‖zk−i − p̃k−i‖+
ρ

2
‖p̃k−i − zk−i‖2

≤ `‖gk‖2 +
ρ

2
‖p̃k−i − zk−i‖2 ,

for i ∈ {0, 1}. Therefore, combining this inequality with (10), yields

f(zk−i)− f∗ ≤
2`b2

a
(f(xk−1)− f(xk)) + 2`b2‖xk − zk‖2 +

ρ

2
‖p̃k−i − zk−i‖2 .

Hence, as {vk} is non-increasing,

vk ≤
2`b2

a
(vk−1 − vk) + f(xk−i)− f(zk−i) + 2`b2‖xk − zk‖2 +

ρ

2
‖p̃k−i − zk−i‖2 .

This concludes the proof.
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The relations in Lemma 4.2 lead to the following result, on the convergence speed of both the
sequence of functional values and of iterates. The respective rates are linear in the quotient (Q)
and root (R) senses, as defined in [40].

Recall that the index i ∈ {0, 1} unifies the explicit and implicit options in (2).

Theorem 4.3 (Asymptotic results for weakly convex functions). Let f : Rn → R ∪ {+∞} be
a ρ−weakly convex function such that inf f > −∞. Suppose, in addition, that f satisfies the
proper separation of isocost surfaces condition (Definition 1.1) and the subdifferential error bound
(Definition 3.1).

Let {xk} and {zk} satisfy (2), and consider the sequence of functional errors {vk}, defined in
Lemma 4.2(v). If there exist C1 , C2 > 0, such that, for all sufficiently large k it holds that

f(xk−i)− f(zk−i) ≤ C1(vk−1 − vk) (11)

and
‖xk − zk‖2 ≤ C2(vk−1 − vk) , (12)

then there exist q ∈ (0, 1) and c > 0 such that

(i) For all k sufficiently large,
vk ≤ qvk−1 ,

where q = M/(1 +M) ∈ (0, 1), and M = C1 + `b2(2 + ρ`)(1/a+ C2).

(ii) The sequence of functional errors {vk} monotonically converges to 0 with Q−linear rate.

(iii) The sequence {xk} converges R−linearly to a critical point x∗ of f , such that f(x∗) = f∗ =
limk→∞ f(xk). More specifically, for all sufficiently large k,

‖xk − x∗‖ ≤ c
√
q
k
,

where c =

√
v0√

a
(
1−√q

) .

Proof. First, convergence of {f(xk)} follows from Lemma 4.2(iii). The rate of convergence of
{f(xk)} is derived from the technical estimates of Lemma 4.2. Indeed, combining the definition
of Θk−i with Lemma 4.2(iv) and (11), for all sufficiently large k it holds that

Θk−i ≤ C1(vk−1 − vk) +
ρ

2

(
2`2b2

a
(vk−1 − vk) + 2`2b2‖xk − zk‖2

)
=

(
C1 +

ρ`2b2

a

)
(vk−1 − vk) + ρ`2b2‖xk − zk‖2 .

Therefore, from Lemma 4.2(v), it further follows that

vk ≤
(
C1 +

`b2

a
(2 + ρ`)

)
(vk−1 − vk) + `b2(2 + ρ`)‖xk − zk‖2

≤
(
C1 +

`b2

a
(2 + ρ`)

)
(vk−1 − vk) + `b2(2 + ρ`)C2(vk−1 − vk) ,

where (12) is used to obtain the last inequality. Hence, vk ≤ M(vk−1 − vk) , which gives item (i)
with M specified therein.

Using inductively the inequality of item (i), we conclude that there exists c > 0 such that for
q = M/(1 +M) and all sufficiently large k,

vk ≤ cqk.

To see item (iii), the estimate therein follows from Lemma 4.1. More specifically, there exists a
point x∗ such that {xk} converges to x∗ R-linearly. In particular, from (2c), {zk−i} also converges
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to x∗, for i ∈ {0, 1}. Note that, since ∂f is an upper semicontinuous multifunction, Lemma 4.2(ii)
and (2b) imply that ∂f(zk−i) 3 gk → 0, therefore 0 ∈ ∂f(x∗), that is, x∗ is a critical point.

Finally, zk−p̃k → 0 implies that p̃k → x∗, that is, x∗ and p̃k are sufficiently close critical points.
Therefore, in view of the proper separation of isocost surfaces property, f(x∗) = f∗. Hence, the
limit of {xk} is a critical point x∗ ∈ f−1(f∗).

In the final two sections, Theorem 4.3 is applied to show the linear convergence rate of two
different families of algorithms, proximal model-based ones akin to bundle methods, and the
feasible descent framework of [32].

5 Bundle and proximal model-based methods

In nonsmooth optimization, satisfaction of (2a) is not straightforward. In addition to its role in
Theorem 4.3, in this section weak convexity is an important ingredient in showing that iteratively
minimizing appropriate approximating models of f indeed generates sequences that are of descent.

Suppose, for the moment, that f is a convex nonsmooth function. In this case, neither subgra-
dient nor cutting-plane methods [6, Part II] fit the algorithmic pattern (2), because they do not
guarantee the descent condition (2a). By contrast, as we shall show, serious steps within a bundle
method do satisfy all the requirements. Bundle methods provide an implementable alternative
for functions whose proximal point computation in (3) is difficult (or impossible). Before briefly
reviewing the basic bundling mechanism, we mention that even for smooth functions, computing
proximal points of some approximations of f has proven to be a useful technique to exploit de-
composable structures. This is the basis of a plethora of approaches, including ADMM, as well as
the prox-linear and prox-gradient methods considered below.

Having at hand a family of convex model functions for which computing proximal points is
computationally implementable, in a bundle method [6, Part II] a candidate iterate is defined as
the proximal point of the model function at xk−1. If the candidate satisfies a condition of sufficient
descent for f , it is labeled a serious step xk, and (2a) holds; otherwise the candidate is declared
a null step. At a new iteration, the bundling process improves the model function and/or adjusts
the proximal parameter. By this token, at serious steps the approximation of the proximal point
is sufficiently good to ensure that errors incurred when replacing f by its model satisfy (2c).

For a convex f , a key ingredient in the convergence analysis of bundle methods is to relate
the model subgradient associated with the prox-computation to certain ε-subgradient of f . The
nonconvex setting precludes the use of approximate subdifferentials in this part of the analysis. For
this reason, different ad-hoc approaches have been proposed in the literature. Rather than singling
out some specific approach, below we develop a general convergence theory that is applicable to
weakly convex functions. The key is to complement the algorithmic pattern of (2) with a suitable
condition on the model functions used to approximate the proximal point of f . Our proposal
unifies the global convergence analysis of a wide variety of methods in the literature, and also
provides their linear rate of convergence.

5.1 Model function assumptions

Approximating the proximal point scheme (3) involves defining a family of simpler (than f) model
functions whose proximal point is computed at each iteration. Often, a trade-off must be found
between simplicity (fast prox-computation) and accuracy (increased chances of accepting the can-
didate as a serious step, i.e., satisfying (2a)).

Given x ∈ Rn, consider modelling the function f − f(x) by a convex function ϕx : Rn → R.
Note that f might be extended real-valued, while its model is finite everywhere. The most synthetic
model uses the linearization introduced in Proposition 2.2,

ϕsg
x (·) = `x,g(x)(·)− f(x) .

Incidentally, computing the proximal point of this model amounts to one subgradient iteration,
with stepsize given by the inverse of the prox-parameter.
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A cutting-plane model is richer, as it takes the maximum over several linearizations, generated
with past iterates xi for i ∈ B, the bundle:

ϕ
cp
x (·) := max

i∈B

{
`xi,g(xi)(·)− f(x)

}
= max

i∈B
{−ei(x) + 〈g(xi), · − x〉} ,

where we define ei(x) := f(x)− `xi,g(xi)(x) .

The term ei(x), called linearization error in the bundle terminology, measures the quality of the
linearization with respect to the reference point x. For convex f , the error is nonnegative and
the cutting-plane model satisfies ϕ

cp
x ≤ f − f(x). But for nonconvex f this inequality cannot be

ensured. To address this drawback, a common approach is to downshift negative linearization
errors, making them nonnegative. This can be done in different ways; typically,

the term ei(x) is replaced by eqi (x) := max{ei(x),
q

2
‖xi − x‖2} for q > 0 sufficiently large;

see [34, 28] and, more recently, [33, 31, 19, 37]. The approach in [21, 20, 22] differs from those
works, as it handles nonconvexity using redistributed models that, in addition to downshifting, tilt
the slopes, as in Proposition 5.2 below.

In order to account for many alternative models in the literature, we shall assume that the
family of model functions satisfies the following property. In the sequel, we shall show that it
holds for many methods of interest.

Definition 5.1 (Models 1QA ). A convex proper function ϕx : Rn → R is said to model f at x
with one-sided quadratical accuracy, if

∃q > 0 : ∀y ∈ Rn ϕx(y) ≤ f(y)− f(x) +
q

2
‖y − x‖2 . (13)

The property 1QA is a weakened form of the two-sided models considered in [14] and [11].
Making the condition unilateral is crucial for including bundle methods in the analysis (even when
f is convex; see Figure 1 for an illustration).

The key role of convex 1QA models ϕx in convergence analyses is that they allow to transport
subgradients, a mechanism that is not available for the nonconvex function f directly. Also, 1QA
models are quite general, as the condition (13) can be satisfied both by cutting-plane-like models,
where linearizations are oblivious to possible further information about f , and also by models that
use structure. When a function has known structure, it is appealing to make the model inherit
some of this feature. We next provide some examples.

5.1.1 Models defined using linearizations

For weakly convex functions, the simplest model ϕ
sg
x is clearly 1QA , taking q = ρ, the weak

convexity parameter, but as already commented, the descent condition (2a) is not guaranteed for
such a model, as it gives just a subgradient iteration. By contrast, the cutting-plane model with
downshifted errors satisfies (13), as long as the iterates remain in a bounded set. The case of the
more sophisticated model from [21, 20, 22] is analyzed below.

Proposition 5.2 (Redistributed models are 1QA ). Let f : Rn → R ∪ {+∞} be a weakly convex
function with parameter ρ and let x ∈ Rn. Given bundle elements xi, f(xi), g(xi) ∈ ∂f(xi) for
i ∈ B, consider the downshifted linearization errors and tilted subgradients, respectively defined by

eρi (x) := f(x)− `xi,g(xi)(x) +
ρ

2
‖x− xi‖2 and gρi (x) := g(xi)− ρ(x− xi) .

Then the associated model ϕρx(·) := maxi∈B {−eρi (x) + 〈gρi (x), · − x〉} is 1QA .

Proof. The model is convex, as the maximum of affine functions.
For any bundle element, weak convexity implies that, for all y,

f(y) +
ρ

2
‖y − xi‖2 ≥ `xi,g(xi)(y) = f(xi) + 〈g(xi), y − xi〉 .
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Since ei(x) = f(x)− `xi,g(xi)(x), rearranging terms, we obtain that

f(y)− f(x) ≥ −ei(x) + 〈g(xi), y − x〉 −
ρ

2
‖y − xi‖2 .

Adding ρ
2‖y − x‖

2 to both sides yields

f(y)− f(x) +
ρ

2
‖y − x‖2 ≥ −ei(x) + 〈g(xi), y − x〉+

ρ

2

(
‖y − x‖2 − ‖y − xi‖2

)
.

As ρ
2

(
‖y − x‖2 − ‖y − xi‖2

)
= −ρ2‖x− xi‖

2 − 〈ρ(x− xi), y − x〉 , it follows that

f(y)− f(x) + ρ
2‖y − x‖

2 ≥ −
(
ei(x) + ρ

2‖x− xi‖
2
)

+
〈(
g(xi)− ρ(x− xi)

)
, y − x

〉
= −eρi (x) + 〈gρi (x), y − x〉 .

Since each of the terms defining the model ϕρx satisfies (13), so does the model.

In the redistributed proximal bundle method [20] iterates are generated with a model ϕρkx
whose augmentation parameter ρk is updated along the process, without knowing ρ beforehand.
It is shown in [21] that unless xk−1 is critical, the procedure generates a serious step after a finite
number of null iterations for weakly convex functions (f is uniformly prox-bounded in the language
of that work). In [20] the serious step sequence is shown to be globally convergent under the same
assumptions. Thanks to the theory developed in § 5.2, based in Theorem 4.3, in addition to global
convergence, we can now prove that serious steps converge at the linear rate. To the best of our
knowledge, this is the first result on linear convergence rates for nonconvex bundle methods.

5.1.2 Decomposable functions, prox-descent and composite bundle methods

Recalling Definition 2.3, for decomposable functions f = h ◦ c the ProxDescent iterates [30,
Algorithm 1] are defined by computing the proximal point of the model that is created by replacing
the smooth mapping c with its Taylor expansion:

ϕLW
x (·) := h(c(x) +∇c(x)>(· − x))− f(x) .

In [11], the associated method is called prox-linear. We next show that the model ϕLW
x is 1QA

under our assumptions (it should be noted that in [30] the outer function h can be more general,
specifically extended-valued prox-regular).

Proposition 5.3 (Models for decomposable functions are 1QA ). Let h : Rm → R be convex,
finite-valued and positively homogeneous, and let c : Rn → Rm be continuously differentiable with
its Jacobian being Lipschitz-continuous.

Then the model ϕLW
x is 1QA.

Proof. Under the stated assumptions, ϕLW
x is convex.

As h is convex positive homogeneous and finite, it is the support function of a compact convex
set D (that coincides with its subdifferential at 0), see [23, Chapter V] or [43, Theorem 8.24].
That is

h(d) = max
s∈D
〈s, d〉.

Moreover, let L be the Lipschitz constant of the Jacobian of c. It follows that, for all y, x ∈ Rn,

‖c(y)− c(x)−∇c(x)>(y − x)‖ ≤ L

2
‖y − x‖2.
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Hence,

h(c(x) +∇c(x)>(y − x)) = h(c(x) +∇c(x)>(y − x)− c(y) + c(y))

= max
s∈D
〈s, c(x) +∇c(x)>(y − x)− c(y) + c(y)〉

≤ max
s∈D
〈s, c(y)〉+ max

s∈D
〈s, c(x) +∇c(x)>(y − x)− c(y)〉

≤ max
s∈D
〈s, c(y)〉+ max

s∈D
‖s‖‖c(x) +∇c(x)>(y − x)− c(y)‖

≤ h(c(y)) +
maxs∈D ‖s‖L

2
‖y − x‖2.

After adding −f(x) on both sides, this is (13) with q = maxs∈D ‖s‖L.

When computing the proximal point of ϕLW
x is computationally expensive, an alternative is to

employ the composite proximal bundle method of [44]. The proposal therein is to replace the
outer function by its cutting-plane model, thereby computing the proximal point of the model

ϕCS
x (·) := hCP(c(x) +∇c(x)>(· − x))− f(x) .

By convexity of h, ϕCS
x ≤ ϕLW

x . This model is also 1QA , by Proposition 5.3.

5.1.3 Sum of functions and prox-gradient method

Given a C2-function f1 with Lipschitz-continuous gradient and a convex function f2, the proximal
gradient method [3] minimizes f := f1 +f2 computing the proximal point of f2 at xk− tk∇f1(xk),
tk > 0. This is equivalent to computing the proximal point of the model that makes a Taylor
linearization of f1 and keeps f2:

ϕpg
x (·) := f1(x) + 〈∇f1(x), · − x〉+ f2(·)− f(x) .

If f2 is convex, then so is ϕpg
x . Also, the 1QA property for the model follows directly from the

Lipschitz-continuity of the gradient of f1.

5.1.4 Taylor-like models

The theory in [11] uses powerful tools in Variational Analysis, including Ekeland’s variational
principle, to prove convergence of a variety of algorithmic schemes. Like in this work, the iterates
are generated by computing a proximal point of some model. An important difference, however,
is [11, relation (1.4)], which requires the model to approximate f not only uniformly but also
bilaterally (from above and from below). Specifically, with our notation, the theory presented in
[11] requires that

∃q > 0 : ∀y ∈ Rn f(y)− f(x)− q

2
‖y − x‖2 ≤ ϕx(y) ≤ f(y)− f(x) +

q

2
‖y − x‖2 .

While this condition holds in several situations described in [11] (related to Taylor-like models),
the two-sided requirement excludes cutting-plane models from the analysis. The reason is that,
even for a convex f , linearizations in the cutting-plane model ϕ

cp
x , the key ingredient in a bundle

algorithm, may deviate from below from f in a non-polynomial manner. Figure 1 illustrates this
phenomenon.

5.2 Convergence theory for model-based methods

Using 1QA models ϕxk
approximating f , we shall consider the following algorithmic scheme, that

will be shown to fit the framework of (2).
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Figure 1: For the function f(x) =

{
1− x x ≤ 0
ex x > 0

plotted with a continuous dark line, three

cutting-plane models are shown in dashed lines. These are all 1QA models, because they remain
under the thick curved line in the top. By contrast, bilateral models considered in [11] must lie in
the shaded region. Even for this simple convex function, none of the cutting-plane models satisfies
the two-sided condition in [11].

Starting from some x0 ∈ Rn, for all k ≥ 1,

xk = xk−1 − tk−1Gk−1, for Gk−1 ∈ ∂ϕxk−1
(xk) , (14a)

f(xk)− f(xk−1) ≤ mϕxk−1
(xk), for m ∈ (0, 1) . (14b)

In particular, the new iterate is obtained computing the proximal point of the model, and the
descent is measured using the value of the model at the new point. This is one of the characteristics
of bundle methods. Other methods can also be recast in this manner. Below, we show that the
sequences associated to the models described in § 5.1.2 and § 5.1.3 are of descent, both in the
original sense of (2) and in the model-based sense of (14). Regarding the Taylor-like models
in § 5.1.4, the proposal in [11] does not consider a specific type of problem to be tackled by a
particular method. So, as long as we are able to generate a descent sequence in the sense of
(14), the results in Proposition 5.4 below would hold, since Taylor-like models are bilateral, while
1QA models are one-sided (in this sense, more general).

5.2.1 Decomposable functions and prox-descent method

Let f be a decomposable function as in § 5.1.2, and consider the model ϕLW
x defined therein. Let

{xk} be a prox-descent sequence as in [30, Algorithm 1].
First, (14a) is a direct consequence of the definition of the next iterate in [30, Algorithm 1]

with stepsize tk := 1/µ. In order to see this, it suffices to recall that the step d := xk − xk−1 is
characterized by the relations

∇c(xk−1)>v +
1

tk−1
d = 0, v ∈ ∂h(c(xk−1) +∇c(xk−1)>d).

Setting Gk−1 := ∇c(xk−1)>v, it holds that

xk − xk−1 = d = −tk−1Gk−1, Gk−1 ∈ ∂ϕxk−1
(xk),

which is (14a). As for (14b), it is the same as the acceptance criterion for the step in [30, Algorithm
1] with m = σ.

Note also that it is proven in [30, Theorem 5.4] that [30, Algorithm 1] generates stepsizes tk
that are bounded away from zero. Thus, the algorithm satisfies the assumptions in Proposition 5.4
below.
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5.2.2 Sum of functions and prox-gradient method

Let f = f1 + f2 be as in § 5.1.3. The proximal gradient method conforms to the algorithmic
pattern of (2) if tmin ≤ tk ≤ 1/Lf1 , where Lf1 is the Lipschitz constant of ∇f1. Indeed, (2a) with
εk−1 = 0 and a = Lf1/2 is a direct consequence of the decent properties of this algorithm; see,
e.g., [4, Proposition 6.3.2]. As for (2b), we know that xk minimizes

ϕpg
x (·) +

1

2tk
‖ · −xk−1‖2.

Hence, there is g2,k ∈ ∂f2(xk) such that

0 = ∇f1(xk−1) + g2,k +
1

tk
(xk − xk−1) = ∇f1(xk) + g2,k +∇f1(xk−1)−∇f1(xk) +

1

tk
(xk − xk−1).

Defining zk := xk, we have gk := ∇f1(xk) + g2,k ∈ ∂f(xk) and

‖gk‖ =

∥∥∥∥∇f1(xk−1)−∇f1(xk) +
1

tk
(xk − xk−1)

∥∥∥∥ ≤ (Lf1 + 1/tmin)‖xk − xk−1‖.

This is (2b) with b = Lf1 + 1/tmin. Finally, (2c) holds trivially.

5.2.3 Convergence of sequences generated by model-based methods

To continue with our analysis, we need to exhibit the errors εk and the theoretical sequence
{zk} from (2) that are associated with the bundle-like scheme (14). We start by transporting
subgradients of convex models of nonconvex functions to the convex function obtained from f , by
weak convexity. This relation and Theorem 5.5 below yield zk as a perturbation of the iterate xk,
as desired.

Proposition 5.4 (Transportation of subgradients and the validity of (2a)). Consider the min-
imization of a proper ρ−weakly convex function f : Rn → R ∪ {+∞} applying the model-based
proximal scheme in (14) with models ϕx that are 1QA with parameter q ≤ ρ in Definition 5.1, and
let Gk ∈ ∂ϕxk

(xk+1) as in (14a). The following holds for all k.

(i) The model aggregate error at xk,

Ek := −tk‖Gk‖2 − ϕxk
(xk+1) ,

satisfies Ek ≥ 0.

(ii) If for all x ∈ Rn, Fx(·) denotes the (convex) function f(·) + ρ
2‖ · −x‖

2, then a subgradient
Gk in (14a) can be transported to be the convex Ek−subgradient of Fxk

at xk:

Gk ∈ ∂Ek
Fxk

(xk).

Suppose, in addition, that inf f > −∞, and the proximal stepsizes are bounded away from zero:
tk ≥ tmin > 0. Then,

(iii) both {Gk} , {Ek} converge to 0 as k →∞ , and

(iv) condition (14b) is equivalent to (2a) written with a = m/tmin and εk = tk−1Ek−1.

Proof. Since the models are 1QA , taking x = y = xk in (13) gives that ϕxk
(xk) ≤ 0. By the

convexity of the model and the iterate definition in (14a), it holds that

0 ≥ ϕxk−1
(xk−1) ≥ ϕxk−1

(xk) + 〈Gk−1, xk−1 − xk〉 = ϕxk−1
(xk) + tk−1‖Gk−1‖2 = −Ek−1 ,

and Ek ≥ 0 for all k, as stated in item (i).
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To show item (ii), because the model is 1QA , we have that

ϕxk−1
(x) ≤ f(x)− f(xk−1) +

ρ

2
‖x− xk−1‖2 = Fxk−1

(x)− f(xk−1) .

Combining now the model convexity with (i) yields

Fxk−1
(x) ≥ f(xk−1) + ϕxk−1

(x) ≥ f(xk−1) + ϕxk−1
(xk) + 〈Gk−1, x− xk〉

= f(xk−1) + 〈Gk−1, x− xk−1〉
+ϕxk−1

(xk) + 〈Gk−1, xk−1 − xk〉
= Fxk−1

(xk−1) + 〈Gk−1, x− xk−1〉 − Ek−1 .

As the last relation is (ii) written with k replaced by k − 1, the desired result follows.
To show item (iii), note that the descent condition (14b), written using the aggregate gradient

and error definitions, gives

m(Ek−1 + tk−1‖Gk−1‖2) ≤ f(xk−1)− f(xk) . (15)

As {f(xk)} is non-increasing and f is bounded below, this sequence is convergent. Hence,
f(xk−1) − f(xk) → 0 as k → ∞. Then from (15) and tk ≥ tmin > 0, it follows that Ek → 0
and Gk → 0.

Finally, rewriting the descent condition (14b) using the aggregate gradient and error definitions
yields (iv), as

f(xk) +
m

tk−1
(‖xk − xk−1‖2 + tk−1Ek−1) ≤ f(xk−1) .

To complete formulating (14) in the format of the algorithmic pattern in (2), we show the
validity of (2b) and (2c). This is achieved applying the error bound inequality in Definition 3.1,
noting that it involves the exact (Clarke) subgradients of f . We have just shown that the trans-
ported model subgradient is an Ek−subgradient of the auxiliary convex function Fxk

at xk. The
connection with the original function f is done by means of the following result, reproduced from
[42].

Theorem 5.5 (Brøndsted-Rockafellar’s like relation, Theorem 2 in [42] ). Let F be a proper lower
semicontinuous convex function on Rn. Suppose that E ≥ 0 and that G ∈ ∂EF (x). Then, for each
γ > 0, there is a unique y = y(γ) such that

G− 1

γ
y ∈ ∂F (x+ γy) , ‖y‖ ≤

√
E .

By the above result, any ε−subgradient of a convex function can be perturbed to obtain an
exact subgradient of the same function, at a perturbed point. Since weak convexity gives an
explicit relation between f and the convex function Fx, we shall be able to relate the respective
subgradients, and apply the subdifferential error bound for f using the perturbed points.

Lemma 5.6 (Casting (14) in the format of (2)). Under the assumptions of Proposition 5.4,
suppose f satisfies the subdifferential error bound of Definition 3.1 and the sequence of stepsizes
{tk} in (14a) is bounded below by tmin > 0. Then there exists a theoretical sequence {zk} such that
all conditions in (2) hold, with ‖zk − xk‖ ≤

√
`Ek.

Proof. The validity of (2a) was already shown in Proposition 5.4(iv).
To derive the expression for zk, apply Theorem 5.5 written with G := Gk ∈ ∂Ek

Fxk
(xk) for

the convex function F := Fxk
, E := Ek, taking γ :=

√
` > 0, where ` > 0 is the constant of the

subdifferential error bound in Definition 3.1. It follows that there exists a unique yk such that

‖yk‖ ≤
√
Ek and Gk −

1√
`
yk ∈ ∂Fxk

(
xk +

√
`yk

)
= ∂f

(
xk +

√
`yk

)
+ ρ
√
`yk ,
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by the definition of Fxk
. Therefore,

letting zk−1 := xk−1 +
√
`yk−1 it holds that gk−1 := Gk−1 −

(
1 + ρ`√

`

)
yk−1 ∈ ∂f(zk−1) .

To show that condition (2c) holds, first notice that

1√
`
‖zk−1 − xk−1‖ = ‖yk−1‖ ≤

√
Ek−1 .

Since Ek → 0 by Proposition 5.4(iii), this means that zk−1 − xk−1 → 0. The remaining condition
εk → 0 follows from the expression εk = tk−1Ek−1 in Proposition 5.4(iv), combined with the
boundedness assumption on tk, using once more that Ek → 0.

To show that the sequence {gk ∈ ∂f(zk−1)} satisfies condition (2b), notice that

‖gk−1‖ ≤ ‖Gk−1‖+
(

1+ρ`√
`

)
‖yk−1‖

= 1
tk
‖xk − xk−1‖+

(
1+ρ`√
`

)
1√
`
‖zk−1 − xk−1‖

≤ 1
tmin
‖xk − xk−1‖+

(
1+ρ`
`

)
‖zk−1 − xk−1‖ .

Hence, (2b) holds with b := max{1/tmin, (1 + ρ`)/`} .

Thanks to Lemma 5.6, we are now in position of applying Theorem 4.3 to show that the general
scheme based on models considered in this section converges, with a rate that is R-linear for the
iterates and Q-linear for the functional values.

Theorem 5.7 (Global convergence of (14) and local linear rate). Let f : Rn → R ∪ {+∞}
be a weakly convex function, such that inf f > −∞. Suppose, in addition, that f satisfies the
proper separation of isocost surfaces (Definition 1.1) and the subdifferential error bound (Defini-
tion 3.1), and that the sequence of stepsizes {tk} in (14a) is bounded below by tmin > 0. The
following holds for the model-based proximal scheme in (14), as long as the models ϕx therein are
1QA (Definition 5.1 with parameter q ≤ ρ).

(i) {f(xk)} monotonically converges to some critical value f∗, such that the sequence of func-
tional errors {vk = f(xk)− f∗} converges to 0 with Q-linear rate:

∃q ∈ (0, 1) : vk ≤ qvk−1 for all sufficiently large k.

(ii) The sequence of iterates {xk} converges to a critical point x∗ of f with R-linear rate:

∃q ∈ (0, 1) and c > 0 : ‖xk − x∗‖ ≤ c
√
q
k

for all sufficiently large k.

Proof. To see item (i), we apply Theorem 4.3. First, from the definition of the aggregate error Ek
and (15), it follows that

Ek−1 ≤
1

m
(vk−1 − vk) ,

‖Gk‖2 ≤
1

mtk−1
(vk−1 − vk) .

The first inequality combined with the definition of zk imply that

‖xk−1 − zk−1‖2 ≤ `Ek−1 ≤
`

m
(vk−1 − vk) .

Moreover, combining the last inequalities with Gk−1 ∈ ∂Ek−1
Fxk−1

(xk−1), the definition of zk, and
the fact that tk is bounded away from 0, we obtain that
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f(xk−1)− f(zk−1) ≤ ρ

2
‖zk−1 − xk−1‖2 − 〈Gk−1, zk−1 − xk−1〉+ Ek−1

≤ ρ`

2m
(vk−1 − vk) + ‖Gk−1‖

√
`

m
(vk−1 − vk) +

1

m
(vk−1 − vk)

≤ 1

m

(
ρ`

2
+

√
`

tmin
+ 1

)
(vk−1 − vk) .

Since (11) and (12) in Theorem 4.3 hold for

C1 =
1

m

(
ρ`

2
+

√
`

tmin
+ 1

)
and C2 =

`

m
,

items (i) and (ii) follow.

6 The theory applied to constrained smooth optimization

Another application of our unified analysis is the feasible descent framework of [32] (see also
[46]). Consider the constrained optimization problem (4), where f : Rn → R is continuously
differentiable with Lipschitz-continuous gradient on the nonempty closed convex set X ⊆ Rn.

The work [32] considers iterative sequences {xk} satisfying

xk = PX(xk−1 − tk−1∇f(xk−1) + ek−1) , tk−1 ≥ tmin > 0 , (16a)

‖ek−1‖ ≤ α‖xk − xk−1‖ , α ∈ (0, 1) . (16b)

This setting is quite broad. It includes, of course, the basic gradient projection method, taking
ek = 0 for all k. But, depending on the form of the mapping e that gives ek−1 in (2), it includes
many other algorithms for solving problem (4). Some examples are the extragradient method, the
proximal point method, coordinate descent, and several splitting techniques; see [32] and references
therein.

We next show that our general analysis of (2) is applicable to methods given by (16) as well.
We consider (2) for the function (f+iX) and take, for all k ≥ 1, εk = 0 and xk = zk (note that (2c)
is then automatic). Under the stated assumptions, f + iX is weakly convex; see Proposition 2.4.
We next need to show that (16) implies (2a) and (2b) for f + iX . Once this is done, we apply
Theorem 4.3 for the weakly convex function f + iX .

The proof below that the sequence {xk} from (16) satisfies the descent condition (2a) for f+iX
is essentially a similar argument as in [32] for f , because by (16a) it holds that xk ∈ X for all k
(and so (f + iX)(xk) = f(xk)). We include this part of the proof here mostly for completeness.
Note, however, that the subgradients of f and of (f + iX) are not the same. Also, our rate
of convergence analysis is different, as our results are based on the subdifferential error bound
(Definition 3.1), while [32] uses the projection error bound (Definition 3.2).

Proposition 6.1 (The feasible descent framework (16) fits (2)). Let f : Rn → R be a continuously
differentiable function with L−Lipschitz continuous gradient on the nonempty closed convex set
X ⊆ Rn. Then any sequence {xk} satisfying (16) is a sequence of descent for the function f + iX
in the sense of (2). More specifically,

(i) For all k,

f(xk) +

(
1− α
t∗
− L

2

)
‖xk − xk−1‖2 ≤ f(xk−1) ,

whenever tk ≤ t∗ ≤ 2(1− α)/L. I.e., (2a) holds for f + iX (recall that xk ∈ X).
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(ii) For all k, there exists uk ∈ NX(xk) such that

‖∇f(xk) + uk‖ ≤
(

1 + α

tmin
+ L

)
‖xk − xk−1‖ ,

i.e., (2b) holds for f + iX .

Proof. From (16a) and the characterization of the projection operator, for all y ∈ X it holds that

〈xk−1 − tk−1∇f(xk−1) + ek−1 − xk, y − xk〉 ≤ 0 .

Taking y = xk−1 in this inequality and rearranging terms, we obtain that

‖xk−1 − xk‖2 − tk−1〈∇f(xk−1), xk−1 − xk〉 ≤ 〈ek−1, xk − xk−1〉 .

Using the Cauchy-Schwarz inequality and (16b) on the right-hand side, it holds that

‖xk−1 − xk‖2 − tk−1〈∇f(xk−1), xk−1 − xk〉 ≤ α‖xk−1 − xk‖2 .

It follows that

〈∇f(xk−1), xk − xk−1〉 ≤
α− 1

tk−1
‖xk−1 − xk‖2 .

Since the function is differentiable with Lipschitz-continuous gradient with constant L, by [25,
Lemma A.11] we have that

f(xk)− f(xk−1) ≤ 〈∇f(xk−1), xk − xk−1〉+
L

2
‖xk − xk−1‖2 .

Combining the last two inequalities above gives

f(xk)− f(xk−1) ≤
(
α− 1

tk−1
+
L

2

)
‖xk−1 − xk‖2 ,

from which item (i) follows.
We next prove item (ii), i.e., condition (2b) for f + iX . Again, from (16a) and the characteri-

zation of the projection operator, there exists νk ∈ NX(xk) such that

xk−1 − tk−1∇f(xk−1) + ek−1 − xk = νk .

Defining uk = νk/tk−1 ∈ NX(xk), we have that

tk−1uk = xk−1 − xk + ek−1 − tk−1∇f(xk−1) ,

and
tk−1(∇f(xk) + uk) = xk−1 − xk + ek−1 + tk−1(∇f(xk)−∇f(xk−1)) .

Define wk = ∇f(xk) + uk ∈ ∂(f + iX)(xk). We then obtain that

‖wk‖ ≤
1

tk−1
‖xk−1 − xk + ek−1‖+ ‖∇f(xk)−∇f(xk−1)‖

≤
(

1 + α

tmin
+ L

)
‖xk − xk−1‖ ,

where the triangle inequality, (16b), and the Lipschitz-continuity of the gradient of f were used.
The proof is complete.

Due to Propositions 6.1 and 2.4, we are now in position to apply our unified analysis for weakly
convex functions to obtain estimates for the rate of convergence in (16).
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Theorem 6.2 (Linear rate of convergence of (16)). Under the assumptions of Proposition 6.1,
if f is bounded from below, and the subdifferential error bound (Definition 3.1) and the proper
separation of isocost surfaces condition (Definition 1.1) hold, then for the iterates {xk} satisfying
(16) it holds that:

(i) There exists some critical value f∗ ∈ R of f such that f(xk) → f∗. For vk := f(xk) − f∗,
there exists q ∈ (0, 1) such that for all sufficiently large k,

vk ≤ qvk−1 .

(ii) {xk} converges R-linearly to a critical point x∗ of f with f(x∗) = f∗. More specifically, there
exists c > 0 such that for all k sufficiently large,

‖xk − x∗‖ ≤ c
√
q
k

Proof. By Proposition 2.4, f + iX is a weakly convex function. By Proposition 6.1, any sequence
{xk} satisfying (16) conforms to (2) and all the conditions of Theorem 4.3, with xk = zk, εk = 0
for all k, and gk ∈ ∂(f + iX)(xk). Then the assertions follow from Theorem 4.3, with

q =
M

1 +M
, M =

2`
(

1+α
tmin+L

)2
1−α
tmin
− L

2 (1 + L`)
, c =

√
v0√

1−α
t∗ −

L
2

(
1−√q

) .

Note that while the scheme (16) is explicit in our terminology, as it uses the gradient of f at
xk−1, it is cast in our framework (2) as being implicit, as the subgradient of f+ iX is taken therein
at xk.
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[20] W. Hare and C. Sagastizábal. “A redistributed proximal bundle method for nonconvex op-
timization”. In: SIAM J. Optim. 20.5 (2010), pp. 2442–2473.
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[31] L. Lukšan and J. Vlček. “Globally convergent variable metric method for nonconvex non-
differentiable unconstrained minimization”. In: J. Optim. Theory Appl. 2 (2001), pp. 407–
430.

[32] Z.-Q. Luo and P. Tseng. “Error bounds and convergence analysis of feasible descent methods:
a general approach”. In: Ann. Oper. Res. 46.1 (1993), pp. 157–178.

[33] M. Makela and P. Neittaanmaki. Nonsmooth Optimization: Analysis and Algorithms with
Applications to Optimal Control. World Scientific: Singapore, 1992.

[34] R. Mifflin. “A modification and extension of Lemarechal’s algorithm for nonsmooth mini-
mization”. In: Math. Programming Stud. 17 (1982), pp. 77–90.

[35] R. Mifflin. “Semismooth and Semiconvex Functions in Constrained Optimization”. In: SIAM
J. Control Optim. 15.6 (1977), pp. 959–972.
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