On the Local Convergence of Quasi-Newton Methods for Nonlinear Complementarity Problems

Vera Lúcia Rocha Lopes* José Mario Martínez†
Rosana Pérez ‡

March 10, 1999

Departamento de Matemática Aplicada
IMECC - UNICAMP
Caixa Postal 6065
13083-970 Campinas, SP - Brazil
e-mail: martinez@ime.unicamp.br vlopes@ime.unicamp.br

Abstract

A family of Least Change Secant Update methods for solving Nonlinear Complementarity Problems based on Nonsmooth Systems of Equations is introduced. Local and superlinear convergence results for the algorithms are proved. Two different reformulations of the Nonlinear Complementarity Problem as a nonsmooth system are compared, both from the theoretical and the practical point of view. A global algorithm for solving the Nonlinear Complementarity Problem which uses the algorithms introduced here is also presented. Some numerical experiments show a good performance of this algorithm.

*This author was supported by FINEP, FAPESP and FAEP-UNICAMP
†This author was supported by CNPq, FAPESP and FAEP-UNICAMP
‡This author was supported by FAPESP, Grant 96/0607-5
1 Introduction

Let $F : \mathbb{R}^n \to \mathbb{R}^n, F(x) = (f_1(x), f_2(x), \ldots, f_n(x))$ be a continuously differentiable mapping. The nonlinear complementarity problem (NCP) consists of finding a vector $x \in \mathbb{R}^n$ such that $x \geq 0, F(x) \geq 0, \langle x, F(x) \rangle = 0$. Variational inequalities problems, linear complementarity problems, mixed complementarity and horizontal complementarity problems are related with the NCP. The NCP appears in many problems of Physics and Economy (see [4], [6] and [15]). In the last few years, much work has been done with the aim of finding efficient Newton-type algorithms to solve the NCP, trying to find merit functions whose minimizers agree with the solutions of the NCP and also seeking methods with good local convergence rate (see [8]). A well known way to deal with the NCP is to reformulate it as a nonsmooth nonlinear system of equations. See [16] and references therein. In this work we use two reformulations. The first one is based on the classical

$$G(x) = \min \{x, F(x)\}$$

where min is taken componentwise (see [16]). It is easy to verify that x is a zero of G if and only if x solves the NCP. If there exists i such that $x_i = f_i(x)$, the function G may be nonsmooth at x. The second function is the Burmeister-Fischer function $\Phi : \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$\Phi(x) = (\varphi(x_1, f_1(x)), \varphi(x_2, f_2(x)), \ldots, \varphi(x_n, f_n(x)))$$

where $\varphi : \mathbb{R}^2 \to \mathbb{R}$ is given by

$$\varphi(x, y) = \|(x, y)\|_2 - x - y.$$

See ([5])

This function is such that $\varphi(x, y) = 0$ if and only if $x \geq 0, y \geq 0, xy = 0$ and so it is obvious that the NCP is equivalent to solving the nonlinear system $\Phi(x) = 0$. If there exists i such that $x_i = f_i(x) = 0$, we also have that the function Φ can be nonsmooth at x. The function G will be called here the “Min function” while Φ will be called the “Fischer function”. In this work we develop and analyze methods to solve the NCP using systems (1) and (2). In both cases we develop a family of Least Change Secant Update (LCSU) methods, following the lines of [12]. For these families we prove local and superlinear convergence under suitable assumptions.
This work is organized as follows. In Section 2 we state the main assumptions, we prove some consequences and we develop the LCSU theory for the Min function. In Section 3 we state similar hypotheses under which the same results hold for the Fischer function. Section 4 is dedicated to show that the assumption of BD-regularity of G at x^* made in Section 2 is not equivalent to the assumption of Φ having all the elements nonsingular in a subset Z_* of $\partial_B \Phi(x^*)$ made in Section 3. In Section 5 we present some numerical results which show the sensitivity of the Fischer function to degeneracy. We also present the numerical performance of both formulations when applied to 16 test problems given in [7]. In Section 6 we present a globalizing strategy to solve the NCP which take the ideas of the hybrid algorithm given in [7], using the global algorithm given in [2]. We present the results of some numerical experiments which show a good performance of our algorithm.

A few words about notation. Given a matrix $M \in \mathbb{R}^{m \times n}$ we denote by $[M]_i$ its i-th row. We will denote the Jacobian matrix of F at x by $F'(x)$. $(\frac{\partial f_i}{\partial x_1}(x), \ldots, \frac{\partial f_i}{\partial x_n}(x))$ is denoted by $f'_i(x)$ and $B(x, \epsilon)$ means the open ball centered at x with radius ϵ.

We finish this section recalling some concepts which we use in the text. See [1], [16] and [18].

Definition 1.1 Let $H : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a locally Lipschitzian function and let D_H denotes the set where H is differentiable. For all $x \in \mathbb{R}^n$, the set given by
\[
\partial_B H(x) = \left\{ \lim_{x^k \rightarrow x} H'(x^k) : x^k \in D_H \right\},
\]
is called the generalized B-Jacobian of H at x.

Definition 1.2 The convex hull of $\partial_B H(x)$ is called $\partial H(x)$.

Definition 1.3 Let $H : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be locally Lipschitzian at $x \in \mathbb{R}^n$. We say that G is semismooth at x if
\[
\lim_{V \in \partial H(x + ty')} V y' = V y', \quad y' \rightarrow y, \; t \downarrow 0
\]
exists for every $y \in \mathbb{R}^n$.

Definition 1.4 We say that a semismooth function $H : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is BD-regular at x if all elements in $\partial_B H(x)$ are nonsingular.
2 A local convergence theory for $G(x) = 0$

2.1 Introduction
In this section we present a family of LCSU methods for solving $G(x) = 0$ where G is given by (1), and we prove that the algorithms are locally and superlinearly convergent. Given $x^0 \in \mathbb{R}^n$ an initial approximation to the solution of the problem, the basic quasi-Newton algorithm applied to $G(x) = 0$ will be given by

$$x^{k+1} = x^k - B_k^{-1} G(x^k),$$

where each row of B_k is given by:

$$[B_k]_i = \begin{cases}
\mathbf{e}_i & \text{if } x_i^k < f_i(x^k), \\
[A_k]_i & \text{if } x_i^k > f_i(x^k), \\
\mathbf{e}_i \text{ or } [A_k]_i & \text{if } x_i^k = f_i(x^k).
\end{cases}$$ (3)

Here $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ is the canonical basis of \mathbb{R}^n and $A_k = \begin{pmatrix} [A_k]_1 \\ \vdots \\ [A_k]_n \end{pmatrix}$ is an approximation of the Jacobian matrix of F at x^k. Most times, the matrix A_{k+1} is obtained from A_k using secant updates.

2.2 Local assumptions and convergence results
Under the following assumptions we will prove that the sequences generated by the basic quasi-Newton algorithm of Section 2.1 are well defined and converge linearly to a solution of $G(x) = 0$.

A1. $x^* \in \mathbb{R}^n$ is such that $G(x^*) = 0$.

A2. There exist $\gamma > 0, \tilde{c} > 0$ such that

$$\|F'(x) - F'(x^*)\| \leq \gamma \|x - x^*\|$$

for all $x \in \mathcal{B}(x^*, \tilde{c})$, where $\| \cdot \|$ denotes an arbitrary norm on \mathbb{R}^n and its associated matricial norm.
A3. If \(B_s = \begin{pmatrix} [B_s]_1 \\ \vdots \\ [B_s]_n \end{pmatrix} \) is such that, for all \(i = 1, \ldots, n \),

\[
[B_s]_i \in \{ f_i' (x^*), e_i \},
\]

and

\[
[B_s]_i = \begin{cases}
 e_i & \text{if } x_i^* < f_i (x^*), \\
 f_i' (x^*) & \text{if } x_i^* > f_i (x^*),
\end{cases}
\]

then \(B_s \) is nonsingular.

We observe that \(\partial_B G (x^*) = \{ G'_i (x^*) \} \) if \(x^* \) is nondegenerate and that associated to each component \(x_i^* \) of \(x^* \), for which \(x_i^* = f_i (x^*) = 0 \), there are two matrices whose i-th rows are given by (4) in \(\partial_B G (x^*) \). So, Assumption 3 means that we are assuming that the function \(G \) is BD-regular at \(x^* \). Since there are at most \(2^m \) of such matrices, where \(m \) is the number of degenerate components of \(x^* \), we can define \(\theta > 0 \), a bound to \(\| B_s^{-1} \| \) for all of them.

The next Lemma prepares the "Theorem of the two neighborhoods". Its proof follows well-known arguments of quasi-Newton theories but is included here for the sake of completeness.

For each \(x \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n} \), define

\[
\Gamma (x, A) = x - B^{-1} G (x),
\]

where

\[
B = \begin{pmatrix} [B]_1 \\ \vdots \\ [B]_n \end{pmatrix}, \text{ with } [B]_i \in \{ [A]_i, e_i \},
\]

and

\[
[B]_i = \begin{cases}
 e_i & \text{if } x_i < f_i (x), \\
 [A]_i & \text{if } x_i > f_i (x).
\end{cases}
\]

As observed after (4), if \(x_i = f_i (x) \), then \([B_s]_i \) will be either \(e_i \) or \([A]_i \).

Until the end of this Section, \(\| \cdot \| \) means \(\| \cdot \|_\infty \).
Lemma 2.1 Let all the local Assumptions be verified and let $r \in (0, 1)$. Then there exist ϵ_1 and δ_1 such that,

$$\text{if } \|x - x^*\| \leq \epsilon_1 \text{ and } \|A - F'(x^*)\| \leq \delta_1,$$

then the function $\Gamma(x, A)$ is well defined, and satisfies

$$\|\Gamma(x, A) - x^*\| \leq r \|x - x^*\|.$$

Proof. Let $\epsilon_1 > 0$ be such that, for all $i = 1, \ldots, n$,

if $f_i(x^*) > x_i^*$ then $f_i(x) > x_i$,

if $f_i(x^*) < x_i^*$ then $f_i(x) < x_i$

for all $x \in B(x^*, \epsilon_1)$. It is obvious that ϵ_1 exists by the continuity of F. Let $\delta_1 \leq \frac{\epsilon_1}{\theta}$, where θ is given by Assumption 3 for $\|\cdot\|_{\infty}$.

For each $x \in B(x^*, \epsilon_1)$, we take $A \in B(F(x^*), \delta_1)$ and B associated to A by (6) and (7) and we consider in $\partial_B G(x^*)$ the matrix B_* that corresponds to the matrix B, that is to say, B_* is the matrix in $\partial_B G(x^*)$ that has for the i–th row either e_i or $f'_i(x^*)$ according to the i–th row of the matrix B beeing e_i or $[A]_i$. Then it is easily seen that

$$\|B - B_*\| \leq \delta_1.$$

(8)

So, by Banach Lemma, B^{-1} exists and

$$\|B^{-1}\| \leq 2 \|B_*^{-1}\| \leq 2 \theta.$$

(9)

From (5), (8) and (9):

$$\|\Gamma(x, A) - x^*\| = \|(x - x^*) - B^{-1}G(x) + B^{-1}B_*(x - x^*) - B^{-1}B_*(x - x^*)\|$$

$$= \|(I - B^{-1}B^*)(x - x^*) - B^{-1}[G(x) - G(x^*) - B_*(x - x^*)]\|$$

$$\leq \|B^{-1}\| \|B - B_*\| \|x - x^*\| + \|G(x) - G(x^*) - B_*(x - x^*)\|$$

$$\leq 2 \theta \left[\delta_1 + \frac{\|G(x) - G(x^*) - B_*(x - x^*)\|}{\|x - x^*\|} \right] \|x - x^*\|.$$

(10)
But $g_i(x) - g_i(x^*) \in \{x_i - x_i^*, f_i(x) - f_i(x^*)\}$, and, by the continuity of f_i,

$$g_i(x) - g_i(x^*) = \begin{cases} x_i - x_i^* & \text{if } x_i^* < f_i(x^*) , \\ f_i(x) - f_i(x^*) & \text{if } x_i^* > f_i(x^*) . \end{cases}$$

(11)

$$[B_s(x - x^*)]_i = \begin{cases} x_i - x_i^* & \text{if } x_i^* < f_i(x^*) , \\ f_i(x^*)(x - x^*) & \text{if } x_i^* > f_i(x^*) . \end{cases}$$

(12)

If $x_i^* = f_i(x^*)$ we can make any of the choices either in (11) or in (12), since, in this case, $\min\{x_i^*, f_i(x^*)\} = x_i^* = f_i(x^*) = 0$. So, from (11) and (12):

$$\frac{\|G(x) - G(x^*) - B_s(x - x^*)\|}{\|x - x^*\|} = \frac{\|\tilde{F}(x)\|}{\|x - x^*\|}$$

where,

$$\tilde{f}_i(x) = \begin{cases} 0 & \text{if } x_i^* \leq f_i(x^*) , \\ f_i(x) - f_i(x^*) - f_i'(x^*)(x - x^*) & \text{if } x_i^* > f_i(x^*) . \end{cases}$$

Now,

$$\frac{\|\tilde{F}(x)\|}{\|x - x^*\|} = \max_{1 \leq i \leq n} \frac{|f_i(x) - f_i(x^*) - f_i'(x^*)(x - x^*)|}{\|x - x^*\|}$$

and so, by the differentiability of F, given $\rho = \frac{\tilde{F}}{\|\tilde{F}\|}$, there exists $\epsilon_r > 0$ such that

$$\|x - x^*\| < \epsilon_r \implies \frac{\|G(x) - G(x^*) - B_s(x - x^*)\|}{\|x - x^*\|} \leq \rho .$$

Thus,

$$\|\Gamma(x, A) - x^*\| \leq 2 \theta \left[\frac{r}{A \theta} + \frac{r}{4 \theta} \right] \|x - x^*\| = r \|x - x^*\| .$$

Therefore the desired result is proved.

The following is the so called Theorem of the two neighborhoods. As in Lemma 2.1, $\| \cdot \|$ will mean $\| \cdot \|_\infty$.

7
Theorem 2.1 Let all the local Assumptions be verified and let \(r \in (0, 1) \). Then there exist \(\epsilon, \delta > 0 \) such that,

\[
\text{if } \| x^0 - x^* \| \leq \epsilon \text{ and } \| A_k - F'(x^*) \| \leq \delta, \text{ for all } k,
\]

the sequence \(\{ x^k \} \) generated by

\[
x^{k+1} = \Gamma(x^k, A^k) = x^k - B_k^{-1} G(x^k),
\]

is well defined, converges to \(x^* \) and satisfies

\[
\| x^{k+1} - x^* \| \leq r \| x^k - x^* \|, \text{ for all } k = 0, 1, 2, \cdots.
\]

Proof. To prove this we just need to use an inductive argument associated to Lemma 2.1.

We observe that Theorem 2.1 proves the q-linear convergence of the sequence \(\{ x^k \} \) in the infinity norm. Therefore, if \(e_k = \| x^k - x_* \| \) is the error related to any other norm, then \(e_k \leq C r^k e_0 \) where \(C \) is a positive constant that does not depend on \(k \) and \(r \) is as in Theorem 2.1. So, r-linear convergence holds in any other norm.

Using similar arguments as in Lemma 2.1, it is easy to prove the following lemma:

Lemma 2.2 Assume that the Assumptions A1, A2, and A3 are verified. Then there exist \(\epsilon, \beta > 0 \) such that, if \(\| x - x^* \| < \epsilon \) then

\[
\| G(x) \| \geq \beta \| x - x^* \|.
\]

Eventhough we have used the infinity norm to prove Lemma 2.2, the above result remains valid for any other norm, with a suitable change in the constant \(\beta \).

In the next Theorem we prove that, for the reformulation of the NCP by means of \(G(x) = 0 \), a Dennis-Moré-Walker type condition ensures superlinear convergence. We use the infinity norm in this proof but we recall that superlinear convergence results are norm-independent.
Theorem 2.2 Assume that the Assumptions A1, A2 and A3 are verified and that for some x^0 the sequence generated by

$$x^{k+1} = x^k - B_k^{-1} G(x^k),$$

where B_k is given in (3), satisfies

$$\lim_{k \to \infty} x^k = x^*.$$

Define A_k as in (3) and $s^k = x^{k+1} - x^k$. If

$$\lim_{k \to \infty} \frac{\| (A_k - F'(x^*)) s^k \|}{\| s^k \|} = 0$$

then the sequence $\{x^k\}$ converges superlinearly to x^*.

Proof. Let us assume that $x^k \in \mathcal{B}(x^*, \epsilon_1)$ for all k. By the considerations made in (3):

$$\| (A_k - F'(x^*)) s^k \| = \left\| \begin{pmatrix} [A_k]_1 - f'_1(x^*) \\ \vdots \\ [A_k]_n - f'_n(x^*) \end{pmatrix} s^k \right\|. \quad (14)$$

Since B_s is the matrix in $\partial_B G(x^*)$ that has for the i–th row e_i or $f'_i(x^*)$ according to the i–th row of the matrix B_k,

$$\| (B_k - B_s) s^k \| = \left\| \begin{pmatrix} [B_k]_1 - [B_s]_1 \\ \vdots \\ [B_k]_n - [B_s]_n \end{pmatrix} s^k \right\|, \quad (15)$$

where,

$$[B_k]_i - [B_s]_i = \begin{cases} 0 & \text{if } x^*_i \leq f_i(x^*), \\ [A_k]_i - f'_i(x^*) & \text{if } x^*_i > f_i(x^*). \end{cases}$$

Thus, from (14) and (15),

$$\| (B_k - B_s) s^k \| \leq \| (A_k - F'(x^*)) s^k \|. \quad (16)$$
Now by (13), we have
\[
0 = B_k s^k + G(x^k),
\]
\[
-G(x^{k+1}) = (B_k - B_s)s^k - G(x^{k+1}) + G(x^k) + B_s s^k.
\]
(16)

Observe that to compute \(|- G(x^{k+1}) + G(x^k) + B_s s^k|\) we work componentwise and so we can use the fact that \(F'(x)\) is Lipschitz continuous with constant \(\gamma\). Using this observation and (16) we get:
\[
\frac{\|G(x^{k+1})\|}{\|s^k\|} \leq \frac{\|(A_k - F'(x^*))s^k\|}{\|s^k\|} + \frac{\|- G(x^{k+1}) + G(x^k) + B_s s^k\|}{\|s^k\|} \\
\leq \frac{\|(A_k - F'(x^*))s^k\|}{\|s^k\|} + \gamma \max\{\|x^{k+1} - x^*\|, \|x^k - x^*\|\}.
\]

Since
\[
\lim_{k \to \infty} \frac{\|(A_k - F'(x^*))s^k\|}{\|s^k\|} = 0
\]
and
\[
\lim_{k \to \infty} (x^k - x^*) = 0,
\]
we have,
\[
\lim_{k \to \infty} \frac{\|G(x^{k+1})\|}{\|s^k\|} = 0.
\]

But, by Lemma 2.2, there exists a positive constant \(\beta\) such that:
\[
\lim_{k \to \infty} \frac{\|G(x^{k+1})\|}{\|s^k\|} \geq \lim_{k \to \infty} \beta \frac{\|x^{k+1} - x^*\|}{\|s^k\|}.
\]

So,
\[
0 \geq \lim_{k \to \infty} \beta \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\| + \|x^{k+1} - x^*\|}
\]
\[
= \lim_{k \to \infty} \beta \frac{\|x^{k+1} - x^*\|}{1 + \|x^{k+1} - x^*\|},
\]

which implies
\[
\lim_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|} = 0,
\]
and thus, \(x^k\) converges to \(x^*\) superlinearly. \(\blacksquare\)
2.3 LCSU family for $G(x) = 0$.

The least-change theory, which is well established for smooth and also for some nonsmooth problems [10], [13], [14], states sufficient conditions under which the hypotheses of the Theorem 2.1 hold.

In this section we define a least-change Algorithm for problems like (1) satisfying Assumptions A1, A2 and A3 and we prove the corresponding local convergence theorems.

$| \cdot |$ will denote an arbitrary norm on \mathbb{R}^n and its associated matrix norm.

Assume that for each pair $x, y \in \mathbb{R}^n$, $x \neq y$, $V(x, y)$ is a linear subspace of $\mathcal{E} = \mathbb{R}^{n \times n}$ and $\| \cdot \|_{xy}$ is the norm on \mathcal{E} related to the scalar product $\langle \cdot, \cdot \rangle_{xy}$. Moreover assume that $\| \cdot \|$ is a norm on \mathcal{E} associated to a scalar product $\langle \cdot, \cdot \rangle$ and let P_{xy} be the orthogonal projection on $V(x, y)$ with respect to the norm $\| \cdot \|_{xy}$.

Algorithm 2.1

Assume that x^0 and A_0 are arbitrary. For $k = 0, 1, 2, \ldots$, x^{k+1} and A_{k+1} are generated as follows:

\begin{align*}
x^{k+1} &= x^k - B_k^{-1} G(x^k) \quad (17) \\
A_{k+1} &= P_{x^k x^{k+1}}(A_k) \quad (18)
\end{align*}

where B_k is taken following (3) and (4).

In addition to Assumptions A1, A2, and A3, we will assume, as in [12], that:

A4. There exists $\alpha_1 > 0$ such that, for all $x, y \in \mathbb{R}^n$, there exists a matrix $\tilde{A} \in V(x, y)$ satisfying

$$
\| \tilde{A} - F'(x^*) \| \leq \alpha_1 \sigma(x, y),
$$

where $\sigma(x, y) = \max \{ |x - x^*|, |y - x^*| \}$.

A5. There exists $\alpha_2 > 0$ such that, for all $x, y \in \mathbb{R}^n$, $A \in \mathcal{E}$

\begin{align*}
\| A \|_{xy} &\leq [1 + \alpha_2 \sigma(x, y)] \| A \|, \quad (20) \\
\| A \| &\leq [1 + \alpha_2 \sigma(x, y)] \| A \|_{xy} \quad (21)
\end{align*}
In the next Lemma we prove a result, known as a Bounded Deterioration Principle, which ensures that the distance between $P_{xy}(A)$ and $F'(x^*)$ cannot be much larger than that between A and $F'(x^*)$.

Lemma 2.3 Let the Assumptions A1-A5 be verified. There exist $\alpha_3, \alpha_4 > 0$ such that for all $x, y \in \mathcal{B}(x^*, \epsilon_1), A \in \mathcal{I}$,

$$
\|P_{xy}(A) - F'(x^*)\| \leq [1 + \alpha_4 \sigma(x, y)] \|A - F'(x^*)\| + \alpha_3 \sigma(x, y).
$$

Proof. The proof is analogous to the proof of Lemma 3.1 in [12].

Corollary 2.1 There exists $\alpha_5 > 0$ such that

$$
\|P_{xy}(A) - F'(x^*)\| \leq \|A - F'(x^*)\| + \alpha_5 |x - x^*|, \tag{22}
$$

when $x, y \in \mathcal{B}(x^*, \epsilon_1), A \in \mathcal{B}(F'(x^*), \delta_1)$ and $|y - x^*| \leq |x - x^*|$.

Proof. The proof is analogous to the proof of Corollary 3.1 in [12].

These two results and the Assumptions A1, A2 and A3 are of fundamental importance to prove the next linear convergence result for Algorithm 2.1.

Theorem 2.3 Let Assumptions A1-A5 be verified and consider the sequence $\{A_k\}$ defined by (18). Given $r \in (0, 1)$ there exist ϵ and δ such that,

if $\|x^0 - x^*\|_{\infty} \leq \epsilon$ and $\|A_0 - F'(x^*)\| \leq \delta$,

the sequence x_k generated by

$$
x^{k+1} = x^k - B_k^{-1} G(x^k),
$$

is well defined, converges to x^* and, for all $k = 0, 1, 2, \ldots$

$$
\|x^{k+1} - x^*\|_{\infty} \leq r \|x^k - x^*\|_{\infty}.
$$

Moreover, for all $k, j = 0, 1, 2, \ldots$ there exist positive numbers α_6 and α_7 such that:

$$
\|A_{k+j} - F'(x^*)\| \leq \|A_k - F'(x^*)\| + \alpha_6 |x^k - x^*|. \tag{23}
$$

$$
\|A_{k+j} - F'(x^*)\|^2 \leq \|A_k - F'(x^*)\|^2 + \alpha_7 |x^k - x^*|^2. \tag{24}
$$
Proof. It is very similar to that of Theorem 3.3 and Corollary 3.2 in [12]. We observe though that in this proof we use Lemma 2.1 which was proved before using both norms $| \cdot |$ and $\| \cdot \|$ as $\| \cdot \|_{\infty}$. So, we must be careful in the choice of ϵ and $\tilde{\delta}$ here. For instance, we need $\| A_0 - F'(x^*) \| \leq \tilde{\delta}$ implying in $\| A_0 - F'(x^*)\|_{\infty} \leq \delta_1$. After making the right choices, the proof follows in a straightforward way.

Theorem 2.4 Assume the same hypotheses of Theorem 2.3. Then,

$$\lim_{k \to \infty} \| A_{k+1} - A_k \| = 0.$$ \hspace{1cm} (25)

Proof. It follows the lines of that of Theorem 3.2 in [12], with the same remarks that we made in Theorem 2.3.

With this result we can derive a necessary and sufficient condition to have superlinear convergence as shown by the next Theorem.

Theorem 2.5 Assume that the Assumptions A1-A5 are verified and let the sequences $\{ A_k \}$ and $\{ x^k \}$ be generated by Algorithm 2.1, with B_k generated as in (3). Assume that

$$\lim_{k \to \infty} x^k = x^*.$$

If

$$\lim_{k \to \infty} \frac{\| (A_{k+1} - F'(x^*))s^k \|}{\| s^k \|} = 0$$ \hspace{1cm} (26)

then the sequence $\{ x^k \}$ converges superlinearly to x^*.

Proof. The proof follows in a straightforward way from Theorems 2.2 and 2.4:

$$\lim_{k \to \infty} \frac{\| (A_k - F'(x^*))s^k \|}{\| s^k \|} \leq \lim_{k \to \infty} \left[\frac{\| (A_k - A_{k+1})s^k \|}{\| s^k \|} + \frac{\| (A_{k+1} - F'(x^*))s^k \|}{\| s^k \|} \right]$$ \hspace{1cm} (27)
and, from Theorem 2.4, we have that the right hand side expression of the last inequality is equal to zero. So,

$$\lim_{k \to \infty} \frac{\|(A_k - F'(x^*))s^k\|}{\|s^k\|} = 0$$

and by Theorem 2.2 the convergence to x^* is superlinear.

All the results obtained in this Section can be incorporated in the following Theorem:

Theorem 2.6 Assume that the Assumptions A1-A5 are verified and let the sequences $\{A_k\}$ and $\{x^k\}$ be generated by Algorithm 2.1, with B_k generated as in (3). Given $r \in (0, 1)$ there exist $\bar{\varepsilon}$ and $\bar{\delta}$ such that,

$$\text{if } \|x^0 - x^*\|_\infty \leq \bar{\varepsilon} \text{ and } \|A_0 - F'(x^*)\| \leq \bar{\delta},$$

the sequence x_k is well defined and converges linearly to x^*. Moreover, if

$$\lim_{k \to \infty} \frac{\|(A_{k+1} - F'(x^*))s^k\|}{\|s^k\|} = 0$$

then the convergence is superlinear.

Thus, we have seen that the family of LCSU methods generates sequences that are locally and superlinearly convergent.

3 The theory for $\Phi(x) = 0$

For the reformulation of the NCP given by (2) it is generated a family of Least Change Secant Update (LCSU) methods, as in Section 2.

Given $x^0 \in \mathbb{R}^n$ an initial approximation to x^*, the basic algorithm for this formulation is given by

$$x^{k+1} = x^k - B_k^{-1}\Phi(x_k),$$
where,

\[
B_k = \begin{pmatrix} (|B_k|_1) \\ \vdots \\ (|B_k|_n) \end{pmatrix},
\]

(28)

with

\[
|B_k|_i = \begin{cases}
\left(\frac{x_i^k}{\|x_i^k, f_i(x^k)\|_2} - 1 \right) e_i + \left(\frac{f_i(x^k)}{\|x_i^k, f_i(x^k)\|_2} - 1 \right) [A_k]_i, & x_i^k \neq 0 \text{ or } f_i(x^k) \neq 0 \\
\left(\frac{z_i^k}{\|z_i^k, (A_k|z_i^k)\|_2} - 1 \right) e_i + \left(\frac{(A_k|z_i^k)}{\|z_i^k, (A_k|z_i^k)\|_2} - 1 \right) [A_k]_i, & x_i^k = f_i(x^k) = 0.
\end{cases}
\]

(29)

Here \(\{e_1, \ldots, e_n\} \) is the canonical basis of \(\mathbb{R}^n \), \(A_k = \begin{pmatrix} (|A_k|_1) \\ \vdots \\ (|A_k|_n) \end{pmatrix} \) is an approximation of the Jacobian matrix of \(F \) at \(x^k \) and \(z^k \in \mathbb{R}^n \) is such that \(z_i^k \neq 0 \) if \(x_i^k = f_i(x^k) = 0 \).

As pointed out in Section 1, the function \(\Phi \) can be nondifferentiable at \(x \), if for some \(i, 1 \leq i \leq n \), \(x_i = f_i(x) = 0 \). Facchinei and Kanzow [3], give a procedure to calculate elements of \(\partial_B \Phi(x) \) in these cases. They construct a sequence of points where \(\Phi \) is differentiable and such that the sequence of the Jacobian matrices at these points converges to a matrix belonging to \(\partial_B \Phi(x) \). The sequence that they propose is

\[y^k = x + \epsilon^k z \]

where \(\{\epsilon^k\} \) is a sequence of positive numbers that converges to zero and \(z \) is the vector such that \(z_i \neq 0 \) if \(x_i = 0 \) like \(z^k \) in (28).

It follows from the results of [3] that defining

\[y^k = x^* + \epsilon^k z, \]

where \(x^* \) is a solution of the NCP, then the matrix \(B_*(z) \) belongs to \(\partial_B \Phi(x^*) \), where for \(i = 1, \ldots, n \),

\[
[B_*(z)]_i = \begin{cases}
-e_i & \text{if } 0 = x_i^* < f_i(x^*) \\
-f_i(x^*) & \text{if } x_i^* > f_i(x^*) = 0 \\
(\alpha_i^* - 1)e_i + (\beta_i^* - 1)f_i(x^*) & \text{if } x_i^* = f_i(x^*) = 0
\end{cases}
\]

(30)
\[
\alpha_i^* = \frac{z_i}{\| (z_i, \langle f_i(x^*), z \rangle) \|_2} \quad \text{and} \quad \beta_i^* = \frac{\langle f_i(x^*), z \rangle}{\| (z_i, \langle f_i(x^*), z \rangle) \|_2}.
\]

Actually, these matrices \(B_*(z) \) form a (generally infinite) compact subset \(Z_* \) of \(\partial_B \Phi(x^*) \), since there are infinite many ways to choose the vector \(z \in \mathbb{R}^n \). This set is given by

\[
Z_* = \{ B_*(z) : z \in \mathbb{R}^n, \text{is such that } z_i \neq 0, \text{if } x_i^* = f_i(x^*) = 0 \}.
\]

(31)

The Algorithm for the LCSU family for \(\Phi(x) = 0 \) is given by

Algorithm 3.1

Assume that \(x^0 \in \mathbb{R}^n \) and \(A_0 \) is arbitrary. For \(k = 0, 1, \ldots, n \), let the sequences \(x^k \) and \(\{ A_k \} \) be generated by

\[
x^{k+1} = x^k - B_k^{-1} \Phi(x^k)
\]

(32)

\[
A_{k+1} = P_{x^k, x^{k+1}}(A_k)
\]

(33)

and \(B_k \) is computed following (27) and (28).

As in Section 2, \(|\cdot| \) will denote an arbitrary norm on \(\mathbb{R}^n \) and its associated matrix norm and we will assume that for each pair \(x, y \in \mathbb{R}^n \), \(x \neq y \), \(V(x, y) \) is a linear subspace of \(\mathbb{E} = \mathbb{R}^{m \times n} \) and \(\| \cdot \|_{xy} \) is the norm on \(\mathbb{E} \) related to the scalar product \(\langle \cdot, \cdot \rangle_{xy} \). Moreover assume that \(\| \cdot \| \) is a norm on \(\mathbb{E} \) associated to a scalar product \(\langle \cdot, \cdot \rangle \) and let \(P_{xy} \) be the orthogonal projection on \(V(x, y) \) with respect to the norm \(\| \cdot \|_{xy} \).

The five analogous local Assumptions for this formulation are given by:

H1. \(x^* \in \mathbb{R}^n \) is such that \(\Phi(x^*) = 0 \).

H2. There exist \(\gamma > 0 \), \(\epsilon > 0 \), such that:

\[
\| F'(x) - F'(x^*) \| \leq \gamma |x - x^*|
\]

for all \(x \in B(x^*, \epsilon) \).

H3. All the matrices in \(Z_* \) are nonsingular.
H4. There exists $\alpha_1 > 0$ such that, for all $x, y \in IR^n$. There exists a matrix $\bar{A} = V(x, y)$ satisfying

$$\|\bar{A} - F'(x^*)\| \leq \alpha_1 \sigma(x, y),$$ \hspace{1cm}(34)

where, $\sigma(x, y) = \max\{|x - x^*|, |y - x^*|\}$.

H5. There exists $\alpha_2 > 0$ such that, for all $x, y \in IR^n, A \in IE$

$$\|A\|_{xy} \leq [1 + \alpha_2 \sigma(x, y)]\|A\|,$$ \hspace{1cm}(35)

$$\|A\| \leq [1 + \alpha_2 \sigma(x, y)]\|A\|_{xy}$$ \hspace{1cm}(36)

Under these local Assumptions, the same convergence results as those obtained in Section 2 are proved. The details of the proofs are given in [17].

4 The nonsingularity assumption

One of the assumptions under which we developed the LCSU theory is the BD-regularity of G at x^*, that is, the assumption that all the elements in $\partial BG(x^*)$ are nonsingular, and the nonsingularity of the matrices in $Z_s \subset \partial B\Phi(x^*)$. Since any $B \in \partial BG(x^*)$ can be written as $-\tilde{B} \in Z_s$ if we take $\alpha = 1, \beta = 0$; then we have $\partial BG(x^*) \subset Z_s$ and so, if all the elements in Z_s are nonsingular, then G is BD-regular at x_s. But it is not true that if all the elements in $\partial BG(x^*)$ are nonsingular, then all the elements in $\partial B\Phi(x^*)$ are nonsingular. This is shown in this very simple example:

Example 4.1 Define:

$$F : IR^2 \rightarrow IR^2$$

$$x \mapsto F(x) = (x_1 + 3x_2 - 1, x_1 + x_2 - 1).$$

$x^* = (1, 0)$ is a degenerate solution of the NCP, since

$$x^*_1 > f_1(x^*) = 0,$$

$$x^*_2 = f_2(x^*) = 0.$$
Thus,

$$\partial_B G(x^*) = \left\{ \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix} \right\}$$

with both elements nonsingular. As was seen in Section 3, in this case the elements of $Z_* \subset \partial_B \Phi(x^*)$ are given by:

$$\bar{B} = \begin{pmatrix} -1 & -3 \\ (\alpha - 1)e_2 + (\beta - 1)(1,1) \end{pmatrix},$$

with $\alpha^2 + \beta^2 = 1$, where

$$\alpha = \frac{z_2}{\|(z_2, \langle f_2(x^*), z \rangle)\|_2} = \frac{z_2}{\|(z_2, z_1 + z_2)\|_2}$$

$$\beta = \frac{\langle f_2(x^*), z \rangle}{\|(z_2, \langle f_2(x^*), z \rangle)\|_2} = \frac{z_1 + z_2}{\|(z_2, z_1 + z_2)\|_2}$$

and $z \in \mathbb{R}^2$ is such that $z_2 \neq 0$, since $x^*_2 = f_2(x^*) = 0$.

For $z = (1, 3), \|(z_2, z_1 + z_2)\|_2 = 5$ and

$$\bar{B} = \begin{pmatrix} -1 & -3 \\ (\frac{3}{5} - 1)e_2 + (\frac{4}{5} - 1)(1,1) \end{pmatrix} = \begin{pmatrix} -1 & -3 \\ -\frac{1}{5} & -\frac{3}{5} \end{pmatrix},$$

which is a singular matrix. So, there exists at least one singular element in $Z_* \subset \partial_B \Phi(x^*)$.

Theorem 4.1 gives necessary and sufficient conditions for the case $n = 2$ to have singular elements in $Z_* \subset \partial_B \Phi(x^*)$ under BD-regularity of G at x^*.

We recall that, for $n = 2$, the set $\partial_B G(x^*)$ is given, for $p \neq 0$, by

$$\partial_B G(x^*) = \left\{ \begin{pmatrix} \frac{\partial f_1(x^*)}{\partial x_1} & \frac{\partial f_1(x^*)}{\partial x_2} \\ 0 & p \end{pmatrix}, \begin{pmatrix} \frac{\partial f_2(x^*)}{\partial x_1} & \frac{\partial f_2(x^*)}{\partial x_2} \end{pmatrix} \right\}. \quad (37)$$
Theorem 4.1 Let $n = 2$, $F : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $F \in C^1(\mathbb{R}^2)$, G and Φ be defined as in (1) and (2). If G is BD-regular at x^*, then there will be singular elements in $Z_* \subset \partial_B \Phi(x^*)$ if and only if

- $\frac{\partial h_i(x^*)}{\partial x_1}$ and determinant of the second matrix in (36) have opposite signs.
- $p < 0$ in (36).

Proof. See [17].

For the generic case, i.e., for $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$, $n > 2$, $F \in C^1$, let x^* be a degenerate solution of the NCP. The analysis of this case gives us similar conditions to those of the case $n = 2$.

Based on these results we can expect a better local numerical performance of the Min function reformulation of problem (1). In the next Section we discuss this fact with more detail.

5 Some numerical experiments

In this Section we analyze the sensitivity of the functions G and Φ to degenerate solutions of the NCP. We do this by taking the functions defined in [7] i.e.,

$$F : \mathbb{R}^n \rightarrow \mathbb{R}^n$$

$$x \mapsto F(x) = (f_1(x), \ldots, f_n(x))$$

where,

$$f_i(x) = \begin{cases} h_i(x) - h_i(x^*) & \text{if } i \text{ is odd or } i > n/2, \\ h_i(x) - h_i(x^*) + 1 & \text{otherwise.} \end{cases}$$

For all these functions the vector $x^* = (1, 0, 1, 0 \ldots) \in \mathbb{R}^n$ is a solution. For $i = 1, \ldots, n$, h_i are the functions given by Lukšan [11]. In these cases F is nonsmooth at x^*, since, if i is even and $i > n/2$ we have:

$$h_i(x^*) = x_i^* = 0.$$
Thus, x^* is a degenerate solution of the NCP and it is also a solution of the nonlinear systems $G(x) = 0$ and $\Phi(x) = 0$. To compare the sensitivity we worked with the problems of [11], fixing a value for n. For each problem we calculated the maximum condition number of the matrices in $\partial_H G(x^*)$ for the Min function and we maximized the condition number of the elements of Z_* as a function of z, for the Fischer function.

To run the test problems we used MATLAB and worked in a Sun Sparcstation 2. The first column of Table 1 shows which problem has been tested and the second one, shows the n we fixed.

With the results given in the Table 1 we conclude that the Fischer function is much more sensitive to degeneracies at a solution x^* than the Min function and this will affect the local convergence of the method that uses the Fischer reformulation of problem (1). In other words, in degenerated problems, if for both reformulations convergence takes place, the convergence of the Fischer reformulation is expected to be slower than that of the Min reformulation.

In what follows we analyze the local behavior of the algorithms proposed in Sections 2 and 3. All the tests were done using MATLAB. We used the 17 test problems proposed in [7] for both cases and we tested the generalized Newton method and the generalized Schubert method for all of them.

We recall that in the Schubert method the matrices are updated in the following way:

Let $v_k = y_k - A_k s_k$ and $w_k = \hat{s}_k$, where \hat{s}_k means the vector derived from s_k by setting s^k_j to zero whenever the corresponding element of $|A_k|_i$ is a known constant. Then

$$A_{k+1} = A_k + \frac{C_k}{\langle \hat{s}_k, \hat{s}_k \rangle},$$

where C_k is the matrix with elements $c_{ij} = v_i w_j$.

The stopping criteria used were:

$$\|G(x^k)\|_2 < \sqrt{n}10^{-5} \text{ for Algorithm 2.1,}$$

$$\|\Phi(x^k)\|_2 < \sqrt{n}10^{-5} \text{ for Algorithm 3.1,}$$
<table>
<thead>
<tr>
<th>Prob</th>
<th>Dim</th>
<th>Min</th>
<th>Fischer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>28.37</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>38.45</td>
<td>∞</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>5.50</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>15.63</td>
<td>22.34</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>33.00</td>
<td>∞</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>35.01</td>
<td>∞</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>34.18</td>
<td>1.83×10^{18}</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>35.37</td>
<td>48.55</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>50.08</td>
<td>∞</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>256.20</td>
<td>∞</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>76.90</td>
<td>253.86</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>38.47</td>
<td>2.19×10^{19}</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>25.58</td>
<td>31.89</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>7.23</td>
<td>13.23</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>10.93</td>
<td>2.98×10^{18}</td>
</tr>
</tbody>
</table>

Table 1: The maximum condition number of the matrices in $\partial_B G(x^*)$ for the Min function and a maximization of the condition number for the Fischer function.
\[k > 100 , \]
\[\|G(x^k)\|_\infty > 10^{20} \text{ for Algorithm 2.1}, \]
\[\|\Phi(x^k)\|_\infty > 10^{20} \text{ for Algorithm 3.1}. \]

The results for these numerical experiments are shown in Table 2. In all the problems the initial approximation vector was the vector \((0.9, 0.1, \ldots)\). **Prob** means the number of the problem from [11] that was tested, **Dim** is the dimension of the problem and each one of the other columns tells what happened in terms of convergence: a number means how many iterations were performed to converge to the solution that we were looking for; a \(-\) sign means divergence and \(k^*\) means that in \(k\) iterations the process converged to another solution. Since problem 6 from [11] does not satisfy the Assumption 3 of the theories developed in Sections 2 and 3, we did not consider it.

The results in Table 2 show that, for this set of experiments, the local behavior of the method that uses the Min function is slightly better than that of the method that uses the Fischer function. This was observed also in [9] from numerical experiments and the authors use this observation to introduce a globalizing strategy.

6 A globalizing strategy

In this Section we present a global algorithm to solve the NCP. This is an hybrid algorithm like the one proposed in [7] that combines the good local behavior of the Min function with the global behavior of the Fischer function.

We start the iterations with the local method which uses the Min function and continue with it while the value of \(\|G(x)\|\) is decreasing. If it does not decrease we use the global minimization algorithm proposed in [2] and [9] for \(\lambda = 2\), to solve the NCP.

We also present some numerical results of our algorithm and compare them with the results that we obtained using the algorithm proposed in [2].

We will call the local iteration \(x^{k+1} = x^k - B_k^{-1}G(x^k)\), an **ordinary iteration** and an iteration generated by the global minimization algorithm, will be called a **special iteration**.
<table>
<thead>
<tr>
<th>Prob</th>
<th>Dim</th>
<th>Newton Min</th>
<th>Newton Fischer</th>
<th>Schubert Min</th>
<th>Schubert Fischer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>1*</td>
<td>-</td>
<td>1*</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>1*</td>
<td>6*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>15</td>
<td>17</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>100</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>100</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 2: The performance of the generalized Newton’s and Schubert’s methods.
Ordinary and special iterations are combined following [7] in this hybrid algorithm.

For each \(k \in N \), let \(w^k = \text{argmin} \{ \|G(x^0)\|, \cdots, \|G(x^k)\| \} \). For the sake of completeness we define \(\|G(w^j)\| = \|G(x^0)\| \) if \(k < j \).

Algorithm 6.1

Initialize \(k \leftarrow 0, FLAG \leftarrow 1 \). Let \(q \geq 0 \) be an integer, \(\gamma \in (0, 1) \) and the initial approximation \(x^0 \) be given.

Step 0. \(k \leftarrow 0, FLAG \leftarrow 1 \).

Step 1. If \(FLAG = 1 \), obtain \(x^{k+1} \) using an ordinary iteration. Otherwise, obtain \(x^{k+1} \) using a special iteration.

Step 2. If \(\|G(x^{k+1})\| \leq \gamma \|G(w^{k-\theta})\| \), set \(FLAG \leftarrow 1, k \leftarrow k + 1 \) and go to Step 1.

Otherwise, re-define \(x^{k+1} \leftarrow w^{k+1}, FLAG \leftarrow -1, k \leftarrow k + 1 \) and go to Step 1.

6.1 Numerical performance

We tested Algorithm 6.1 with the problems suggested in [11] with the same initial approximations. The parameters used were: \(\gamma = 0.9, q = 5 \), and, for the special iterations, \(\rho = 10^{-8}, \beta = 0.5, \sigma = 10^{-4}, p = 2.1 \) and \(t_{\min} = 10^{-12} \).

These are the stopping criteria used:

\[\|G(x^k)\|_2 < \sqrt{n}10^{-5}, \]

\(k > 100 \) and

\(t_k < t_{\min} \) in the special iterations.

Table 3 presents the results when we applied to the problems in [11], Algorithm 6.1 (Min-Fischer) and the Global Algorithm from [2] that uses only the Fischer function (Fischer). **Prob** means the number of the problem from [11] that was tested, **Dim** is the dimension that we used for it. The columns Min-Fischer and Fischer contain the total number of iterations performed.
A $-$ sign means divergence and k^* means that in k iterations the process converged to another solution. Since problem 6 from [11] does not satisfy the Assumption 3 of the theories developed in Sections 2 and 3, we did not consider it.

<table>
<thead>
<tr>
<th>Prob</th>
<th>Dim</th>
<th>Min-Fischer</th>
<th>Fischer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>4 (4,0)</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>6 (1,5)</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>10* (7,3)</td>
<td>13*</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>6 (6,0)</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>1 (1,0)</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>23 (9,14)</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>100</td>
<td>11 (6,5)</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>12 (7,5)</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>100</td>
<td>4* (4,0)</td>
<td>6*</td>
</tr>
<tr>
<td>17</td>
<td>100</td>
<td>7 (7,0)</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 3: *Comparison between the Global Algorithm 6.1 and a Global Algorithm that uses only the Fischer function.*

We observe in Table 3 that, in most cases of convergence of both Algorithms, Algorithm 6.1 takes less iterations than the other one and we notice that, for Problem 14 our Algorithm attained convergence in 12 iterations.
while the other failed. In fact these experiments show that the globalizing strategy that uses the hybrid Algorithm is more effective.

7 Final remarks

References

