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Resumo

O presente projeto visa, sobretudo, ao estudo exploratério da Tomografia CRP
- técnica de inversao sismica para imageamento de subsuperficies -, sob o fim de identificar
possiveis fragilidades, e lacunas para aprimoramento. Nesse sentido, o desenvolvimento
do projeto contou com uma reimplementagao computacional autoral da técnica, lancando

mao de nocgoes de paralelismo, além de técnicas de otimizagao nao-linear.



Abstract

The current project aims primarily at the exploratory study of the CRP Tomo-
graphy - seismic inversion technique for subsurface imaging -, in order to identify possible
weakenesses, and loopholes for refinement. In this regard, the project’s development in-
cludes a brand new authorial computational implementation, taking advantage of parallel

coding notions, as well as nonlinear optimization techniques.
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1 Introducao

A caracterizacao precisa da subsuperficie terrestre é um desafio central nas
geociéncias aplicadas, particularmente na exploracao de hidrocarbonetos. Entre as abor-
dagens mais promissoras para esse fim, destacam-se os métodos de tomografia sismica,
0s quais visam reconstruir propriedades do meio - como o modelo de velocidades, e as
superficies refletoras - mediante a resolucao de um problema de minimizacao.

Sob essa perspectiva, a técnica de tomografia baseada em pontos de reflexao
comum (common reflection points, no inglés) apresenta vantagens significativas. Ao or-
ganizar os dados sismicos em familias CRP — conjunto de pares fonte-receptor que com-
partilham um ponto de reflexao comum das ondas primarias —, de modo a adicionar mais
informagoes relacionadas a um mesmo ponto em profundidade, obtém-se maior acuracia
na modelagem da geometria dos refletores. Essa metodologia, introduzida na tese de
doutorado de Ignacio [2021], é especialmente relevante por agregar mais informagoes du-
rante a resolucao do problema de inversao, mediante ligeiras simplificagoes do modelo
fisico, suscitando subsequente vantagem computacional durante os calculos numéricos.
Por conseguinte, a tese apresenta uma ferramenta em potencial para inversao sismica.

Contudo, apesar de promissora, a formulacao tedrica e a implementagao con-
creta da técnica demonstram fragilidades que restringem sua aplicabilidade, bem como
escalabilidade, em cenarios complexos. Por essa ética, este trabalho tem como objetivo
revisar e aprimorar a Tomografia CRP, propondo melhorias na formulacao matematica,
na estratégia de otimizacao e na implementacao computacional. A saber, as principais
contribuigbes incluem: (i) imposigao de positividade (valores maiores ou iguais a zero) e li-
mites fisicos ao modelo de velocidades durante o processo de otimizagao; (ii) adogao de um
esquema de backtracking baseado na minimizacgao de cibicas visando a aceleracao da con-
vergencia do método de Gauss—Newton a um ponto estaciondrio; e (iii) reimplementacao
modular, paralelizada e com maior adaptabilidade ao usuério, do cédigo original. Os
novos codigos foram escritos em Python, em razao da sua mais facil compreensao e abs-
tracao, bem como pelo seu rico acervo em bibliotecas numeéricas e de paralelismo gratuitas

- diferentemente da implementacao original, feita em MATLAB.



2 Modelo Matematico

Nesta secao, é apresentado o modelo matemético do problema de inversao
que fundamenta a Tomografia CRP. Para tanto, definem-se as componentes do processo
de inversao; explicitam-se as respectivas correspondéncias na Tomografia CRP; ademais,
especifica-se o algoritmo de otimizacao nao linear adotado na técnica; e, entao, apresenta-
se brevemente a fun¢ao modeladora de dados, que reside no tragcamento de raios sismicos.

Por fim, descreve-se o algoritmo geral da técnica.

2.1 Problema de inversao

Enquanto técnica tomografica, o método em analise objetiva a determinacao de
variaveis, relacionadas ao modelo geoldgico, as quais otimizam um problema de quadrados
minimos. Genericamente, a partir de um conjunto de dados invariantes, e de um palpite
inicial para as variaveis minimizadoras, estas sao iterativamente atualizadas conforme uma
rotina de otimizacao - neste caso, o método de Gauss-Newton. Desse modo, mitiga-se o
residuo entre os dados invariantes, e os dados sintéticos a cada iteragao da rotina.

Em termos matematicos, formula-se o problema de inversao de quadrados

minimos a partir dos seguintes itens:

e Dados observados d°”®: vetor real n-dimensional cujas entradas consistem em um

conjunto de dados observados através de um experimento, e cedidos pelo usuario.

e Varidveis de modelo m: vetor real M-dimensional de parametros que se deseja
inverter de fato. E sobre ele que o processo de otimizacao, propriamente dito,

ocorre.

e Dados sintéticos d*¥"(m): vetor real n-dimensional, gerado a partir de m medi-
ante uma funcao de modelagem - neste caso, o tracamento de raios ulteriormente
apresentado. Idealmente, procura-se gerar, por continuas atualizagoes de m, dados
sintéticos que “se aproximem”o maximo possivel daqueles observados e invariantes,

isto é, d°%.

e Funcio de erro S(m) : uma fungao de RM para R, , a qual quantifica a discrepancia

entre os dados sintéticos e os observados, em funcao de um vetor de parametros de
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modelo qualquer. A saber, em sua forma mais simples para o problema de quadrados

minimos, pode-se expressa-la como

S(m) = %AdT(m)ngAd(m) :

em que Ad(m) = d*¥"(m)—d**, e W' é ainversa da matriz diagonal de covariancia

de dimensao n x n - definida previamente pelo usuario.

e Esquema de atualizacao: pilar do processo de inversao, a rotina de atualizagao prove
as sucessivas modificacoes sobre o modelo, necessarias para minimizar a funcao de
custo S(m). Ou seja, a partir de um palpite inicial mg, o esquema de atualizagao
gera uma sequéncia de vetores modelo my, parak = 1,2,... que idealmente

convergem em direcao ao modelo real. Dessa forma, a cada iteragao k, obtém-se

myy = my — o Amy

em que ¢y corresponde a um escalar o qual controla a intensidade do passo de
atualizacao Amy, - este, gerado segundo uma rotina de otimizacdo. Em seguin-
tes subsecoes, explora-se a formulagao matematica do método de Gauss-Newton, a

rotina de otimizacao utilizada na Tomografia CRP.

2.2 Dados observados e variaveis de modelo

Nesta subsecao, explicitam-se as variaveis que compoem, de fato, os vetores
de dados invariantes, assim como o vetor de modelo para o processo de inversao da
Tomografia CRP.

Dados observados: Para cada ponto em profundidade, gera-se um vetor que agrega
informagoes referentes a familia CRP - ou seja, conjunto de pares fonte-receptor associados
a esse mesmo ponto refletor. Para os propoésitos da Tomografia CRP, um tnico par-
receptor € caracterizado inequivocamente por: um tempo de viagem dupla %, isto é, o
tempo transcorrido entre a emissao da onda pela fonte, e sua respectiva captacao pelo
)T

receptor; e também por um vetor (s, 7, ps, pr)", em que s e r sdo as coordenadas espaciais



da fonte e receptor respectivamente; p, e p, sao as componentes horizontais dos vetores
de vagarosidade na posicao da fonte e do receptor, nessa ordem.

Por conseguinte, dada uma familia CRP f, dotada de /Ny pares fonte-receptor,
associa-se a ela um vetor de dados invariantes d?bs = [ts, (s, 7, ps, pr)ﬁ]fvzfl, em que ty
é a soma dos tempos de viagem dupla de cada par f;, ou seja, t; = Zfifl (tsr)i- Vale
ressaltar que a compressao dos tempos de viagem a uma tnica varidvel ¢; para cada familia
CRP f permite a redugao do custo computacional da técnica, ao passo que possibilita
a agregacao de multiplos pares fonte-receptor, sem impactar radicalmente, durante o
processo de inversao, sobre o tamanho da matriz jacobiana - posteriormente apresentada.
A Figura 1, logo abaixo, exemplifica a definigao de familias CRP.

Agora, para um modelo com N pontos de reflexdo comum, compdem-se os
dados observados pelo (grande) vetor formado a partir da concatenagao individual dos
diversos d‘}bs, logo, obtém-se d°*® = [d?cbﬂﬁy:l, vetor n-dimensional. Note que n = N +

Zjﬂvﬂ ANy .

Fontes

Receptores

= Ponto de reflexao
comum

S D e Raio

Figura 1: Esquema ilustrativo de duas configuracoes de familias CRP. Em cima, o detalhe
de uma tunica familia com 3 pares fonte-receptor. Em baixo, uma configuracao com 3
pontos de reflexao comum, a cada qual estao associados 3 pares fonte-receptor.

Variaveis de modelo: Pode-se definir o vetor de modelo m como a concatenagao en-

vel) | e aquelas

tre as varidveis de modelagem relacionadas ao modelo de velocidade (m
relacionadas ao tracamento de raios (m"). Dai, tem-se m = [m*“ | m"|.

Sendo assim, o modelo do modelo de velocidade consiste em um vetor M-dimensional



cujas entradas correspondem a escalares reais positivos, representando a velocidade da
onda para cada ponto do espaco em analise. Esses valores constituem os coeficientes de

interpolagao das bases de B-spline. Em suma, atesta-se que

m' = [v;] para i=1,2....M, e j=12....,M.
em que M, e M, correspondem ao nimero de nés de interpolacao, previamente definido,
ao longo dos eixos z e z, nessa ordem. Note que, em consonancia com a dimensionalidade
postulada, deve-se ter que m¥® tem dimensdo dada por M, - M, .
Desse modo, dada uma malha computacional com M, linhas e M, colunas, a
cada iteracao interpola-se o modelo atualizado, possibilitando a avaliacao da velocidade

para qualquer ponto (z, z) dentro dos limites fisicos da malha, de maneira que:

My

o) =33 esB@)i )

i=1 j=1
onde f;(z) e B;(z) correspondem a i-ésima e j-ésima bases de interpolacdo em x e em
z, respectivamente. O procedimento supracitado garante a geracao de modelos suaves
ao empregar interpolacao por cubicas - duas vezes diferencidaveis. Tal caracteristica ¢é
essencial para aplicacdo da funcao de modelagem, a qual preconiza a propagacao de
ondas em meios geologicos suaves. Ademais, para uma explicagao completa acerca da
construcao de B-splines, recomenda-se DeBoor [1978].

No que tange a m"*, pode-se defini-lo como a colecao de N vetores modelo
referentes a cada familia CRP f munida de N; pares fonte-receptor. Note que N equi-
vale ao numero de pontos refletores cedidos pelo usuério durante a definicao dos dados
invariantes. Dessa forma, tem-se:

' =

em que cada m’" é definido por

ra N
m' = [(JJ, Z>T= (087 97’)3’;]1:}1
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Para cada f, o vetor m;“y encapsula a posigao aproximada (z,z) do ponto refletor que
identifica a familia em anélise, além de que armazena os angulos de incidéncia (6) e de
reflexdo (6,) do raio associado a cada par fonte-receptor i. Complementarmente, deve-se

notar que m é vetor M-dimensional, tal que M = M, - M, -|—2(N+ Zé\;l Nf). [lustra-se,

na Figura 2, a separacgao entre os conjuntos de dados.

Dados Invariantes

(51 Py ) (5,0, 0% (5,0, 0™ (1, P (5,0 (5, b, )™
Y A 4 A 4 A A A

N
A \ 7 i
SNy g T
4
\\\\\\\ I’ //’,
NP2 Fontes

v

= Ponto de reflexdo
comum

Variaveis de modelo el Raio

@© Nos de interpolagéio

c=2> Componente horizontal do
vetor de vagarosidade

Figura 2: Esquema ilustrativo dos dados invariantes (imagem superior) e das variaveis de
modelo (imagem inferior). No exemplo, utiliza-se apenas uma familia CRP, dotada de 3
pares fonte-receptor.

Assim sendo, munido das definicoes acima descritas, atesta-se que a partir
de um m"? arbitrario, cada vetor m;ay caracteriza Ny pares de raios que partem da
aproximacao do ponto refletor comum em direcao a superficie. A partir do tracamento
de raios, geram-se para cada familia CRP, um vetor de dados sintéticos d;yn - analogo,
em termos de entradas, ao vetor de dados invariantes d;’cbs. Consequentemente, obtém-se
di" = [t5", (5,7, ps, pr);i’"]fv:fl, cujas entradas possuem o mesmo significado fisico daquelas
que compodem d?f’s, a despeito de serem parametros simulados pela funcao de modelagem.

Dai, a reuniao dessas estruturas de dados define o dado sintético d*¥", isto é,

@ = [d,
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Idealmente, busca-se a igualdade entres os dados sintéticos e os observados,
ou seja d*¥"(m) = d°, a fim de extrair as varidveis de modelo fisico m que descrevem a

subsuperficie.

2.3 Meétodo de Gauss-Newton

Enquanto método de otimizacao de segunda ordem, Gauss-Newton emprega
informacoes acerca da derivada segunda, a partir de uma aproximacao da Hessiana asso-
ciada a fungao objetivo, para estimar a direcao do passo de atualizacao das varidveis do
modelo (Nocedal and Wright [2006]).

Formalmente, na k-ésima iteracao do processo de otimizacao de uma funcao S

duas vezes diferenciavel, determina-se a direcao Amy, através da equagao matricial

em que Hg consiste na matriz hessiana associada a S(my). Da expressao, nota-se que o

gradiente de S, avaliado em my, pode ser expresso por

adsyn

m meme

VS(my) = J(my) ' W,tAd(my), com J(my) =

Complementarmente, empregando-se a aproximacao de Gauss-Newton para a hessiana,

obtém-se

Hg(my) =~ J(my)" W5 J(my,).

Dessa maneira, a Equagao (1) para atualizacdo do passo a cada iteracao torna-se:

Como demonstrado por Ignécio em sua tese (paginas 49 e 50), pode-se manipular a tltima
expressao, de modo a conformé-la ao formato de uma equagao normal do problema de

minimos quadrados. Nesse sentido, tem-se o sistema normal
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[T m) W 1 (m) W) Ay = [T (my) W, )T W, 2 Ad(my)
cuja solucao esta associada, por sua vez, a equacao matricial a seguir:

[J(my) W5 Amy, = W5"? Ad(my,) . (2)

Em termos numéricos, o sistema linear obtido em (2), inerente a atualizagao
de passo durante as iteragoes tomograficas, simboliza um dos principais entraves para a
performance computacional, em razao de seu mal condicionamento. Na implementagao
original da Tomografia CRP, empregou-se o método da decomposicao em valores singula-
res (SVD), cujo dispéndio computacional é compensado por sua acurdcia - a0 menos para
formulacao em 2 dimensoes.

No que concerne a matriz Jacobiana, vale apontar que possui um nimero de
linhas igual a Z}V:l(él]\f 7+ 1) — em razao do nimero total de varidveis em d*¥" -; e um
numero de colunas equivalente a M + Z;VZI(QN 7+ 2), devido ao ntimero de varidveis

contidas em m. Por conseguinte, a matriz pode ser representada por:

[Otsyn  Otsyn  Otsyn  Otgyn  Otgyn ]
0x 0z 00, 00, ov

apsyn apsyn apsyn apsyn apsyn

S S S S S

0x 0z 00, 00, ov

| o opr opr opi op
Jm)=1-—25— =5, 90, 08, Ov (3)

Dsm D5 s Psm P

0x 0z 00, 00, ov

Jrov grun grovn gy v

| Ox 0z 00, 00, ov |

Computacionalmente, a Jacobiana da Tomografia CRP se beneficia, a despeito

da tradicional Esterecotomografia (Billette and Lambaré [1998]), ao associar diversos pares
fonte-receptor (e seus raios) a um mesmo ponto em profundidade, e a um mesmo valor
total de viagem. Tais “acoplamentos” permitem a inversao das familias CRP em conjunto,

em detrimento de uma andlise individual para cada tempo de viagem e ponto de reflexao
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- 0 que acarretaria no incremento da dimensionalidade da Jacobiana.

2.4 Tracamento de raios

Ao longo das iteragoes do processo de inversao, faz-se necessario aplicar a
funcao de modelagem sobre cada my, a fim de computar o erro entre os dados invariantes e
os aproximados. Dessa forma, emprega-se o tragamento de raios: um sistema de equagoes
diferenciais que simula a propagacao de um ponto sobre a frente de onda, em fungao
do comprimento de arco descrito, ou em funcao do tempo de viagem da onda. Em
simbolos, dada uma velocidade do meio ¢ (r), em que r = (z, z) é o vetor de posigao (caso
bidimensional), o tragado de raios é constituido pelas seguintes equagoes diferenciais em

termos do comprimento de arco ds:

dr __ _p
ds = o(r)

$ 4L = o(r) (4)
‘2—5 = Vo(r)

\

ﬁ consiste na vagarosidade do meio; bem

em que 7" é o tempo de viagem da onda; o(r) =
como p representa o vetor de vagarosidade, de modo que vale a igualdade ||p(r)||s = o(r).
Em conexao com as variaveis de modelo, vale ressaltar que um raio incidente sobre um
refletor, cuja inclinacao em relagao a vertical é dada por 6, esta submetido a um vetor de
vagarosidade p = o(r) - [sen 6, cos 0.

Dado um modelo de velocidade e uma condigao inicial, isto é, valores de r, T
e p (ou inclinacao #) em s = 0, pode-se computar novos valores iterativamente com base
em métodos numéricos para problemas de valor inicial (PVI). Na implementagao original,
tal qual na atual, emprega-se o método de Euler avancado de primeira ordem, em razao
de sua eficiéncia computacional (veja LeVeque [2007]).

Complementarmente, merece destaque o fato de que as derivadas parciais que
compoem a Jacobiana na Equacdo (3) podem ser calculadas, mediante resultados da
teoria paraxial de raios (Cerveny [2005]), individualmente para cada tracado. Esse fato
possibilita, durante o processo de inversao, a simultaneidade da modelagem de d*¥"(my)

e o célculo de V.S(my,).
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2.5 Algoritmo da Tomografia CRP

Enfim, uma vez dotados de todas as partes constituintes do problema de in-
versao, € possivel apresentar o algoritmo da técnica tomografica. Vale frisar que o seguinte

enunciado diz respeito a versao original proposta e implementada por Ignacio em sua tese.

Algoritmo da Tomografia CRP

Passo 0 Dados de entrada: d°%®, além de, ng eR™™ M,e M, e N, vy € R,.

Passo 1 Inicializacao: Calcule my® e my™, daf defina my = m¢? U mg®, k = 0,

m; = my.

Passo 2 Modelagem dos dados: Gere o modelo de velocidade ¢ (z, z) por interpolagao,

compute d*¥"(my,) através do tracamento de raios, e entao calcule S(myg) e V.S(my).
Passo 3 Critério de parada: Se ||V.S(my)||2 = 0, FIM. Senao, vé para o Passo 4.
Passo 4 Direcao de passo: Calcule o passo de variacio Amy, a partir da Equagao (2).

Passo 5 Tamanho de passo: Encontre o menor inteiro nao negativo j tal que ay = (%)3

satisfaca a condicao

Passo 6 Atualizagao: Defina my,; = my + a,Amy, k = k + 1 e volte para o Passo 2.

Vale apontar que, no Passo 1 do algoritmo, o cdlculo de m¥® e my® é feita da seguinte

forma: a principio, define-se mge’ =0 - Ly« a,, €em que 1y, a7, € @ matriz unitaria de
dimensdes M, x M,, e entao se interpola ¢ (z, z). Dessa maneira, o modelo de velocidade
inicial serd constante no espaco, simulando um cendrio em que nao se tem nenhuma
informacao a priori do modelo geolégico. Em seguida, para cada fonte e receptor de uma
familia f, aplica-se o tracamento de raios em direcao a subsuperficie, a partir das condi¢oes
iniciais de posicdo e vagarosidade definidas por d**¢ (refletindo o vetor de vagarosidade),

até que se alcance t;/(2Ny) segundos de propagacdo. Dessa forma, ao fim do tragado,

15



obtém-se os respectivos angulos de incidéncia e emergéncia (6, 6,) |i\f:fl Ademais, define-
se o ponto refletor relativo a f como o centroide dos pontos finais de propagacao de todos

os raios da familia - tal como é exibido na Figura 3. Por conseguinte, mg‘;y é dado por:

Ny Ny
ray Doic1(Ts +wr)i i (2 + 20)s 0.0 1N ) v
= sy 0r)ilizy ) s =1,2,...,N.
( 2Nf ’ 2Nf 7( ) |’L—1 f

Inicializacao

V¥ Fontes
A Receptores

(81,Pg )™ (5,. P, )™ (55, P, )™ [T G (A e A P

== Aproximagao do ponto
de reflexdo comum

----- Raio

= Ponto final do raio

Figura 3: Esquema ilustrativo do processo de inicializacao do algoritmo. No exemplo,
utiliza-se uma familia CRP com 3 pares fonte-receptor.

3 Restruturacao

Nesta secao, sao apresentadas as principais modificagoes desenvolvidas, tanto
em termos de implementacao quanto em termos de reformulacao algoritmica. Dessa forma,
as contribuigoes autorais sao apresentadas gradualmente, partindo da implementacao da
funcao modeladora; em seguida, passando pela geracao de dados sintéticos; dai apresentam-
se moédulos auxiliares; e entao reimplementa-se o algoritmo original da técnica. Em se-
guida, sao propostas e implementadas modificacoes tedricas para o problema de inversao,

a fim de incorporar informagoes a priori sobre o modelo geoldgico.

3.1 Paralelizacao do Tracamento de Raios por CPU

Pilar da técnica tomografica, a funcao modeladora desfruta do fato de ser
intuitivamente paralelizavel: cada tragamento de raio (associado a uma fonte ou a um
receptor) pode ser concebido como um PVT independente dos demais. Portanto, viabiliza-

se a resolucao simultanea de multiplos problemas de valor inicial, de modo a acelerar a
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modelagem.

Ao contrario do MATLAB - por onde a técnica foi originalmente implementada
-, Python possui robustas bibliotecas de paralelismo gratuitas. No presente trabalho,
langou-se mao de Numba (Lam et al. [2015]), a qual permite a facil distribuigao de tarefas
entre multiplos nicleos de CPU. Com o propédsito de ilustrar a significativa discrepancia
entre os tempos de computagao requeridos para ambas metodologias (paralela e serial),
apresentam-se os resultados de um simples experimento abaixo.

No experimento, foram definidas uma malha de pontos com dimensao 400 x400,
velocidade uniforme ¢ (x,z) = 1m/s, e indice da posigao da fonte (200,400) - ou seja, a
fonte estava no nivel mais profundo do modelo. Dai, foram propagados em direcao a su-
perficie um ntimero n crescente de raios, a saber n = 10, 20, ..., 100, até que se alcancasse
100 segundos no Sistema de EDO’s (4). Para cada conjunto de n raios, foram tomados
angulos iniciais 6 a passos uniformes no intervalo [7%17 ”TH] Ademais, fixou-se o passo de
discretizacao de Euler para h = 0.01 . A partir dessa configuracgao, incrementou-se n e
computaram-se os PVI's em loop. Em experimentos separados, utilizou-se a abordagem
serial e depois paralelizada em 5 nicleos.

Tempo de execucao
em funcao do niimero de raios

— —8— Paralelo
oo 20 Serial
o
Q.
g 10
@
0 c o o o o o o < o o)
°
9
o8 300
zﬁg
gr_u 295
@ 290
[%2)
20 40 60 80 100

NUmero de raios

Figura 4: Grafico exibindo o perfil do tempo de execucao para a resolucao serial e para-
lela em funcao do nimero de raios. Na figura de baixo, exibe-se o ganho relativo entre
implementagoes.

Como demonstra a Figura 4, a distribuicao de tarefas prové significativa reducao

do tempo de execugdo, uma vez que se compara o desempenho em paralelo (linha azul), e
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o serial (linha laranja). Meramente lidico, o cendrio proposto pelo experimento - isto é, o
tracamento de até 100 raios - ainda se demonstra simples em relagao aquele trabalhado na
inversao tomografica: milhares de sistemas de raios sao computados. Portanto, conclui-se
a grande importancia do paralelismo na Tomografia CRP.

A implementacao das funcoes relativas ao tracamento de raios, e sua parale-
lizagao, foi feita em em dois arquivos distintos: dif_eq_solver.py - voltado a resolucao
numérica do Sistema de EDO’s de raios - e ray_solver.py - destinado a métodos auxili-
ares de manipulacao dos raios e configuracao de condic¢oes iniciais.

Enfim, também destaca-se o fato de que, durante o processo de inversao da
Tomografia, o tragamento de raios ¢ feito em simultaneo ao cdlculo da matriz Jacobiana -
agravando o tempo de modelagem do sistema fisico para cada raio. Assim, a paralelizacao
de ambas as etapas acarreta significativamente, na implementacao final, a otimizagao do

tempo de execucao.

3.2 Geradores de experimentos sintéticos

Palco para validacao e experimentacao da Tomografia, experimentos sintéticos
preconizam a geracao de dados que simulem a extracao de informacoes geofisicas. A esse
respeito, a implementacao original da técnica resumia em um unico arquivo a geracao
especifica - pouco adaptada ao usuério - de apenas um modelo geologico sintético. Em
contrapartida, ao longo deste projeto buscou-se o desenvolvimento de um programa com
mais alto nivel de personalizagao do espago fisico e dos dados invariantes gerados.

Sendo assim, no arquivo construct NIP.py, foi desenvolvido um programa
para construcao de interfaces refletoras - as quais simulam pontos CRP. A principio, o
codigo possibilita gerar curvas refletoras trigonométricas, ou retas, cada qual com um
conjunto de condigOes iniciais arbitrdrias para os raios emergentes. Sob essa logica, a
construcao de dados invariantes para inversao ¢ feita mediante aplicacao de tracamento
de raios sobre esses PVI’s pré definidos. Na Figura 5 abaixo, um exemplo que ilustra a

geracao de dados observados.
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Figura 5: Exemplo de modelo fisico sintético gerado a partir do programa supracitado.
Nele, cada ponto refletor esta associado a apenas um par de raios. Na imagem, as linhas
tracejadas em vermelho representam os raios tracados a partir dos PVI’s associados. Ja
as linhas pretas correspondem a posicao real dos pontos CRP. Ao fundo, o modelo de
velocidade com grande variagao central.

3.3 Modbdulos auxiliares: regularizacao e interpolacao

Originalmente, Ignacio complementa o desenvolvimento do problema de in-
versao com a adigdo de um termo de regularizagao sobre a funcao objetivo S (para mais
detalhes, veja o capitulo 5, segdo 3 da tese). Em suma, o termo regularizador envolve
a construcao de uma matriz R, invariante ao longo do processo de inversao. Visto que
sua definicao envolve certa arbitrariedade do usuério, destinou-se sua criacdo a um ar-
quivo unico, construct_reg mat.py. Na implementacao original, ela era extensivamente
calculada no mesmo arquivo da inversao em si.

Ademais, dando continuidade & modularizacao dos cédigos, criou-se o arquivo
construct_bspline.py, o qual tem como objetivo a construcao das bases de interpolacao

em duas dimensoes a partir do nimero de nés e de seus valores fornecidos pelo usuario.

3.4 Reimplementacao da Tomografia CRP

A partir das modificagoes apresentadas, foi possivel reimplementar a Tomogra-
fia CRP, cujo programa se encontra no arquivo tmg_crp.py. Adicionalmente, no que tange
ao processo de minimizacao, refinou-se o critério de aceitacao de passo de atualizacao a

partir da Condi¢ao de Armijo. Essencialmente, modificou-se o Passo 5 do Algoritmo da
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seguinte maneira :

Passo 5 (Condigao de Armijo) Tamanho de passo: Encontre o menor inteiro nao ne-

gativo j tal que o = (%)J satisfaca a condicao

S(my + apAmy) < S(my) + 10,V S(my)Amy, |

em que se fixou n = 1-107* ao longo do projeto. Essa restricao enrijece o valor de
decréscimo da funcao objetivo, a fim de evitar que sejam tomados passos «y grandes
demais ou improdutivos (Friedlander et al. [2019)]).

Dessa forma, foi possivel comparar a performance entre o cédigo original e o
atual. Tomando como base o teste sintético apresentado no repositorio da tese, registrou-
se o tempo de execucao e o valor da funcao objetivo ao final da otimizacao realizada ao
longo de 15 iteracgoes. Os resultados, exibidos na Tabela 1, revelam uma aceleragao de
620%, aliada & obtencao de um minimizador local quase 3 vezes menor, através da nova

implementagao.

Original Autoral
Tempo (min) | Residuo final | Tempo (min) | Residuo final

| 10747 | 119942 [ 1484 [ 401,70 |

Tabela 1: Resultados obtidos por duas implementacoes distintas da Tomografia CRP

3.5 Aplicagao de backtracking

Dando continuidade as modificacoes algoritmicas na Tomografia CRP, buscou-
se o aprimoramento da etapa associada a definicao de ay, substituindo a mera divisao
iterativa oy, = (%)J . Em termos praticos, empregou-se a técnica de backtracking proposta
por Nocedal e Wright. O algoritmo de redugao de passo lanca mao do conhecimento
acerca de S(my), VS(my) e S(my + Amy), VS(my + Amy) para aproximar a fungao
o(a) = S(my + aAmy) por uma cibica.

Idealmente, o algoritmo visa alcangar oy, = argmin{¢(«)}, via aproximacao

pelo minimo global do polinémio

de() = ac® + ba® + doa+ o
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em que ¢y = ¢(0) e ¢ = ¢(ay), sendo o a magnitude de passo anterior. Essa estratégia
de busca tem como objetivo aprimorar a modelagem da funcao ¢(«) - sobretudo para
casos em que esta possui variacoes de sinal na curvatura.

Ao longo de 18 iteragoes, otimizou-se o mesmo problema abordado na subsegao
anterior, a fim de comparar o desempenho entre as duas estratégias de backtracking.
Observou-se um aumento na velocidade média do algoritmo quando aplicada a mini-
mizacao de cubicas, ainda que o custo final tenha ficado aquém daquele resultante pela

abordagem inicial - como exposto na Tabela 2.

Sucessivas divisoes por % Minimizacao de cibicas
Tempo (min) | Residuo final | Tempo (min) | Residuo final
| 1987 [ 26179 || 1529 [ 552209 |

Tabela 2: Resultados obtidos por duas abordagens distintas de backtracking

A velocidade alcancada pela nova implementacao é justificada pela reducao
do numero de buscas por «ay, visto que foram feitas, em média, cerca de 2 buscas por
iteragao. Em contrapartida, a estratégia original estd sujeita, em muitas iteragoes, a
performar cerca de 10 buscas de Armijo. Vale ressaltar que cada busca preconiza a
rejeicao de um tamanho de passo anterior, exigindo, de modo subsequente, a aplicacao
da funcao de modelagem para cada raio do sistema - logica que acarreta no atraso da
conclusao de uma iteracao. Quanto a perda de acurécia, supoe-se que ela ocorre em
razao do calculo de passos pequenos demais durante a minimizacao das aproximagoes
polinomiais, de modo a nao gerar significativo decréscimo sobre a funcao objetivo. Isto
posto, o problema de minimizagao auxiliar durante a busca por passo ainda constitui
amplo palco de investigacao, bem experimentagao - como a possivel mescla de estratégias
em tempo de execucao. Trabalhos futuros sobre Tomografia CRP devem abordar tais

lacunas.
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3.6 Imposicao de restricoes naturais

Nas subsegoes anteriores, partiu-se de uma aproximagao inicial baseada no
processo de inicializacao sugerido por Ignécio. Nao obstante, e a despeito do sucesso na
inversao do problema anterior, a sucessiva atualizacao do modelo de velocidade gerou
modelos nao-fisicos, isto é, foram construidos modelos com valores negativos. Tal fato
joga luz sobre uma intrinseca fragilidade da Tomografia CRP: nao existem restrigoes de
sinal associadas ao problema de atualizagao.

Sob essa otica, o problema se torna mais claro quando se submetem apro-
ximagoes iniciais nao homogéneas ao algoritmo. Em testes feitos tanto com a imple-
mentacao original, quanto com a autoral, observou-se a estagnacao do processo logo na
primeira iteracao. Isso ocorre pois o tragcamento de raios nao suporta velocidades negati-
vas, logo, a modelagem resulta em aproximagoes inverossimeis que nao chegam a produzir
dados sintéticos que reduzam a funcao custo. Dessa forma, uma vez esgotado o limite de
buscas de Armijo, encerram-se as iteracoes tomograficas.

A fim de contornar esse empecilho - sem reformular a Tomografia CRP a partir
de um problema de otimizagao com restricoes -, optou-se por uma mudanca de varidveis
que introduzisse, a partir de conhecimento a priori sobre o sistema, os vinculos necessarios
para assegurar a fisica da modelagem. Dai, pode-se definir a velocidade v € R, em cada

n6 de interpolacao em funcao de u € R tal que

1

U(U):a—(a—ﬁ)'m

Y

onde « é o maior valor de velocidade estimado para o modelo, e § o menor. Note que
lim, 400 v(u) = a , assim como lim, ,ov(u) = . Assim, pode-se otimizar a varidvel u
irrestritamente, de modo a garantir, naturalmente, a viabilidade dos valores de v associ-
ados.

Assim sendo, a substituicdo proposta suscita a adigdo de um termo para o
célculo do Jacobiano da Tomografia CRP (3). Pela regra da cadeia, atesta-se que

8-_8-81} 0- U

o~ ovou a0 ey

Logo, ¢é necessario, tao somente, a multiplicacao das derivadas em relacao a velocidade
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pelo termo % explicitado acima. A implementacao dessa versao encontra-se no arquivo

test_tmg_crp.py, enquanto a versao atualizada do tragcamento de raios, incorporando a
troca de variaveis, reside em dif _eq_solver.py. Com o propésito de avaliar o desempenho
da técnica tomografica munida das modificacoes propostas, foram realizados dois testes

sintéticos - cuja metodologia e cujos resultados, sao descritos a seguir.

4 Testes sintéticos

A partir dos arquivos presentes no repositério da tese, e através do modulo
de geracao de experimentos sintéticos supracitado, foram realizados dois experimentos
numeéricos, visando a analise de performance da implementagao autoral da Tomografia
CRP. De modo sucinto, objetivava-se o funcionamento pleno do Algoritmo quando sub-
metido a modelos iniciais nao homogéneos, e respeitando as restrigoes fisicas do problema
de inversao. Os modelos geoldgicos utilizados foram: i) Modelo de Caixa e ii) Modelo de
Pré-sal, apresentados a seguir na Figura 6.

0 1 2 3 4 5 6
35 2 2 4 6 8 10 12 45
1
3.0 4.0
35
25
| 3.0
20
25
2.0
15 6

0

1

z[km]
[ km/s ]
z[km]
[km/s ]

x[km]

x[km] 15

Figura 6: modelos de velocidade dos experimentos sintéticos. A esquerda, o modelo de
Caixa - o mesmo apresentado por Igndcio em sua tese. A direita, o modelo de Pré-sal.

4.1 Metodologia

vel a partir de uma amostragem uniforme

Para os experimentos, inicializou-se m
dos valores de velocidade reais, e entao aplicou-se um filtro de suavizacao aos modelos.
Ademais, definiu-se o nimero maximo de itera¢oes como 20, com até 20 buscas de Armijo.
Em termos de métricas, além de avaliar a porcentagem de reducao da fungao objetivo, e o

tempo de execucgao ao fim do processo de inversao, também buscou-se avaliar a qualidade

relativa dos pontos focais de cada par fonte-receptor, ou seja, especificamente a apro-
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ximagao dos pontos refletores a medida que se incrementava a profundidade (coordenada
z) associada.

Sob essa visao, para cada experimento, aplicou-se o tracamento de raios para
baixo, a partir do conjunto final de dados sintéticos. Entao, tomou-se como aproximagcao
do ponto CRP o centroide dos pontos finais de cada raio. Para cada familia, computou-se
a maxima distancia entre o refletor e os pontos finais, pois o valor obtido representa,
nesta andlise, o raio do circulo focal associado ao CRP. Complementarmente, tomou-se
a porcentagem entre o raio de confianca e o nivel de profundidade do refletor. Conse-
quentemente, menores porcentagens indicam maior precisdo (porém nao necessariamente
acurdcia), sobretudo para niveis mais fundos - visto que esses pontos representam maior

dificuldade para a inversao.

4.2 Resultados

Modelo de Caixa : Pode-se dizer que a Tomografia CRP mostrou-se estavel através das
modificagoes sugeridas, visto que todas as iteragoes foram feitas sem estagnacao durante as
buscas de Armijo ou durante a modelagem por raios. Para esse experimento, os resultados
referentes ao tempo de execucao, e a reducao da fungao objetivo em relacao ao valor inicial,

foram registrados na Tabela (3).

H Tempo (min) ‘ Redugao da fungao objetivo H

I 2343 | 50, 77% |

Tabela 3: Resultados obtidos pela inversao do Modelo de Caixa

No que tange aos resultados acerca dos raios de confianca, recorreu-se a anélise
do histograma representado na Figura 7. Torna-se evidente a alta precisao focal dos raios,
uma vez que a maioria das familias apresentou regiao de factibilidade com raio menor que
2% da profundidade do refletor correspondente - isto é, para refletores na faixa dos 5 km,

o raio de confianca foi menor que 100 m.
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Figura 7: Associado ao Modelo da Caixa, histograma da concentracao das familias em
funcao da porcentagem da profundidade do refletor associado.

Por fim na Figura 8, nota-se que o modelo de velocidade final alcancado pre-
serva, superficialmente, o perfil geral do Modelo de Caixa - a saber, variacao periédica
em toda sua extensao, a nao ser pela porcao retangular central de alta velocidade. Con-
tudo, nota-se o surgimento de um artefato nas tltimas faixas de profundidade (entre 3,5
km até 5 km ao longo do eixo z). A presenca dessa anomalia sugere mais atengao ao

desenvolvimento do problema de otimizagao.
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Figura 8: Modelo de velocidade final alcancado pela inversao do problema da Caixa.

Modelo de Pré-sal: Quanto ao segundo experimento sintético, novamente atesta-se a
estabilidade do algoritmo reformulado a partir da inicializacdo nao homogénea. Ademais,

constatou-se uma reducao da func¢ao objetivo similar ao caso anterior (aproximadamente
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50%) - apesar do tempo de execucao ter caido pela metade, como indicado na Tabela 4).
A maior rapidez de convergéncia esta intimamente atrelada ao menor niimero de buscas

de Armijo realizadas ao longo das iteragoes.

H Tempo (min) \ Redugao da funcao objetivo H
[ 1184 | 48, 73% |

Tabela 4: Resultados obtidos pela inversao do Modelo de Pré-sal

Similarmente ao experimento anterior, registrou-se elevada precisao focal -
como ilustrado pelo histograma da Figura 9. A maioria das familias apresentou raios de

confianca menores que 1% da profundidade respectiva ao refletor.

[Com base nos NIP's aproximados]
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Figura 9: Associado ao Modelo do Pré-sal, histograma da concentracao das familias em
funcao da porcentagem da profundidade do refletor associado.

Enfim na Figura 10, observa-se alta fidelidade entre o modelo de velocidade
real e o alcancado pelas iteracoes tomograficas. Contudo, vale destacar, novamente, a
presenca de um artefato inesperado nos niveis mais profundos (entre 4,5 km e 6 km ao

longo do eixo z).
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Figura 10: Modelo de velocidade final alcangado pela inversao do problema do Pré-sal.

5 Conclusao

O presente trabalho, acredita-se, cumpriu seu objetivo central de realizar um
estudo exploratorio inicial da Tomografia CRP, evidenciando tanto suas potencialidades
quanto suas fragilidades estruturais. A nova implementacao desenvolvida ao longo do
projeto demonstrou-se significativamente superior a versao original — tanto em termos
de desempenho de otimizacao quanto em tempo de execugao — validando a relevancia
das intervencoes propostas.

Primeiramente, a reestruturacao completa do cédigo, com paralelizacao explicita
por CPU e modularizacao em Python, permitiu reduzir substancialmente o tempo de
execucao e aumentar a estabilidade da técnica. A nova implementacao possibilitou, inclu-
sive, avaliar casos inviaveis na formulacao original, como inicializagoes nao homogéneas,
suscitando limitagoes e discussoes antes inacessiveis a analise.

Em segundo lugar, este estudo demonstrou que a Tomografia CRP, em sua
formulacao original, carece de mecanismos explicitos de controle fisico sobre o modelo
de velocidades. A introducao de uma mudanca de varidveis que garante positividade e
agrega informagao a priori ao modelo constituiu um passo fundamental para tornar o
processo de otimizacao fisicamente consistente, eliminando a geracdao de modelos nao-
fisicos e prevenindo a irremediavel estagnacao do algoritmo.

Terceiro, a substituicao do método tradicional de busca de passo por uma
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estratégia baseada na minimizacao de cubicas trouxe ganhos relevantes de desempenho,
reduzindo drasticamente o nimero de avaliagoes da funcao de modelagem ao longo da
otimizacao. Ao mesmo tempo, o comportamento observado — passos excessivamente
pequenos e ineficientes — evidencia, sobretudo, a importancia da formulacao de uma
estratégia de backtracking robusta e adaptativa as diferentes etapas da otimizagao - pos-
sivelmente pela mescla de aproximacoes polinomiais durante a busca de Armijo. Outra
possibilidade, tal como Ignacio propunha, a resolugao do subproblema de minimizacao
por heuristicas de otimizacao global.

Por fim, os experimentos sintéticos demonstraram que, apesar da boa capa-
cidade de focalizacao dos pontos refletores e da redugao consistente da funcao objetivo,
artefatos persistem nos niveis mais profundos da malha. Esse comportamento indica que
a técnica, embora promissora, ainda apresenta limitacoes vinculadas tanto a formulacao
matematica quanto ao condicionamento do problema inverso. Assim, conclui-se que o
método ainda pode ser amplamente aprimorado, seja por: regularizagoes mais sofistica-
das sobre a fungao objetivo - aqui nao abordadas -; esquemas de otimizacao que desfrutem
de outras aproximagoes para a matriz Hessiana (como BFGS); algoritmos para solugao
de sistemas lineares que superem os altos custos proporcionados pela SVD. Além, é claro,
da transposicao para arquiteturas GPU - catalisando o desempenho computacional.

No conjunto, este projeto fornece nao apenas uma implementacao mais confiavel
e eficiente da Tomografia CRP, mas também um diagnostico claro das principais lacunas
tedricas e computacionais que precisam ser abordadas em trabalhos subsequentes. Dessa
forma, estabelece-se um primeiro passo em direcao a sofisticacao e a compreensao da

resolucao de problemas de inversao na Geofisica Computacional.
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