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Resumo

O presente projeto visa, sobretudo, ao estudo exploratório da Tomografia CRP

- técnica de inversão śısmica para imageamento de subsuperf́ıcies -, sob o fim de identificar

posśıveis fragilidades, e lacunas para aprimoramento. Nesse sentido, o desenvolvimento

do projeto contou com uma reimplementação computacional autoral da técnica, lançando

mão de noções de paralelismo, além de técnicas de otimização não-linear.
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Abstract

The current project aims primarily at the exploratory study of the CRP Tomo-

graphy - seismic inversion technique for subsurface imaging -, in order to identify possible

weakenesses, and loopholes for refinement. In this regard, the project’s development in-

cludes a brand new authorial computational implementation, taking advantage of parallel

coding notions, as well as nonlinear optimization techniques.
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1 Introdução

A caracterização precisa da subsuperf́ıcie terrestre é um desafio central nas

geociências aplicadas, particularmente na exploração de hidrocarbonetos. Entre as abor-

dagens mais promissoras para esse fim, destacam-se os métodos de tomografia śısmica,

os quais visam reconstruir propriedades do meio - como o modelo de velocidades, e as

superf́ıcies refletoras - mediante a resolução de um problema de minimização.

Sob essa perspectiva, a técnica de tomografia baseada em pontos de reflexão

comum (common reflection points, no inglês) apresenta vantagens significativas. Ao or-

ganizar os dados śısmicos em famı́lias CRP – conjunto de pares fonte-receptor que com-

partilham um ponto de reflexão comum das ondas primárias –, de modo a adicionar mais

informações relacionadas a um mesmo ponto em profundidade, obtém-se maior acurácia

na modelagem da geometria dos refletores. Essa metodologia, introduzida na tese de

doutorado de Ignácio [2021], é especialmente relevante por agregar mais informações du-

rante a resolução do problema de inversão, mediante ligeiras simplificações do modelo

f́ısico, suscitando subsequente vantagem computacional durante os cálculos numéricos.

Por conseguinte, a tese apresenta uma ferramenta em potencial para inversão śısmica.

Contudo, apesar de promissora, a formulação teórica e a implementação con-

creta da técnica demonstram fragilidades que restringem sua aplicabilidade, bem como

escalabilidade, em cenários complexos. Por essa ótica, este trabalho tem como objetivo

revisar e aprimorar a Tomografia CRP, propondo melhorias na formulação matemática,

na estratégia de otimização e na implementação computacional. A saber, as principais

contribuições incluem: (i) imposição de positividade (valores maiores ou iguais a zero) e li-

mites f́ısicos ao modelo de velocidades durante o processo de otimização; (ii) adoção de um

esquema de backtracking baseado na minimização de cúbicas visando à aceleração da con-

vergência do método de Gauss–Newton a um ponto estacionário; e (iii) reimplementação

modular, paralelizada e com maior adaptabilidade ao usuário, do código original. Os

novos códigos foram escritos em Python, em razão da sua mais fácil compreensão e abs-

tração, bem como pelo seu rico acervo em bibliotecas numéricas e de paralelismo gratuitas

- diferentemente da implementação original, feita em MATLAB.
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2 Modelo Matemático

Nesta seção, é apresentado o modelo matemático do problema de inversão

que fundamenta a Tomografia CRP. Para tanto, definem-se as componentes do processo

de inversão; explicitam-se as respectivas correspondências na Tomografia CRP; ademais,

especifica-se o algoritmo de otimização não linear adotado na técnica; e, então, apresenta-

se brevemente a função modeladora de dados, que reside no traçamento de raios śısmicos.

Por fim, descreve-se o algoritmo geral da técnica.

2.1 Problema de inversão

Enquanto técnica tomográfica, o método em análise objetiva a determinação de

variáveis, relacionadas ao modelo geológico, as quais otimizam um problema de quadrados

mı́nimos. Genericamente, a partir de um conjunto de dados invariantes, e de um palpite

inicial para as variáveis minimizadoras, estas são iterativamente atualizadas conforme uma

rotina de otimização - neste caso, o método de Gauss-Newton. Desse modo, mitiga-se o

reśıduo entre os dados invariantes, e os dados sintéticos a cada iteração da rotina.

Em termos matemáticos, formula-se o problema de inversão de quadrados

mı́nimos a partir dos seguintes itens:

• Dados observados dobs: vetor real n-dimensional cujas entradas consistem em um

conjunto de dados observados através de um experimento, e cedidos pelo usuário.

• Variáveis de modelo m: vetor real M -dimensional de parâmetros que se deseja

inverter de fato. É sobre ele que o processo de otimização, propriamente dito,

ocorre.

• Dados sintéticos dsyn(m): vetor real n-dimensional, gerado a partir de m medi-

ante uma função de modelagem - neste caso, o traçamento de raios ulteriormente

apresentado. Idealmente, procura-se gerar, por cont́ınuas atualizações de m, dados

sintéticos que “se aproximem”o máximo posśıvel daqueles observados e invariantes,

isto é, dobs.

• Função de erro S(m) : uma função de RM para R+, a qual quantifica a discrepância

entre os dados sintéticos e os observados, em função de um vetor de parâmetros de
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modelo qualquer. A saber, em sua forma mais simples para o problema de quadrados

mı́nimos, pode-se expressá-la como

S(m) =
1

2
∆dT (m)W−1

D ∆d(m) ,

em que ∆d(m) = dsyn(m)−dobs, eW−1
D é a inversa da matriz diagonal de covariância

de dimensão n× n - definida previamente pelo usuário.

• Esquema de atualização: pilar do processo de inversão, a rotina de atualização provê

as sucessivas modificações sobre o modelo, necessárias para minimizar a função de

custo S(m). Ou seja, a partir de um palpite inicial m0, o esquema de atualização

gera uma sequência de vetores modelo mk , para k = 1, 2, . . . que idealmente

convergem em direção ao modelo real. Dessa forma, a cada iteração k, obtém-se

mk+1 = mk − αk∆mk ,

em que αk corresponde a um escalar o qual controla a intensidade do passo de

atualização ∆mk - este, gerado segundo uma rotina de otimização. Em seguin-

tes subseções, explora-se a formulação matemática do método de Gauss-Newton, a

rotina de otimização utilizada na Tomografia CRP.

2.2 Dados observados e variáveis de modelo

Nesta subseção, explicitam-se as variáveis que compõem, de fato, os vetores

de dados invariantes, assim como o vetor de modelo para o processo de inversão da

Tomografia CRP.

Dados observados: Para cada ponto em profundidade, gera-se um vetor que agrega

informações referentes à famı́lia CRP - ou seja, conjunto de pares fonte-receptor associados

a esse mesmo ponto refletor. Para os propósitos da Tomografia CRP, um único par-

receptor é caracterizado inequivocamente por: um tempo de viagem dupla tsr isto é, o

tempo transcorrido entre a emissão da onda pela fonte, e sua respectiva captação pelo

receptor; e também por um vetor (s, r, ps, pr)
T , em que s e r são as coordenadas espaciais
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da fonte e receptor respectivamente; ps e pr são as componentes horizontais dos vetores

de vagarosidade na posição da fonte e do receptor, nessa ordem.

Por conseguinte, dada uma famı́lia CRP f , dotada de Nf pares fonte-receptor,

associa-se a ela um vetor de dados invariantes dobs
f = [tf , (s, r, ps, pr)

T
fi
]
Nf

i=1, em que tf

é a soma dos tempos de viagem dupla de cada par fi, ou seja, tf =
∑Nf

i=1(tsr)i. Vale

ressaltar que a compressão dos tempos de viagem a uma única variável tf para cada famı́lia

CRP f permite a redução do custo computacional da técnica, ao passo que possibilita

a agregação de múltiplos pares fonte-receptor, sem impactar radicalmente, durante o

processo de inversão, sobre o tamanho da matriz jacobiana - posteriormente apresentada.

A Figura 1, logo abaixo, exemplifica a definição de famı́lias CRP.

Agora, para um modelo com N pontos de reflexão comum, compõem-se os

dados observados pelo (grande) vetor formado a partir da concatenação individual dos

diversos dobs
f , logo, obtém-se dobs = [dobs

f ]Nf=1, vetor n-dimensional. Note que n = N +∑N
f=1 4Nf .

Figura 1: Esquema ilustrativo de duas configurações de famı́lias CRP. Em cima, o detalhe
de uma única famı́lia com 3 pares fonte-receptor. Em baixo, uma configuração com 3
pontos de reflexão comum, a cada qual estão associados 3 pares fonte-receptor.

Variáveis de modelo: Pode-se definir o vetor de modelo m como a concatenação en-

tre as variáveis de modelagem relacionadas ao modelo de velocidade (mvel), e aquelas

relacionadas ao traçamento de raios (mray). Dáı, tem-se m = [mvel , mray].

Sendo assim, o modelo do modelo de velocidade consiste em um vetor M -dimensional
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cujas entradas correspondem a escalares reais positivos, representando a velocidade da

onda para cada ponto do espaço em análise. Esses valores constituem os coeficientes de

interpolação das bases de B-spline. Em suma, atesta-se que

mvel = [vij] para i = 1, 2, . . . ,Mx e j = 1, 2, . . . ,Mz ,

em que Mx e Mz correspondem ao número de nós de interpolação, previamente definido,

ao longo dos eixos x e z, nessa ordem. Note que, em consonância com a dimensionalidade

postulada, deve-se ter que mvel tem dimensão dada por Mx ·Mz .

Desse modo, dada uma malha computacional com Mx linhas e Mz colunas, a

cada iteração interpola-se o modelo atualizado, possibilitando a avaliação da velocidade

para qualquer ponto (x, z) dentro dos limites f́ısicos da malha, de maneira que:

c(x, z) =
Mx∑
i=1

Mz∑
j=1

cijβi(x)βj(z) ,

onde βi(x) e βj(z) correspondem a i-ésima e j-ésima bases de interpolação em x e em

z, respectivamente. O procedimento supracitado garante a geração de modelos suaves

ao empregar interpolação por cúbicas - duas vezes diferenciáveis. Tal caracteŕıstica é

essencial para aplicação da função de modelagem, a qual preconiza a propagação de

ondas em meios geológicos suaves. Ademais, para uma explicação completa acerca da

construção de B-splines, recomenda-se DeBoor [1978].

No que tange à mray, pode-se defini-lo como a coleção de N vetores modelo

referentes a cada famı́lia CRP f munida de Nf pares fonte-receptor. Note que N equi-

vale ao número de pontos refletores cedidos pelo usuário durante a definição dos dados

invariantes. Dessa forma, tem-se:

mray = [mray
f ]Nf=1 ,

em que cada mray
f é definido por

mray = [(x, z)T , (θs, θr)
T
fi
]
Nf

i=1 .
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Para cada f , o vetor mray
f encapsula a posição aproximada (x, z) do ponto refletor que

identifica a famı́lia em análise, além de que armazena os ângulos de incidência (θs) e de

reflexão (θr) do raio associado a cada par fonte-receptor i. Complementarmente, deve-se

notar que m é vetor M -dimensional, tal que M = Mx ·Mz+2
(
N +

∑N
f=1 Nf

)
. Ilustra-se,

na Figura 2, a separação entre os conjuntos de dados.

Figura 2: Esquema ilustrativo dos dados invariantes (imagem superior) e das variáveis de
modelo (imagem inferior). No exemplo, utiliza-se apenas uma famı́lia CRP, dotada de 3
pares fonte-receptor.

Assim sendo, munido das definições acima descritas, atesta-se que a partir

de um mvel arbitrário, cada vetor mray
f caracteriza Nf pares de raios que partem da

aproximação do ponto refletor comum em direção à superf́ıcie. A partir do traçamento

de raios, geram-se para cada famı́lia CRP, um vetor de dados sintéticos dsyn
f - análogo,

em termos de entradas, ao vetor de dados invariantes dobs
f . Consequentemente, obtém-se

dsyn
f = [tsynf , (s, r, ps, pr)

syn
fi

]
Nf

i=1, cujas entradas possuem o mesmo significado f́ısico daquelas

que compôem dobs
f , a despeito de serem parâmetros simulados pela função de modelagem.

Dáı, a reunião dessas estruturas de dados define o dado sintético dsyn, isto é,

dsyn = [dsyn
f ]Nf=1 .
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Idealmente, busca-se a igualdade entres os dados sintéticos e os observados,

ou seja dsyn(m) = dobs, a fim de extrair as variáveis de modelo f́ısico m que descrevem a

subsuperf́ıcie.

2.3 Método de Gauss-Newton

Enquanto método de otimização de segunda ordem, Gauss-Newton emprega

informações acerca da derivada segunda, a partir de uma aproximação da Hessiana asso-

ciada à função objetivo, para estimar a direção do passo de atualização das variáveis do

modelo (Nocedal and Wright [2006]).

Formalmente, na k-ésima iteração do processo de otimização de uma função S

duas vezes diferenciável, determina-se a direção ∆mk através da equação matricial

HS(mk)∆mk = −∇S(mk) , (1)

em que HS consiste na matriz hessiana associada à S(mk). Da expressão, nota-se que o

gradiente de S, avaliado em mk, pode ser expresso por

∇S(mk) = J(mk)
TW−1

D ∆d(mk) , com J(mk) =
∂dsyn

∂m
|m=mk

.

Complementarmente, empregando-se a aproximação de Gauss-Newton para a hessiana,

obtém-se

HS(mk) ≈ J(mk)
TW−1

D J(mk).

Dessa maneira, a Equação (1) para atualização do passo à cada iteração torna-se:

J(mk)
TW−1

D J(mk)∆mk = −J(mk)
TW−1

D ∆d(mk) .

Como demonstrado por Ignácio em sua tese (páginas 49 e 50), pode-se manipular a última

expressão, de modo à conformá-la ao formato de uma equação normal do problema de

mı́nimos quadrados. Nesse sentido, tem-se o sistema normal
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[J(mk)
TW

−1/2
D ]T [J(mk)

TW
−1/2
D ] ∆mk = −[J(mk)

TW
−1/2
D ]T [W

−1/2
D ∆d(mk)] ,

cuja solução está associada, por sua vez, à equação matricial a seguir:

[J(mk)
TW

−1/2
D ]∆mk = W

−1/2
D ∆d(mk) . (2)

Em termos numéricos, o sistema linear obtido em (2), inerente à atualização

de passo durante as iterações tomográficas, simboliza um dos principais entraves para a

performance computacional, em razão de seu mal condicionamento. Na implementação

original da Tomografia CRP, empregou-se o método da decomposição em valores singula-

res (SVD), cujo dispêndio computacional é compensado por sua acurácia - ao menos para

formulação em 2 dimensões.

No que concerne à matriz Jacobiana, vale apontar que possui um número de

linhas igual à
∑N

f=1(4Nf + 1) – em razão do número total de variáveis em dsyn -; e um

número de colunas equivalente à M +
∑N

f=1(2Nf + 2), devido ao número de variáveis

contidas em m. Por conseguinte, a matriz pode ser representada por:

J(m) =



∂tsyn
∂x

∂tsyn
∂z

∂tsyn
∂θs

∂tsyn
∂θr

∂tsyn
∂v

∂psyn
s

∂x

∂psyn
s

∂z

∂psyn
s

∂θs

∂psyn
s

∂θr

∂psyn
s

∂v

∂psyn
r

∂x

∂psyn
r

∂z

∂psyn
r

∂θs

∂psyn
r

∂θr

∂psyn
r

∂v

∂ssyn

∂x

∂ssyn

∂z

∂ssyn

∂θs

∂ssyn

∂θr

∂ssyn

∂v

∂rsyn

∂x

∂rsyn

∂z

∂rsyn

∂θs

∂rsyn

∂θr

∂rsyn

∂v



(3)

Computacionalmente, a Jacobiana da Tomografia CRP se beneficia, a despeito

da tradicional Estereotomografia (Billette and Lambaré [1998]), ao associar diversos pares

fonte-receptor (e seus raios) a um mesmo ponto em profundidade, e a um mesmo valor

total de viagem. Tais “acoplamentos”permitem a inversão das famı́lias CRP em conjunto,

em detrimento de uma análise individual para cada tempo de viagem e ponto de reflexão
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- o que acarretaria no incremento da dimensionalidade da Jacobiana.

2.4 Traçamento de raios

Ao longo das iterações do processo de inversão, faz-se necessário aplicar a

função de modelagem sobre cadamk, a fim de computar o erro entre os dados invariantes e

os aproximados. Dessa forma, emprega-se o traçamento de raios: um sistema de equações

diferenciais que simula a propagação de um ponto sobre a frente de onda, em função

do comprimento de arco descrito, ou em função do tempo de viagem da onda. Em

śımbolos, dada uma velocidade do meio c (r), em que r = (x, z) é o vetor de posição (caso

bidimensional), o traçado de raios é constitúıdo pelas seguintes equações diferenciais em

termos do comprimento de arco ds:


d r
ds

= p
σ(r)

d T
ds

= σ(r)

dp
ds

= ∇σ(r)

(4)

em que T é o tempo de viagem da onda; σ(r) = 1
c (r)

consiste na vagarosidade do meio; bem

como p representa o vetor de vagarosidade, de modo que vale a igualdade ||p(r)||2 = σ(r).

Em conexão com as variáveis de modelo, vale ressaltar que um raio incidente sobre um

refletor, cuja inclinação em relação à vertical é dada por θ, está submetido a um vetor de

vagarosidade p = σ(r) · [sen θ, cos θ].

Dado um modelo de velocidade e uma condição inicial, isto é, valores de r , T

e p (ou inclinação θ) em s = 0, pode-se computar novos valores iterativamente com base

em métodos numéricos para problemas de valor inicial (PVI). Na implementação original,

tal qual na atual, emprega-se o método de Euler avançado de primeira ordem, em razão

de sua eficiência computacional (veja LeVeque [2007]).

Complementarmente, merece destaque o fato de que as derivadas parciais que

compôem a Jacobiana na Equação (3) podem ser calculadas, mediante resultados da

teoria paraxial de raios (Cerveny [2005]), individualmente para cada traçado. Esse fato

possibilita, durante o processo de inversão, a simultaneidade da modelagem de dsyn(mk)

e o cálculo de ∇S(mk).
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2.5 Algoritmo da Tomografia CRP

Enfim, uma vez dotados de todas as partes constituintes do problema de in-

versão, é posśıvel apresentar o algoritmo da técnica tomográfica. Vale frisar que o seguinte

enunciado diz respeito à versão original proposta e implementada por Ignácio em sua tese.

Algoritmo da Tomografia CRP

Passo 0 Dados de entrada: dobs, além de, W−1
D ∈ Rn×n, Mx e Mz ∈ N, v0 ∈ R+.

Passo 1 Inicialização: Calcule mvel
0 e mray

0 , dáı defina m0 = mvel
0 ∪ mray

0 , k = 0,

mk = m0.

Passo 2 Modelagem dos dados: Gere o modelo de velocidade c (x, z) por interpolação,

compute dsyn(mk) através do traçamento de raios, e então calcule S(mk) e∇S(mk).

Passo 3 Critério de parada: Se ||∇S(mk)||2 = 0, FIM. Senão, vá para o Passo 4.

Passo 4 Direção de passo: Calcule o passo de variação ∆mk a partir da Equação (2).

Passo 5 Tamanho de passo: Encontre o menor inteiro não negativo j tal que αk = (1
2
)j

satisfaça a condição

S(mk + αk∆mk) ≤ S(mk).

Passo 6 Atualização: Defina mk+1 = mk + αk∆mk, k = k + 1 e volte para o Passo 2.

Vale apontar que, no Passo 1 do algoritmo, o cálculo de mvel
0 e mray

0 é feita da seguinte

forma: a prinćıpio, define-se mvel
0 = v0 · 1Mx×Mz , em que 1Mx×Mz é a matriz unitária de

dimensões Mx ×Mz, e então se interpola c (x, z). Dessa maneira, o modelo de velocidade

inicial será constante no espaço, simulando um cenário em que não se tem nenhuma

informação a priori do modelo geológico. Em seguida, para cada fonte e receptor de uma

famı́lia f , aplica-se o traçamento de raios em direção à subsuperf́ıcie, a partir das condições

iniciais de posição e vagarosidade definidas por dobs (refletindo o vetor de vagarosidade),

até que se alcance tf/(2Nf ) segundos de propagação. Dessa forma, ao fim do traçado,
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obtêm-se os respectivos ângulos de incidência e emergência (θs, θr)fi |
Nf

i=1. Ademais, define-

se o ponto refletor relativo à f como o centroide dos pontos finais de propagação de todos

os raios da famı́lia - tal como é exibido na Figura 3. Por conseguinte, mray
0f

é dado por:

mray
0f

=
(∑Nf

i=1(xs + xr)i
2Nf

,

∑Nf

i=1(zs + zr)i
2Nf

, (θs, θr)i |
Nf

i=1

)
, ∀f = 1, 2, . . . , N .

Figura 3: Esquema ilustrativo do processo de inicialização do algoritmo. No exemplo,
utiliza-se uma famı́lia CRP com 3 pares fonte-receptor.

3 Restruturação

Nesta seção, são apresentadas as principais modificações desenvolvidas, tanto

em termos de implementação quanto em termos de reformulação algoŕıtmica. Dessa forma,

as contribuições autorais são apresentadas gradualmente, partindo da implementação da

função modeladora; em seguida, passando pela geração de dados sintéticos; dáı apresentam-

se módulos auxiliares; e então reimplementa-se o algoritmo original da técnica. Em se-

guida, são propostas e implementadas modificações teóricas para o problema de inversão,

a fim de incorporar informações a priori sobre o modelo geológico.

3.1 Paralelização do Traçamento de Raios por CPU

Pilar da técnica tomográfica, a função modeladora desfruta do fato de ser

intuitivamente paralelizável: cada traçamento de raio (associado a uma fonte ou a um

receptor) pode ser concebido como um PVI independente dos demais. Portanto, viabiliza-

se a resolução simultânea de múltiplos problemas de valor inicial, de modo a acelerar a
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modelagem.

Ao contrário do MATLAB - por onde a técnica foi originalmente implementada

-, Python possui robustas bibliotecas de paralelismo gratuitas. No presente trabalho,

lançou-se mão de Numba (Lam et al. [2015]), a qual permite a fácil distribuição de tarefas

entre múltiplos núcleos de CPU. Com o propósito de ilustrar a significativa discrepância

entre os tempos de computação requeridos para ambas metodologias (paralela e serial),

apresentam-se os resultados de um simples experimento abaixo.

No experimento, foram definidas uma malha de pontos com dimensão 400×400,

velocidade uniforme c (x, z) = 1m/s, e ı́ndice da posição da fonte (200, 400) - ou seja, a

fonte estava no ńıvel mais profundo do modelo. Dáı, foram propagados em direção à su-

perf́ıcie um número n crescente de raios, a saber n = 10, 20, . . . , 100, até que se alcançasse

100 segundos no Sistema de EDO’s (4). Para cada conjunto de n raios, foram tomados

ângulos iniciais θ a passos uniformes no intervalo [π−1
2
, π+1

2
]. Ademais, fixou-se o passo de

discretização de Euler para h = 0.01 . A partir dessa configuração, incrementou-se n e

computaram-se os PVI’s em loop. Em experimentos separados, utilizou-se a abordagem

serial e depois paralelizada em 5 núcleos.

Figura 4: Gráfico exibindo o perfil do tempo de execução para a resolução serial e para-
lela em função do número de raios. Na figura de baixo, exibe-se o ganho relativo entre
implementações.

Como demonstra a Figura 4, a distribuição de tarefas provê significativa redução

do tempo de execução, uma vez que se compara o desempenho em paralelo (linha azul), e
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o serial (linha laranja). Meramente lúdico, o cenário proposto pelo experimento - isto é, o

traçamento de até 100 raios - ainda se demonstra simples em relação àquele trabalhado na

inversão tomográfica: milhares de sistemas de raios são computados. Portanto, conclui-se

a grande importância do paralelismo na Tomografia CRP.

A implementação das funções relativas ao traçamento de raios, e sua parale-

lização, foi feita em em dois arquivos distintos: dif eq solver.py - voltado à resolução

numérica do Sistema de EDO’s de raios - e ray solver.py - destinado a métodos auxili-

ares de manipulação dos raios e configuração de condições iniciais.

Enfim, também destaca-se o fato de que, durante o processo de inversão da

Tomografia, o traçamento de raios é feito em simultâneo ao cálculo da matriz Jacobiana -

agravando o tempo de modelagem do sistema f́ısico para cada raio. Assim, a paralelização

de ambas as etapas acarreta significativamente, na implementação final, a otimização do

tempo de execução.

3.2 Geradores de experimentos sintéticos

Palco para validação e experimentação da Tomografia, experimentos sintéticos

preconizam a geração de dados que simulem a extração de informações geof́ısicas. A esse

respeito, a implementação original da técnica resumia em um único arquivo a geração

espećıfica - pouco adaptada ao usuário - de apenas um modelo geológico sintético. Em

contrapartida, ao longo deste projeto buscou-se o desenvolvimento de um programa com

mais alto ńıvel de personalização do espaço f́ısico e dos dados invariantes gerados.

Sendo assim, no arquivo construct NIP.py, foi desenvolvido um programa

para construção de interfaces refletoras - as quais simulam pontos CRP. A prinćıpio, o

código possibilita gerar curvas refletoras trigonométricas, ou retas, cada qual com um

conjunto de condições iniciais arbitrárias para os raios emergentes. Sob essa lógica, a

construção de dados invariantes para inversão é feita mediante aplicação de traçamento

de raios sobre esses PVI’s pré definidos. Na Figura 5 abaixo, um exemplo que ilustra a

geração de dados observados.
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Figura 5: Exemplo de modelo f́ısico sintético gerado a partir do programa supracitado.
Nele, cada ponto refletor está associado a apenas um par de raios. Na imagem, as linhas
tracejadas em vermelho representam os raios traçados a partir dos PVI’s associados. Já
as linhas pretas correspondem à posição real dos pontos CRP. Ao fundo, o modelo de
velocidade com grande variação central.

3.3 Módulos auxiliares: regularização e interpolação

Originalmente, Ignácio complementa o desenvolvimento do problema de in-

versão com a adição de um termo de regularização sobre a função objetivo S (para mais

detalhes, veja o caṕıtulo 5, seção 3 da tese). Em suma, o termo regularizador envolve

a construção de uma matriz R, invariante ao longo do processo de inversão. Visto que

sua definição envolve certa arbitrariedade do usuário, destinou-se sua criação a um ar-

quivo único, construct reg mat.py. Na implementação original, ela era extensivamente

calculada no mesmo arquivo da inversão em si.

Ademais, dando continuidade à modularização dos códigos, criou-se o arquivo

construct bspline.py, o qual tem como objetivo a construção das bases de interpolação

em duas dimensões a partir do número de nós e de seus valores fornecidos pelo usuário.

3.4 Reimplementação da Tomografia CRP

A partir das modificações apresentadas, foi posśıvel reimplementar a Tomogra-

fia CRP, cujo programa se encontra no arquivo tmg crp.py. Adicionalmente, no que tange

ao processo de minimização, refinou-se o critério de aceitação de passo de atualização a

partir da Condição de Armijo. Essencialmente, modificou-se o Passo 5 do Algoritmo da
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seguinte maneira :

Passo 5 (Condição de Armijo) Tamanho de passo: Encontre o menor inteiro não ne-

gativo j tal que αk = (1
2
)j satisfaça a condição

S(mk + αk∆mk) ≤ S(mk) + η αk∇TS(mk)∆mk ,

em que se fixou η = 1 · 10−4 ao longo do projeto. Essa restrição enrijece o valor de

decréscimo da função objetivo, a fim de evitar que sejam tomados passos αk grandes

demais ou improdutivos (Friedlander et al. [2019]).

Dessa forma, foi posśıvel comparar a performance entre o código original e o

atual. Tomando como base o teste sintético apresentado no repositório da tese, registrou-

se o tempo de execução e o valor da função objetivo ao final da otimização realizada ao

longo de 15 iterações. Os resultados, exibidos na Tabela 1, revelam uma aceleração de

620%, aliada à obtenção de um minimizador local quase 3 vezes menor, através da nova

implementação.

Original Autoral
Tempo (min) Reśıduo final Tempo (min) Reśıduo final

107,47 1199,42 14,84 401,70

Tabela 1: Resultados obtidos por duas implementações distintas da Tomografia CRP

3.5 Aplicação de backtracking

Dando continuidade às modificações algoŕıtmicas na Tomografia CRP, buscou-

se o aprimoramento da etapa associada à definição de αk, substituindo a mera divisão

iterativa αk = (1
2
)j. Em termos práticos, empregou-se a técnica de backtracking proposta

por Nocedal e Wright. O algoritmo de redução de passo lança mão do conhecimento

acerca de S(mk),∇S(mk) e S(mk + ∆mk),∇S(mk + ∆mk) para aproximar a função

ϕ(α) = S(mk + α∆mk) por uma cúbica.

Idealmente, o algoritmo visa alcançar αk = argmin{ϕ(α)}, via aproximação

pelo mı́nimo global do polinômio

ϕc(α) = aα3 + bα2 + ϕ′
0α + ϕ0 ,
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com

a =
2(ϕ0 − ϕt) + αt(ϕ

′
0 + ϕ′

t)

α3
t

e b =
3(ϕt − f0)− αt(2ϕ

′
0 + ϕ′

t)

α2
t

,

em que ϕ0 = ϕ(0) e ϕt = ϕ(αt), sendo αt a magnitude de passo anterior. Essa estratégia

de busca tem como objetivo aprimorar a modelagem da função ϕ(α) - sobretudo para

casos em que esta possui variações de sinal na curvatura.

Ao longo de 18 iterações, otimizou-se o mesmo problema abordado na subseção

anterior, a fim de comparar o desempenho entre as duas estratégias de backtracking.

Observou-se um aumento na velocidade média do algoritmo quando aplicada a mini-

mização de cúbicas, ainda que o custo final tenha ficado aquém daquele resultante pela

abordagem inicial - como exposto na Tabela 2.

Sucessivas divisões por 1
2

Minimização de cúbicas
Tempo (min) Reśıduo final Tempo (min) Reśıduo final

19,87 261,79 15,29 5522,09

Tabela 2: Resultados obtidos por duas abordagens distintas de backtracking

A velocidade alcançada pela nova implementação é justificada pela redução

do número de buscas por αk, visto que foram feitas, em média, cerca de 2 buscas por

iteração. Em contrapartida, a estratégia original está sujeita, em muitas iterações, a

performar cerca de 10 buscas de Armijo. Vale ressaltar que cada busca preconiza a

rejeição de um tamanho de passo anterior, exigindo, de modo subsequente, a aplicação

da função de modelagem para cada raio do sistema - lógica que acarreta no atraso da

conclusão de uma iteração. Quanto à perda de acurácia, supõe-se que ela ocorre em

razão do cálculo de passos pequenos demais durante a minimização das aproximações

polinomiais, de modo a não gerar significativo decréscimo sobre a função objetivo. Isto

posto, o problema de minimização auxiliar durante a busca por passo ainda constitui

amplo palco de investigação, bem experimentação - como a posśıvel mescla de estratégias

em tempo de execução. Trabalhos futuros sobre Tomografia CRP devem abordar tais

lacunas.

21



3.6 Imposição de restrições naturais

Nas subseções anteriores, partiu-se de uma aproximação inicial baseada no

processo de inicialização sugerido por Ignácio. Não obstante, e a despeito do sucesso na

inversão do problema anterior, a sucessiva atualização do modelo de velocidade gerou

modelos não-f́ısicos, isto é, foram constrúıdos modelos com valores negativos. Tal fato

joga luz sobre uma intŕınseca fragilidade da Tomografia CRP: não existem restrições de

sinal associadas ao problema de atualização.

Sob essa ótica, o problema se torna mais claro quando se submetem apro-

ximações iniciais não homogêneas ao algoritmo. Em testes feitos tanto com a imple-

mentação original, quanto com a autoral, observou-se a estagnação do processo logo na

primeira iteração. Isso ocorre pois o traçamento de raios não suporta velocidades negati-

vas, logo, a modelagem resulta em aproximações inverosśımeis que não chegam a produzir

dados sintéticos que reduzam a função custo. Dessa forma, uma vez esgotado o limite de

buscas de Armijo, encerram-se as iterações tomográficas.

A fim de contornar esse empecilho - sem reformular a Tomografia CRP a partir

de um problema de otimização com restrições -, optou-se por uma mudança de variáveis

que introduzisse, a partir de conhecimento a priori sobre o sistema, os v́ınculos necessários

para assegurar a f́ısica da modelagem. Dáı, pode-se definir a velocidade v ∈ R+ em cada

nó de interpolação em função de u ∈ R tal que

v(u) = α− (α− β) · 1

1 + u2
,

onde α é o maior valor de velocidade estimado para o modelo, e β o menor. Note que

limu→±∞ v(u) = α , assim como limu→0 v(u) = β . Assim, pode-se otimizar a variável u

irrestritamente, de modo a garantir, naturalmente, a viabilidade dos valores de v associ-

ados.

Assim sendo, a substituição proposta suscita a adição de um termo para o

cálculo do Jacobiano da Tomografia CRP (3). Pela regra da cadeia, atesta-se que

∂ ·
∂u

=
∂ ·
∂v

∂v

∂u
=

∂ ·
∂v

· 2(α− β)
u

(1 + u2)2
.

Logo, é necessário, tão somente, a multiplicação das derivadas em relação à velocidade
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pelo termo ∂v
∂u

explicitado acima. A implementação dessa versão encontra-se no arquivo

test tmg crp.py, enquanto a versão atualizada do traçamento de raios, incorporando a

troca de variáveis, reside em dif eq solver.py. Com o propósito de avaliar o desempenho

da técnica tomográfica munida das modificações propostas, foram realizados dois testes

sintéticos - cuja metodologia e cujos resultados, são descritos a seguir.

4 Testes sintéticos

A partir dos arquivos presentes no repositório da tese, e através do módulo

de geração de experimentos sintéticos supracitado, foram realizados dois experimentos

numéricos, visando à analise de performance da implementação autoral da Tomografia

CRP. De modo sucinto, objetivava-se o funcionamento pleno do Algoritmo quando sub-

metido a modelos iniciais não homogêneos, e respeitando as restrições f́ısicas do problema

de inversão. Os modelos geológicos utilizados foram: i) Modelo de Caixa e ii) Modelo de

Pré-sal, apresentados a seguir na Figura 6.

Figura 6: modelos de velocidade dos experimentos sintéticos. À esquerda, o modelo de
Caixa - o mesmo apresentado por Ignácio em sua tese. À direita, o modelo de Pré-sal.

4.1 Metodologia

Para os experimentos, inicializou-semvel a partir de uma amostragem uniforme

dos valores de velocidade reais, e então aplicou-se um filtro de suavização aos modelos.

Ademais, definiu-se o número máximo de iterações como 20, com até 20 buscas de Armijo.

Em termos de métricas, além de avaliar a porcentagem de redução da função objetivo, e o

tempo de execução ao fim do processo de inversão, também buscou-se avaliar a qualidade

relativa dos pontos focais de cada par fonte-receptor, ou seja, especificamente a apro-
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ximação dos pontos refletores à medida que se incrementava a profundidade (coordenada

z) associada.

Sob essa visão, para cada experimento, aplicou-se o traçamento de raios para

baixo, a partir do conjunto final de dados sintéticos. Então, tomou-se como aproximação

do ponto CRP o centroide dos pontos finais de cada raio. Para cada famı́lia, computou-se

a máxima distância entre o refletor e os pontos finais, pois o valor obtido representa,

nesta análise, o raio do ćırculo focal associado ao CRP. Complementarmente, tomou-se

a porcentagem entre o raio de confiança e o ńıvel de profundidade do refletor. Conse-

quentemente, menores porcentagens indicam maior precisão (porém não necessariamente

acurácia), sobretudo para ńıveis mais fundos - visto que esses pontos representam maior

dificuldade para a inversão.

4.2 Resultados

Modelo de Caixa : Pode-se dizer que a Tomografia CRP mostrou-se estável através das

modificações sugeridas, visto que todas as iterações foram feitas sem estagnação durante as

buscas de Armijo ou durante a modelagem por raios. Para esse experimento, os resultados

referentes ao tempo de execução, e à redução da função objetivo em relação ao valor inicial,

foram registrados na Tabela (3).

Tempo (min) Redução da função objetivo

23,43 50, 77%

Tabela 3: Resultados obtidos pela inversão do Modelo de Caixa

No que tange aos resultados acerca dos raios de confiança, recorreu-se à análise

do histograma representado na Figura 7. Torna-se evidente a alta precisão focal dos raios,

uma vez que a maioria das famı́lias apresentou região de factibilidade com raio menor que

2% da profundidade do refletor correspondente - isto é, para refletores na faixa dos 5 km,

o raio de confiança foi menor que 100 m.
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Figura 7: Associado ao Modelo da Caixa, histograma da concentração das famı́lias em
função da porcentagem da profundidade do refletor associado.

Por fim na Figura 8, nota-se que o modelo de velocidade final alcançado pre-

serva, superficialmente, o perfil geral do Modelo de Caixa - a saber, variação periódica

em toda sua extensão, a não ser pela porção retangular central de alta velocidade. Con-

tudo, nota-se o surgimento de um artefato nas últimas faixas de profundidade (entre 3,5

km até 5 km ao longo do eixo z). A presença dessa anomalia sugere mais atenção ao

desenvolvimento do problema de otimização.

Figura 8: Modelo de velocidade final alcançado pela inversão do problema da Caixa.

Modelo de Pré-sal: Quanto ao segundo experimento sintético, novamente atesta-se a

estabilidade do algoritmo reformulado a partir da inicialização não homogênea. Ademais,

constatou-se uma redução da função objetivo similar ao caso anterior (aproximadamente
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50%) - apesar do tempo de execução ter cáıdo pela metade, como indicado na Tabela 4).

A maior rapidez de convergência está intimamente atrelada ao menor número de buscas

de Armijo realizadas ao longo das iterações.

Tempo (min) Redução da função objetivo

11,84 48, 73%

Tabela 4: Resultados obtidos pela inversão do Modelo de Pré-sal

Similarmente ao experimento anterior, registrou-se elevada precisão focal -

como ilustrado pelo histograma da Figura 9. A maioria das famı́lias apresentou raios de

confiança menores que 1% da profundidade respectiva ao refletor.

Figura 9: Associado ao Modelo do Pré-sal, histograma da concentração das famı́lias em
função da porcentagem da profundidade do refletor associado.

Enfim na Figura 10, observa-se alta fidelidade entre o modelo de velocidade

real e o alcançado pelas iterações tomográficas. Contudo, vale destacar, novamente, a

presença de um artefato inesperado nos ńıveis mais profundos (entre 4,5 km e 6 km ao

longo do eixo z).
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Figura 10: Modelo de velocidade final alcançado pela inversão do problema do Pré-sal.

5 Conclusão

O presente trabalho, acredita-se, cumpriu seu objetivo central de realizar um

estudo exploratório inicial da Tomografia CRP, evidenciando tanto suas potencialidades

quanto suas fragilidades estruturais. A nova implementação desenvolvida ao longo do

projeto demonstrou-se significativamente superior à versão original — tanto em termos

de desempenho de otimização quanto em tempo de execução — validando a relevância

das intervenções propostas.

Primeiramente, a reestruturação completa do código, com paralelização expĺıcita

por CPU e modularização em Python, permitiu reduzir substancialmente o tempo de

execução e aumentar a estabilidade da técnica. A nova implementação possibilitou, inclu-

sive, avaliar casos inviáveis na formulação original, como inicializações não homogêneas,

suscitando limitações e discussões antes inacesśıveis à análise.

Em segundo lugar, este estudo demonstrou que a Tomografia CRP, em sua

formulação original, carece de mecanismos expĺıcitos de controle f́ısico sobre o modelo

de velocidades. A introdução de uma mudança de variáveis que garante positividade e

agrega informação a priori ao modelo constituiu um passo fundamental para tornar o

processo de otimização fisicamente consistente, eliminando a geração de modelos não-

f́ısicos e prevenindo a irremediável estagnação do algoritmo.

Terceiro, a substituição do método tradicional de busca de passo por uma
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estratégia baseada na minimização de cúbicas trouxe ganhos relevantes de desempenho,

reduzindo drasticamente o número de avaliações da função de modelagem ao longo da

otimização. Ao mesmo tempo, o comportamento observado — passos excessivamente

pequenos e ineficientes — evidencia, sobretudo, a importância da formulação de uma

estratégia de backtracking robusta e adaptativa às diferentes etapas da otimização - pos-

sivelmente pela mescla de aproximações polinomiais durante a busca de Armijo. Outra

possibilidade, tal como Ignácio propunha, a resolução do subproblema de minimização

por heuŕısticas de otimização global.

Por fim, os experimentos sintéticos demonstraram que, apesar da boa capa-

cidade de focalização dos pontos refletores e da redução consistente da função objetivo,

artefatos persistem nos ńıveis mais profundos da malha. Esse comportamento indica que

a técnica, embora promissora, ainda apresenta limitações vinculadas tanto à formulação

matemática quanto ao condicionamento do problema inverso. Assim, conclui-se que o

método ainda pode ser amplamente aprimorado, seja por: regularizações mais sofistica-

das sobre a função objetivo - aqui não abordadas -; esquemas de otimização que desfrutem

de outras aproximações para a matriz Hessiana (como BFGS); algoritmos para solução

de sistemas lineares que superem os altos custos proporcionados pela SVD. Além, é claro,

da transposição para arquiteturas GPU - catalisando o desempenho computacional.

No conjunto, este projeto fornece não apenas uma implementação mais confiável

e eficiente da Tomografia CRP, mas também um diagnóstico claro das principais lacunas

teóricas e computacionais que precisam ser abordadas em trabalhos subsequentes. Dessa

forma, estabelece-se um primeiro passo em direção à sofisticação e à compreensão da

resolução de problemas de inversão na Geof́ısica Computacional.
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