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Resumo

A economia da sustentabilidade emerge como campo transdisciplinar essencial
para enfrentar os complexos desafios socioambientais do século XXI. No contexto brasi-
leiro, caracterizado por megadiversidade e significativas desigualdades sociais, a integracao
entre modelagem matematica e economia ecoldgica oferece ferramentas poderosas para a
tomada de decisao.

O trabalho a ser desenvolvido envolve integrar os principios da ecologia e bi-
omatematica aos da economia promovendo assim um desenvolvimento verdadeiramente
sustentavel. O grande diferencial desta area é que ela nao vé o meio ambiente como um
subsetor da economia, mas a economia como um subsistema do meio ambiente, que é

finito (Herman Daly).



Conteudo

1 Introducgao 1
2 Pesquisas de temas relevantes 2
2.1 Modelagem de Migragao Climatica de Espécies e Impacto em Cadeias Pro-
dutivas . . . . . L 2
2.2 Modelo de Produtividade do Café sob Estresse Térmico e Hidrico . . . . . 4
2.3 Modelo Econémico da Cafeicultura . . . . . .. ... ... ... ... .. )
2.4 Cenarios de Aquecimento Global . . . . . . ... ... 5
2.5 Dinamica de Populagoes de Polinizadores e Seguranca Alimentar . . . . . 6
2.6 Ferramentacao Matemadtica. . . . . . . . . . .. ... L 6
2.6.1 A Estrutura da Rede: Matrizes de Interacao . . . . . . . .. .. .. 8
2.7 Matriz de Beneficio dos Polinizadores (5) . . . . . . . . ... ... .. ... 8
2.8 Padroesde Rede . . . . . . . . ... 8
3 Resultados 10
3.0.1 Implementacao do Modelo de Difusao-Reacao . . . . . .. .. ... 10
3.0.2 Codigos Python dos modelos matematicos . . . . .. .. ... ... 13
3.0.3 Implementacao do Modelo de lucro 3D em fun¢ao da Temperatura
vs Umidade . . . . . . . . . . . . 22
4 Conclusao 25



1 Introducao

A sustentabilidade é profundamente influenciada pelo bioma, cultura, economia local
e arranjos institucionais. Uma solucao para a Caatinga nao serve para o Pantanal e
solucoes " feitas sob medida”sao o ideal para aplicar modelagem matematica, seja qual for
o problema a regiao escolhida é mais tangivel e factivel estudar, propor e implementar
projetos em uma escala regional ou municipal.

E importante ressaltar que para o esse estudo em biomatematica ha o en-
volvimento da compreensao das areas de Aquecimento global, Dinamicas de Populagoes,
Epidemiologia e Impacto Ambiental sendo necesséarias afim de se obter uma valoracao ou
adotar medidas especificas para problemas especificos estudados.

Num panorama Nacional isso permite entender tendéncias macroecondémicas
e estruturas que afetam todo o pais tendo como impacto amplo a adocao de politicas ou
modelos de negdcio desenvolvidos numa perspectiva nacional, que podem ser replicados

ou adaptados e potencialmente atingindo mais pessoas.



2 Pesquisas de temas relevantes

A seguir serao mostrados alguns temas relevantes pesquisados sobre como a economia da
sustentabilidade se aplica no pais e como pode-se desenvolver a pesquisa sobre regioes

brasileiras.

2.1 Modelagem de Migracao Climatica de Espécies e Impacto

em Cadeias Produtivas

Regioes como Serra Gaucha ou Regiao Sul de Minas Gerais sao regioes produtoras de
culturas sensiveis ao clima (como a maga e o café ardbica, respectivamente). Um aumento
de temperatura pode tornar areas impréprias para o café arabico, deslocando a cultura
para regioes mais altas, e ao mesmo tempo permitir que pragas antes restritas a regioes
mais quentes se estabelecam.

Segundo a EMBRAPA [3], o café ardbico domina os mercados nacionais e
internacionais, em que o Brasil é lider e dados do Observatério do café [5] mostram
que o faturamento bruto dos cafés em 2023 ficou em quase 50 bilhoes, sendo entao é
uma das commodities mais importantes do Brasil. Mas em quesitos climaticos, ele é
extremamente sensivel a temperaturas acima de 23°C que aceleram seu metabolismo,
prejudicam a floracao e a granacao dos graos reduzindo a qualidade e a produtividade.

Dado um cendrio de aumento de temperatura de 2°C até 2050 é necessaria a
combinagao mais custo-efetiva de estratégias de adaptacao para manter a rentabilidade
da cafeicultura no Sul de Minas.

Segundo [4] a Modelagem da Migracao Climéatica de Espécies estuda
como as mudancas no clima forcam a migracao de organismos e os impactos nas cadeias
produtivas incluem perdas de produgao agricola devido a eventos climaticos extremos, al-
teragoes na disponibilidade de recursos hidricos e riscos a seguranca alimentar e economica.

Ao analisar dados como aumento da temperatura e mudancas nos padroes
de chuva, esses modelos preveem a redistribuicao das espécies, o que pode levar a de-
sequilibrios ecoldgicos, extincao local, mudancas no uso da terra e a necessidade de
adaptacao na agricultura para garantir a sustentabilidade da produgao.

A modelagem preditiva de distribuigao de espécies [2] é um método computa-



cional que constréi uma representacao das condicoes requeridas para a sobrevivéncia de
uma ou mais espécies, por meio da combinacao de dados de ocorréncia com variaveis am-
bientais. Na Ecologia Matematica sao utilizados modelos de distribuicao de espécies
(Species Distribution Models - SDMs) usando equagoes de difusdo-reacao para prever
deslocamento de espécies devido ao aquecimento global, incorporando fatores como dis-
persao e mudangas ambientais (reagao). Esses modelos combinaram o movimento fisico
das espécies com a forma como as condicoes ambientais afetam sua sobrevivéncia e re-
produgao (reagdo) para projetar como sua distribui¢ao potencial mudard no futuro. [2] A
difusao representa o movimento das espécies de um local para outro, a sua dispersao, a
reacao pode exibir um modelo de como as condi¢oes ambientais, como temperatura, umi-
dade e disponibilidade de recursos, influenciam a capacidade de uma espécie sobreviver,
se reproduzir e se estabelecer em um novo local.

A descoberta de difusao-reacao combina essas duas forcas. Ela descreve como
a densidade populacional de uma espécie muda ao longo do tempo e do espaco, consi-
derando tanto a sua capacidade de se espalhar quanto a adequacao do ambiente para
sua sobrevivéncia. Os modelos de dindmica de populagoes [13] estudam um subtema, a
dinamica de metapopulacoes para entender como populacoes fragmentadas se conectam
ou se isolam em escalas espaciais mais amplas. Porém, o modelo de dinamica metapo-
pulacional foi pensado segundo experiéncias com dinamica de fauna, sendo fundamental
a extensao deste modelo para outros tipos de dinamica regional que incorporem os pro-
blemas especificos associados ao estudo de plantas. Idéias de “populacoes espacialmente
expandidas” (‘spatially extended populations’) e de “conjuntos regionais de populagoes”
(‘regional ensemble’) foram propostas no intuito de compreender a dinamica regional de
plantas. Podemos aplicar isso a um modelo de produtividade do café sob estresse térmico
e hidrico prevendo a produtividade (sacas/hectare) em funcao do clima, explicando como
modelo uma fung¢ao de crescimento modificada por fatores de estresse.

ON

, N
7 = DVEN =V [v(x,))N] + 7N (1—m) (1)

onde:

e N(x,t): densidade da espécie no espago x e tempo ¢



D: coeficiente de difusao (dispersao aleatéria)
e v(x,t): velocidade de advecgao (movimento direcionado pelo clima)

r: taxa de crescimento intrinseco

K(x,t): capacidade de suporte do ambiente, quevpode variar com o clima.

2.2 Modelo de Produtividade do Café sob Estresse Térmico e
Hidrico

Um modelo de produtividade do café sob estresse térmico e hidrico se baseia na anélise
de como o aumento da temperatura e a falta de dgua afetam a planta, prejudicando
a fotossintese e causando queda na producao. Com a variedade no calor, como o café
Arébico acima de 22°C, o impacto de perdas de dgua e deficiéncia hidrica pode reduzir
a produtividade em comparagao com condicoes ideais. O estresse hidrico e térmico pode
levar a uma perda de até 95% de area plantavel adequada para o café em algumas regioes,
impactando diretamente o rendimento por hectare. Pode-se prever a produtividade (sa-
cas/hectare) em funcdo do clima, explicando como modelo uma funcao de crescimento

modificada por fatores de estresse.

Produtividade = Py - f(T') - g(ETC) (2)

Prax: Produtividade potencial na regiao (sacas/ha)
f(T'): Fungao de Resposta a Temperatura (critica), pode ser uma fun¢ao Gaus-

siana ou quadratica que maximiza em ~22°C e cai drasticamente acima de 30°C e abaixo

de 15°C ,
j0) - e 03 (1)) 8
tol

g(ETC) representa a funcao de resposta hidrica. E a relacao entre a Evapo-

transpiracao Real (ETA) e a Evapotranspiracao da Cultura (ETC).

ETA

9(ETC) = 576

(valor entre 0 e 1, onde 1 significa sem estresse hidrico) (4)



2.3 Modelo Economico da Cafeicultura

Baseado na abordagem de colheita sustentavel de [9] (Segao 1.6), o lucro liquido da

cafeicultura pode ser modelado como:

L(t)=p-P(T,W) —c- E — A(T) (5)

onde: p é o preco por saca de café, ¢ o custo unitario do esforco de producao, E o esforco
de produgao e A(T) os custos de adaptagao ao aumento de temperatura. A seguir foi

gerado um mapa de calor sobre esse modelo:

2.4 Cenarios de Aquecimento Global

Essa é uma decomposicao tipica em analise de séries temporais de campos espaciais,

considerando o cenério de aumento de 2°C até 2050 [10], modelamos a temperatura como:

T(x,t) =To(x) + AT(t) + n(x,t) (6)

onde AT'(t) representa o aquecimento global e n(x,t) a variabilidade espacial.
T(x,t) é o campo de temperatura no ponto x e no tempo ¢, Ty(x) é a tempera-
tura média espacial no ponto x, independente do tempo, 7(x,t) é o residuo ou flutuacao

espacialmente heterogénea, dependente de x e ¢.



2.5 Dinamica de Populacoes de Polinizadores e Seguranca Ali-

mentar

Poucas plantas tém a capacidade de autopolinizagao [11], a grande maioria depende de
animais, do vento ou de agua para se reproduzir. A populacao de polinizadores que se
baseiam em abelhas, morcegos, passaros lagartos, etc, procuram o néctar das flores. A
contribuicao dos polinizadores para a agricultura brasileira é extremamente importante.

As abelhas sao os principais polinizadores de plantas nativas e cultivadas,
estima-se que o servico de polinizacao realizado por elas agregue nada menos do que
43 bilhdes por ano a agricultura [12]. Esses agentes enfrentam riscos em um mundo de
mudancas com a perda de seus habitats, o uso de pesticidas e as mudancas climaticas
estao ameacando sua existéncia. Isso tem implicacoes diretas na seguranca alimentar,
pois o declinio dos polinizadores pode reduzir a qualidade e produtividade das colheitas,
levando a escassez e ao aumento de preco dos alimentos. [1] E crucial compreender como
esses polinizadores interagem em ambientes naturais, com as mudangas em seus habitats
e consequentemente com os agrossistemas.

Dado o contexto do pais e dimensoes, é de extrema importancia estudar regioces
como Chapada Diamantina ou Oeste da Bahia, regioes de grande produgao de frutas e

graos como manga, soja, algodao que dependem criticamente de polinizadores.

2.6 Ferramentacao Matematica

Modelos de ecologia matematica como o de dinamica de populagoes, ajudam a estudar
como as agoes climaticas e uso de pesticidas afetam a polinizacao natural. Para quantificar
esses impactos e prever cenarios futuros, modelos matematicos de dinamica de populagoes
se mostram ferramentas essenciais, através de modelos de redes mutualisticas (plantas-
polinizadores) acoplados a modelos de crescimento de culturas e modelos de dinamica
populacional para abelhas, estudar o efeito de pesticidas e da mudanca climatica na
fragmentacao de habitat e sobrevivéncia de colonias pode nos levar a um entendimento
sobre economia da sustentabilidade, ou seja, a partir desses modelos podemos estudar
sobre valoragao economica do servico de polinizacao para a agricultura, custo de reposicao

com a polinizacdo manual e a analise de politicas de PSA para conservacao de habitats



de polinizadores.
O modelo de partida é uma extensao do classico modelo predador-presa para
descrever a interagao mutualistica entre duas espécies.

Para uma espécie de planta P e uma espécie de polinizador A:

dP P
Ty =rpP (1 — K—P> + aps AP (7)
dA A
E:TAA (1_K_A) + aapPA (8)

Em que P, A é densidade populacional de plantas e polinizadores, respecti-
vamente; rp/ r4 sao as taxas de crescimento intrinseco, Kp/ K, sdo as capacidades de
suporte do ambiente (na auséncia do mutualista); aps é o beneficio que a planta recebe
por unidade de polinizador (como por exemplo o aumento na taxa de reproducao via su-
cesso de polinizac¢ao); e aap é o beneficio que o polinizador recebe por unidade de planta
(ex: acesso a néctar/pélen, aumentando a taxa de reprodugao)

Este modelo bilateral é instével, se os beneficios () forem muito grandes as
populagoes crescem infinitamente o que é biologicamente irrealista. Isso levou ao desen-
volvimento de modelos com saturacao. O modelo abaixo é mais realista, pois assume que
o beneficio que uma espécie recebe de seu mutualista satura conforme a populacao do
mutualista aumenta se por exemplo uma abelha s6 pode visitar um ntmero limitado de
flores por dia.

Para Sp espécies de plantas e S espécies de polinizadores:

Sa
dp; F; ijAi b
b= (i) 0
t 7 =1 1 —|— h Zk:l OéikAk
dA. A Sp B, PA,
—L =14 (1 — —J) + e (10)
dt K; i L+ h 3L BinP

P, ¢ a densidade populacional da planta da espécie i; A; é a densidade popu-
lacional do polinizador da espécie j, Sp/ S é o nimero total de espécies de plantas e
polinizadores, respectivamente. «;; é a taxa de beneficio especifica que a planta i recebe

do polinizador j; B;; ¢ a taxa de beneficio especifica que o polinizador j recebe da planta



i e h é o tempo de manipulagdo ou parametro de saturagao (controla quao rapidamente
o beneficio se satura).

Os termos de soma () ) sdo o coragao do modelo de rede, eles mostram que o
beneficio total para uma planta i depende de todas as espécies de polinizadores j com as

quais ela interage (e vice-versa) e a forca de cada intera¢ao é ponderada pelo parametro

Qij (Oll ﬁ]z) .

2.6.1 A Estrutura da Rede: Matrizes de Interacao

A topologia da rede (quem interage com quem e com que forc¢a) é encapsulada em duas

matrizes:

(0551 Qi - 15,
Q21 Qg -+ (5,

o= (11)
asp1 Qgpa 0 Ogp8,

A linha 7: mostra todos os beneficios que a planta ¢ recebe de cada polinizador

e a coluna j: mostra todos os beneficios que cada planta recebe do polinizador j.

2.7 Matriz de Beneficio dos Polinizadores ()

(6, B - sy
_ﬁSAl ﬁSAQ Tt BSASP_

linha j: Mostra todos os beneficios que o polinizador j recebe de cada planta.

2.8 Padroes de Rede

Se a matriz « for altamente aninhada (nested)[15], significa que plantas especialistas (que
interagem com poucos polinizadores) interagem com um subconjunto dos polinizadores
que também visitam plantas generalistas. A modularidade significaria que a matriz pode

ser dividida em blocos de espécies que interagem mais fortemente entre si do que com



espécies de outros mddulos.

(A) Rede Aninhada(B) Rede Modular

P1) (P2 3

Al A2

Figura 1: Padroes de redes mutualisticas: (A) rede aninhada e (B) rede modular

Na rede aninhada (Figura 1A), as interagoes seguem um padrao hierarquico.
As espécies generalistas (como P1) interagem com a maioria das outras espécies, enquanto
as espécies especialistas (como P2) interagem principalmente com as generalistas. Isso cria
uma estrutura onde o conjunto de parceiros das espécies especialistas é um subconjunto
dos parceiros das espécies generalistas. Essa estrutura é frequentemente encontrada em
ecossistemas estaveis e é considerada robusta a extingao aleatoria de espécies, pois a perda
de um especialista tem pouco efeito na rede como um todo.

Na rede modular (Figura 1B), o sistema é compartimentalizado em grupos dis-
tintos (mddulos). Dentro de cada médulo, as espécies interagem fortemente entre si, mas
tém poucas ou nenhuma conexao com espécies de outros modulos. Essa estrutura pode
surgir em resposta a barreiras geograficas, especializagoes fenolégicas ou morfolégicas. Re-
des modulares podem ser resilientes & propagagao de perturbagoes (como uma doenga),

pois o efeito fica contido dentro de um médulo [15].



3 Resultados

3.0.1 Implementacao do Modelo de Difusao-Reacao

O cédigo implementa um modelo de difusao-reacao baseado na equagcao:

%:DVZU—HW(I—%)

onde u representa a densidade populacional, D é o coeficiente de difusao, r: taxa de

crescimento intrinseco, K: capacidade de suporte do ambiente

Populagdo Inicial (t=0)

0 10 0
10 0.8 10
20 0.6 20

0.4 30
20 0.2 a0
0.0
0 10 20 30 a0

Populagdo Intermediaria (t=25)

10
0.8 10
0.6
0.4
0.2 20
0.0
40

Populag&o Final (t=50)

Espaco (y)
~
3

w
S

Espago (y)
Espago (y)

w
S

0 10 20 30
Espago (x) Espago (x) Espaco (x)

20 30

Figura 2: Dispersao da espécie ao longo do tempo.
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10

0.8

0.6

0.4

0.2

0.0

!'pip install matplotlib numpy scipy

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

from IPython.display import HTML

print (" MODELO SIMPLES DE DIFUSAO—REAGAU")
print ("=" % 50)

class ModeloSimples:

Modelo béasico de difus&@o-reacdo para distribuigdo de espécies

Equacéo: u / t =D % u + r *x ux*x (1 - u/K)
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N

™)

def

def

def

u)

def

def

__init__(self):

self.tamanho = 50

self.D = 0.1 # Coeficiente de difuséao
self.r = 0.3 # Taxa de crescimento
self . K = 1.0 # Capacidade de suporte

criar_populacao_inicial(self):

"""Populagdo inicial concentrada em uma regido"""
u = np.zeros((self.tamanho, self.tamanho))

# Populacdo inicial no canto inferior esquerdo
ul[20:25, 20:25] = 0.8

return u

passo_difusao (self, u):

"""Calcula a difus&do (movimento da espécie)"""

# Laplaciano - difus&o em 2D

laplaciano = (np.roll(u, 1, axis=0) + np.roll(u, -1, axis=0) +

np.roll(u, 1, axis=1) + np.roll(u, -1, axis=1) - 4

return self.D * laplaciano

passo_reacao (self, u):
"""Calcula a reacgdo (crescimento populacional)"""
# Crescimento logistico

return self.r * u * (1 - u / self.K)

simular (self, passos=100):
"""Executa a simulagdo"""
u = self.criar_populacao_inicial ()

historico = [u.copy()]

for _ in range(passos):
# Equacdo de difusdo-reagéo
du_dt = self.passo_difusao(u) + self.passo_reacao (u)
u += du_dt

u = np.clip(u, 0, self.K) # Evita valores negativos

11
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historico.append (u.copy ())

return historico

4 # Executa o modelo simples

print (" Executando simulagio simples...")
modelo_simples = ModeloSimples ()

resultado_simples = modelo_simples.simular (passos=50)

# Visualizacgdo simples

fig, (axl, ax2, ax3) = plt.subplots(l, 3, figsize=(15,

{ # Populagdo inicial

71 iml1 = axl.imshow(resultado_simples[0], cmap=’viridis’,

axl.set_title(’Populagido Imnicial (t=0)°’)
axl.set_xlabel (’Espacgo (x)7)
axl.set_ylabel (’Espacgo (y)?’)

plt.colorbar (iml, ax=axl)

# Populacdo intermediaria

im2 = ax2.imshow(resultado_simples[25], cmap=’viridis’,
ax2.set_title(’Populagdo Intermediaria (t=25)’)
ax2.set_xlabel (’Espacgo (x)’)

ax2.set_ylabel (’Espaco (y)’)

plt.colorbar (im2, ax=ax2)

# Populacdo final

im3 = ax3.imshow(resultado_simples[-1], cmap=’viridis’,
ax3.set_title(’Populacgdo Final (t=50)°)

ax3.set_xlabel (’Espacgo (x)’)

ax3.set_ylabel (’Espaco (y)’)

plt.colorbar (im3, ax=ax3)

plt.tight_layout ()

4 plt.show ()

print ("\ n Simulagdo simples concluida!")

12
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ol print (" Observe a dispersdo da espécie ao longo do tempo")

Listing 1: Implementacao do modelo de difusao-reagao para dispersao de espécies

3.0.2 Cddigos Python dos modelos matematicos

Do estudo sobre a cafeicultura do Sul de Minas pode ser feito algumas simulagoes sobre a
variacao da temperatura ao longo de 2 semanas. O modelo de produtividade implemen-
tado segue a estrutura proposta por [8] e [7], incorporando fungdes de resposta nao-lineares

a temperatura [14, 16] e estresse hidrico [6].

—— Tem — f(T)
30 1 === Totima

Temperatura (°C)

ET (mmy/dia)
ETA/ETC

120

=== Produtividade Maxima

100 Produtividade Diaria

o
o
L

Produtividade (sacas/ha)
- =]
o o
| 1

N
=]
L

=]

Dia

Figura 3: Modelo de dispersao da espécie ao longo do tempo.

RESUMO DA SIMULACAO (15 dias):

Produtividade total acumulada: 828.3 sacas/ha
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Produtividade média didria: 55.2 sacas/ha

Produtividade potencial maxima: 120 sacas/ha

Eficiéncia global do sistema: 46.0

# —-*- coding: utf-8 -x*-

Modelo de Produtividade Agricola com Resposta a Temperatura e Deficit

Hidrico

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import gridspec

class ModeloProdutividade:

Classe que implementa o modelo de produtividade agricola

P =

def

P_max * f(T) * g(ETC)

__init__(self, P_max, T_opt, T_tol):

Inicializa o modelo com parametros especificos

Args:
P_max (float): Produtividade potencial maxima (sacas/ha)
T_opt (float): Temperatura otima para a cultura ( C )

T_tol (float): Tolerancia a temperatura (desvio padrao da

gaussiana)

def

self.P_max P_max

self .T_opt T_opt

self . T_tol = T_tol

f_T(self, temperatura):

Funcao de resposta a temperatura - Funcao Gaussiana

f(T) = exp(-0.5 * ((T - T_opt) / T_tol)"2)

14
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Args:

temperatura (float ou array): Temperatura(s) em C

Returns:

float ou array: Fator de reducao por temperatura (0-1)

return np.exp(-0.5 * ((temperatura - self.T_opt) / self.T_tol)

*xx )

def g_ETC(self, ETA, ETC):
Funcao de resposta hidrica

g(ETC) = ETA / ETC

Args:
ETA (float ou array): Evapotranspiracao Real

ETC (float ou array): Evapotranspiracao da Cultura

Returns:

float ou array: Fator de reducao hidrica (0-1)
nnn
# Garante que a razao nao ultrapasse 1 (sem estresse)

return np.minimum (ETA / ETC, 1.0)

def calcular_produtividade (self, temperatura, ETA, ETC):

Calcula a produtividade usando o modelo completo

Args:
temperatura (float ou array): Temperatura(s) em C
ETA (float ou array): Evapotranspiracao Real

ETC (float ou array): Evapotranspiracao da Cultura

Returns:

float ou array: Produtividade estimada (sacas/ha)

fator_temp = self.f_T(temperatura)
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6¢ fator_hidrico = self.g ETC(ETA, ETC)

71 return self.P_max * fator_temp * fator_hidrico

74 def visualizar_funcao_temperatura():

74 """Visualiza o comportamento da funcao de resposta a temperatura"""
73 print ("=== ANALISE DA FUNCAO DE RESPOSTA A TEMPERATURA ===")

74

77 # Cria modelo exemplo para soja

7 modelo = ModeloProdutividade (P_max=80, T_opt=25, T_tol=5)

8 # Gama de temperaturas

81 temperaturas = np.linspace (10, 40, 100)

89 fator_temp = modelo.f_T(temperaturas)

8:

84 plt.figure(figsize=(10, 6))

85 plt.plot (temperaturas, fator_temp, ’b-’, linewidth=2, label="f(T)’)
86 plt.axvline (x=modelo.T_opt, color=’r’, linestyle=’--’,

87 label=f’Temperatura Otima ({modelo.T_opt} C )?’)

8 plt.axhline(y=0.5, color=’g’, linestyle=’--’,

8¢ label="£f(T) = 0.5 (Reducao de 50%) ’)

9C
91 plt.xlabel (’Temperatura ( C )’)

99 plt.ylabel (’Fator de Reducao f(T)’)

9: plt.title(’Funcao de Resposta a Temperatura - Comportamento
Gaussiano’)

94 plt.grid(True, alpha=0.3)

93 plt.legend ()

96 plt.show ()

9 # Calcula temperaturas onde f(T) = 0.5
9¢ idx_50 = np.where(fator_temp >= 0.5) [0]

10¢ T_min_efetiva = temperaturas[idx_501[0]]

101 T_max_efetiva = temperaturas[idx_50[-1]]

102

10: print (f"Temperatura otima: {modelo.T_opt} C ")

104 print (f"Faixa efetiva (£f(T) 0.5): {T_min_efetiva:.1f} C a {
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T_max_efetiva:.1f} C ")

103 print (f"Tolerancia termica (T_tol): {modelo.T_toll} C ")
od
101 def analisar_cenario_completo ():

108 """Analisa um cenario completo de produtividade"""

10¢ print ("\n=== ANALISE DE CENARIO COMPLETO0 ===")
11¢
111 # Parametros para cultura de soja
119 P_max = 75 # sacas/ha

118 T_opt = 25 # C
114 T_tol = 4 # C

114 modelo = ModeloProdutividade (P_max, T_opt, T_tol)

11§ # Dados de exemplo para 5 dias

11¢ dias = np.array([1, 2, 3, 4, 5])

12( temperaturas = np.array([22, 26, 30, 18, 24]) # C

121 ETA = np.array([4.2, 4.8, 5.1, 3.5, 4.5]) # mm/dia

129 ETC = np.array([5.0, 5.0, 5.0, 5.0, 5.0]) # mm/dia

12:

124 # Calculos

125 fator_temp = modelo.f_T(temperaturas)

126 fator_hidrico = modelo.g_ETC(ETA, ETC)

127 produtividade_diaria = modelo.calcular_produtividade (temperaturas,
ETA, ETC)

128

12¢ # Tabela de resultados

13( print ("\nDia | Temp ( C ) | ETA/ETC | £(T) | Prod (sacas/ha)")

131 print ("-" * 55)

139 for i in range(len(dias)):

13: print (f"{dias[i]:3} | {temperaturas[i]:9} | {ETA[i]/ETC[i]:7.2f}

| {fator_temp[i]:5.2f} | {produtividade_diarial[i]:15.2f3}")

135 # Produtividade media do periodo
134 produtividade_media = np.mean(produtividade_diaria)
137 print (f"\nProdutividade media do periodo: {produtividade_media:.2f}

sacas/ha")
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141

16(

1614

162

16:

164

165

167

16§

16¢

print (f"Produtividade potencial maxima: {P_max} sacas/ha")
print (f"Reducao total: {((P_max - produtividade_media)/P_max*100):.1
£3%")

def simulacao_sensibilidade () :

"""Simula a sensibilidade do modelo a diferentes fatores"""

print ("\n=== ANALISE DE SENSIBILIDADE ===")

# Configuracao base

modelo_base = ModeloProdutividade (P_max=70, T_opt=24, T_tol=4)

# Cenarios de temperatura

temp_cenarios = np.linspace (15, 35, 50)

# Diferentes condicoes hidricas
condicoes_hidricas = {
>’Ideal (ETA/ETC=1.0)’: 1.0,
’Leve estresse (ETA/ETC=0.8)’: 0.8,
’Moderado estresse (ETA/ETC=0.6)’: 0.6,
’Severo estresse (ETA/ETC=0.4)’: 0.4

plt.figure(figsize=(12, 8))

for condicao, fator_hidrico in condicoes_hidricas.items () :
produtividade = modelo_base.calcular_produtividade (
temp_cenarios,
fator_hidrico * 5.0, # ETA = fator_hidrico * ETC
5.0 # ETC fixo
)
plt.plot(temp_cenarios, produtividade,

label=condicao, linewidth=2)

plt.xlabel (’Temperatura ( C )’)
plt.ylabel (’Produtividade (sacas/ha)’)
plt.title(’Sensibilidade do Modelo: Temperatura vs Condicoes

Hidricas?’)
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plt.grid(True, alpha=0.3)
plt.legend ()
plt.show ()

exemplo_aplicacao_real ():

"""Exemplo de aplicacao com dados mais realistas"""

print ("\n=== EXEMPLO DE APLICACAQO PRATICA ===")
# Parametros para milho
modelo_milho = ModeloProdutividade (

P_max=120, # sacas/ha

T_opt=26, # C

T_tol=4.5 # C

# Simulacao para uma quinzena (15 dias)

dias = np.arange (1, 16)

# Dados simulados mais realistas

np.random.seed (42) # Para reproducibilidade

temperaturas = 24 + 5 % np.sin(2 * np.pi * dias / 15) + np.random.

normal (0, 1.5, 15)

ETC = 5.5 + 0.3 * np.sin(2 * np.pi * dias / 15) # Variacao sazonal

da ETC

ETA = ETC * np.clip(0.7 + 0.2 * np.sin(2 * np.pi * dias / 15) + np.

random.normal (0, 0.1, 15), 0.3, 1.0)

# Calculos
resultados = []
for i in range(len(dias)):
prod = modelo_milho.calcular_produtividade(

temperaturas [i], ETA[i], ETC[il]

)
resultados.append ({
’dia’: dias[il],
’temp’: temperaturasl[i],

>ETA_ETC’: ETA[i]/ETCI[i],
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20¢

21C

212

21

215

21€

217

21

21¢

22(

239

24(

247

242

>f_T’: modelo_milho.f_T(temperaturas[i]),
’produtividade’: prod
i)

# Plot resultados

fig, (axl, ax2, ax3) = plt.subplots(3, 1, figsize=(12, 10))

# Grafico 1: Temperatura e f(T)

axl.plot(dias, temperaturas, ’ro-’, label=’Temperatura ( C )’)
axl.axhline(y=modelo_milho.T_opt, color=’r’, linestyle=’--’, label=’
T otima’)

axl.set_ylabel (’Temperatura ( C )’)

axl.legend (loc=’upper left’)

axl.grid(True, alpha=0.3)

axl_twin = axl.twinx()

ax1l_twin.plot(dias, [r[’f_T’] for r in resultados], ’b-’,
label=’"£(T)’, alpha=0.7)

axl_twin.set_ylabel (’£(T)’)

axl_twin.legend (loc=’upper right’)

# Grafico 2: Condicoes hidricas

ax2.plot(dias, ETC, ’g-’, label=’ETC’, linewidth=2)
ax2.plot(dias, ETA, °’b-’, label=’ETA’, linewidth=2)
ax2.set_ylabel (’ET (mm/dia) ’)

ax2.legend ()

ax2.grid(True, alpha=0.3)

ax2_twin = ax2.twinx ()

ax2_twin.plot(dias, [r[’ETA_ETC’] for r in resultados], ’k--7,
label="ETA/ETC?)

ax2_twin.set_ylabel (’ETA/ETC’)

ax2_twin.legend ()
# Grafico 3: Produtividade

ax3.bar(dias, [r[’produtividade’] for r in resultados],

alpha=0.7, color=’orange’, label=’Produtividade Diaria’)
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261

266

267

268

ax3.axhline (y=modelo_milho.P_max, color=’red’, linestyle=’--’,
label=’Produtividade Maxima’)

ax3.set_xlabel (’Dia’)

ax3.set_ylabel (’Produtividade (sacas/ha)’)

ax3.legend ()

ax3.grid (True, alpha=0.3)

plt.tight_layout ()
plt.show ()

# Estatisticas finais

prod_total = sum([r[’produtividade’] for r in resultados])

prod_media = prod_total / len(dias)

print (£"\nRESUMO DA SIMULACAO (15 dias):")

print (f"Produtividade total acumulada: {prod_total:.1f} sacas/ha")
print (f"Produtividade media diaria: {prod_media:.1f} sacas/ha")
print (f"Produtividade potencial maxima: {modelo_milho.P_max} sacas/
ha")

print (f"Eficiencia global do sistema: {(prod_media/modelo_milho.

P_max*100) : .1£f}%")

64 def main () :

"""Funcao principal que executa todas as analises
prlnt (II nn
MODELO DE PRODUTIVIDADE AGRICOLA

Equacao: P = P_max * f(T) * g(ETC)

Onde:

- P_max: Produtividade potencial maxima

- £f(T): Funcao Gaussiana de resposta a temperatura
- g(ETC): Razao ETA/ETC (resposta hidrica)

ey

# Executa todas as analises
visualizar_funcao_temperatura ()

analisar_cenario_completo ()
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) # Executa o programa principal

simulacao_sensibilidade ()

exemplo_aplicacao_real ()

if __name_ == "__main__":

main ()

Listing 2: Implementacao do modelo de produtividade agricola com resposta a

temperatura e déficit hidrico

onde P_max é a produtividade potencial maxima (70-120 sacas/ha), T_opt é a
temperatura 6tima (24-26°C), T_tol é a tolerancia térmica (4-5°C), ETA ¢ a evapotrans-

piracgao real (3-6 mm/dia) e ETC ¢ a evapotranspiragao da cultura (5-6 mm/dia).

3.0.3 Implementacao do Modelo de lucro 3D em funcao da Temperatura vs

Umidade
Lt)y=p-P(T)W) —c-E— A(T) (14)

p: prego por saca de café, P(T,W) é a produtividade em funcao da tempe-
ratura e umidade, ¢ e o custo unitario do esforco de producao, E se refere ao esforco de

produgao, A(T') sdo os custos de adaptacao a temperatura

O codigo implementa uma analise bidimensional do lucro agricola conside-
rando o grid de varidveis e cria uma malha de temperaturas (16-32°C) e condigdes hidricas
(ETA/ETC de 0.3-1.0), o célculo do lucro calcula o lucro para cada combinagao temperatura-
umidade. A visualizagao 3D mostra a Superficie tridimensional com a relacao entre
variaveis. O mapa de contorno mostra uma visualizacao 2D com curvas de nivel do lucro,

o ponto 6timo mostra a identificacao da combinacao ideal de temperatura e umidade.

Para fins de visualizagao, foi fixado a temperatura na Faixa de 16°C a 32°C (50
pontos), condigoes hidricas em ETA/ETC de 0.3 (seco) a 1.0 (ideal), as cores vermelho-
amarelo-verde para representam o lucro, ponto étimo é 22°C com ETA/ETC = 1.0, linha
de equilibrio com a curva de nivel em lucro = 0 (preto)

A funcao gera dois graficos, um grafico 3D com a superficie do lucro em funcao da tem-
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peratura e umidade e um mapa 2D com curvas de nivel com destaque para a regiao de
lucro méximo. A barra de cores mostra a escala de valores do lucro em R$/ha. A Regiao
Verde mostra a alta lucratividade em condigoes 6timas, a regiao amarela a lucratividade
moderada, a regiao vermelha, baixa ou negativa lucratividade, a linha preta o ponto de
equilibrio com lucro zero e o ponto vermelho as condicoes ideais para maximizacao do
lucro.

Lucro: L(t)=p-P(T, W) —c-E - A(T) Mapa de Lucro - Curvas de Nivel 12000

@ Ponto Otimo (22°C, ETA/ETC=1)

64000
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56000

0.8
48000

8
8
8

)

32000
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24000

05
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04 8000
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Figura 4: Anélise do lucro em funcao da temperatura e condigoes hidricas

1

11

# Celula 4: Grafico 2 - Lucro 3D (Temperatura vs Umidade)

def plot_lucro_3d4():

fig = plt.figure(figsize=(15, 6))

Criar grid de temperaturas e condicoes hidricas

np.linspace (16, 32, 50)
np.linspace(0.3, 1.0, 50) # ETA/ETC de 0.3 a 1.0

= = 3 #
]

_grid, W_grid = np.meshgrid(T, W)

# Calcular lucro para cada combinacao
Lucro_grid = np.zeros_like(T_grid)
for i in range(len(T)):

for j in range(len(W)):

Lucro_grid[j,i] = lucro(T_gridl[j,i]l, W_grid[j,i])

# Plot 3D
ax = fig.add_subplot (121, projection=’3d’)

surf = ax.plot_surface(T_grid, W_grid, Lucro_grid,
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cmap=’RdY1Gn’, alpha=0.8,

linewidth=0, antialiased=True)

ax.set_xlabel (’Temperatura ( C )’)
ax.set_ylabel (’ETA/ETC’)
ax.set_zlabel (’Lucro (R\$/ha)’)

ax.set_title(’Lucro: $L(t) = p \\cdot P(T,W) - c \\cdot E

# Adicionar barra de cores
fig.colorbar (surf, ax=ax, shrink=0.5, aspect=20,

label=’Lucro (R\$/ha)’)

# Plot de contorno 2D

ax2 = fig.add_subplot (122)

contour = ax2.contourf(T_grid, W_grid, Lucro_grid,
levels=20, cmap=’RdY1Gn’)

ax2.contour (T_grid, W_grid, Lucro_grid, levels=[0],

colors=’black’, linewidths=2)

# Marcar ponto otimo
ax2.plot (22, 1.0, ’ro’, markersize=10,

label=’Ponto Otimo (22 C , ETA/ETC=1)’)

ax2.set_xlabel (’Temperatura ( C )’)
ax2.set_ylabel (’ETA/ETC’)

ax2.set_title(’Mapa de Lucro - Curvas de Nivel’)
ax2.legend ()

fig.colorbar (contour, ax=ax2, label=’Lucro (R\$/ha)’)

plt.tight_layout ()
plt.show ()

return fig

# Executar o grafico 3D

§ fig2 = plot_lucro_3d ()

ACT)$)

Listing 3: Anadlise tridimensional do lucro em funcao da temperatura e disponibilidade
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hidrica

4 Conclusao

Sobre a regiao do Sul de Minas pode-se ver claramente o efeito do clima e disponibilidade
agua, que sao consequéncia das mudangas climaticas, afetando a produtividade do café.

Planeja-se trabalhar num modelo de projecao de cenarios representando uma
abordagem matematica para antecipar os impactos das mudancgas climaticas na cafeicul-
tura, em que o sistema cafeicultor envolve produtividade, esforco de producao e lucro e
como interagem com varidveis ambientais além da temperatura/ disponibilidade hidrica
atuando como forcantes externas que perturbam esse sistema ao longo do tempo. Além
disso sera adicionado os custos totais, que incluem tanto os custos operacionais conven-
cionais quanto os crescentes custos de adaptacao as condigoes climéticas adversas, estes
ultimos representam investimentos em irrigacao suplementar, sombreamento, manejo es-
pecializado e outras estratégias de mitigacao.

E de bom tamanho também estudar um modelo para determinar se é mais
vantajoso investir em estratégias de reducao de temperatura ou em eficiéncia hidrica em
diferentes fases da trajetéria climatica.

Pretende-se estudar como funciona a cadeia de producao, entender todo ecos-
sistema do ciclo do café a fim de modelar politicas compensatérias para perdas climaticas,
o quanto ¢ perdido ao longo dos anos, seja por custos de adaptacao ou queda do lucro da
cafeicultura.

Na questao da dinamica de populacoes dos polinizadores e seguranca alimen-
tar, pretende-se estudar mais afundo sobre o tema simulando como perturbacoes externas,
pesticidas ou perda de habitat e como afetam a estabilidade da rede de polinizacao e con-
sequentemente, a produtividade agricola com estudos quantitativos sobre essa dinamica
em alimentos especificos que realmente tenha valor agregado e causem impacto na cadeia
de producao no pais, como por exemplo, no oeste da Bahia com itens como cacau, café,

banana, mamao ou coco, podendo até mesmo integrar com o segundo tema pesquisado.
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