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Resumo

A economia da sustentabilidade emerge como campo transdisciplinar essencial

para enfrentar os complexos desafios socioambientais do século XXI. No contexto brasi-

leiro, caracterizado por megadiversidade e significativas desigualdades sociais, a integração

entre modelagem matemática e economia ecológica oferece ferramentas poderosas para a

tomada de decisão.

O trabalho a ser desenvolvido envolve integrar os prinćıpios da ecologia e bi-

omatemática aos da economia promovendo assim um desenvolvimento verdadeiramente

sustentável. O grande diferencial desta área é que ela não vê o meio ambiente como um

subsetor da economia, mas a economia como um subsistema do meio ambiente, que é

finito (Herman Daly).
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dutivas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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1 Introdução

A sustentabilidade é profundamente influenciada pelo bioma, cultura, economia local

e arranjos institucionais. Uma solução para a Caatinga não serve para o Pantanal e

soluções ”feitas sob medida”são o ideal para aplicar modelagem matemática, seja qual for

o problema a região escolhida é mais tanǵıvel e fact́ıvel estudar, propor e implementar

projetos em uma escala regional ou municipal.

É importante ressaltar que para o esse estudo em biomatemática há o en-

volvimento da compreensão das áreas de Aquecimento global, Dinâmicas de Populações,

Epidemiologia e Impacto Ambiental sendo necessárias afim de se obter uma valoração ou

adotar medidas espećıficas para problemas espećıficos estudados.

Num panorama Nacional isso permite entender tendências macroeconômicas

e estruturas que afetam todo o páıs tendo como impacto amplo a adoção de poĺıticas ou

modelos de negócio desenvolvidos numa perspectiva nacional, que podem ser replicados

ou adaptados e potencialmente atingindo mais pessoas.
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2 Pesquisas de temas relevantes

A seguir serão mostrados alguns temas relevantes pesquisados sobre como a economia da

sustentabilidade se aplica no páıs e como pode-se desenvolver a pesquisa sobre regiões

brasileiras.

2.1 Modelagem de Migração Climática de Espécies e Impacto

em Cadeias Produtivas

Regiões como Serra Gaúcha ou Região Sul de Minas Gerais são regiões produtoras de

culturas senśıveis ao clima (como a maçã e o café arábica, respectivamente). Um aumento

de temperatura pode tornar áreas impróprias para o café arábico, deslocando a cultura

para regiões mais altas, e ao mesmo tempo permitir que pragas antes restritas a regiões

mais quentes se estabeleçam.

Segundo a EMBRAPA [3], o café arábico domina os mercados nacionais e

internacionais, em que o Brasil é ĺıder e dados do Observatório do café [5] mostram

que o faturamento bruto dos cafés em 2023 ficou em quase 50 bilhões, sendo então é

uma das commodities mais importantes do Brasil. Mas em quesitos climáticos, ele é

extremamente senśıvel a temperaturas acima de 23°C que aceleram seu metabolismo,

prejudicam a floração e a granação dos grãos reduzindo a qualidade e a produtividade.

Dado um cenário de aumento de temperatura de 2°C até 2050 é necessária a

combinação mais custo-efetiva de estratégias de adaptação para manter a rentabilidade

da cafeicultura no Sul de Minas.

Segundo [4] a Modelagem da Migração Climática de Espécies estuda

como as mudanças no clima forçam a migração de organismos e os impactos nas cadeias

produtivas incluem perdas de produção agŕıcola devido a eventos climáticos extremos, al-

terações na disponibilidade de recursos h́ıdricos e riscos à segurança alimentar e econômica.

Ao analisar dados como aumento da temperatura e mudanças nos padrões

de chuva, esses modelos preveem a redistribuição das espécies, o que pode levar a de-

sequiĺıbrios ecológicos, extinção local, mudanças no uso da terra e à necessidade de

adaptação na agricultura para garantir a sustentabilidade da produção.

A modelagem preditiva de distribuição de espécies [2] é um método computa-
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cional que constrói uma representação das condições requeridas para a sobrevivência de

uma ou mais espécies, por meio da combinação de dados de ocorrência com variáveis am-

bientais. Na Ecologia Matemática são utilizados modelos de distribuição de espécies

(Species Distribution Models - SDMs) usando equações de difusão-reação para prever

deslocamento de espécies devido ao aquecimento global, incorporando fatores como dis-

persão e mudanças ambientais (reação). Esses modelos combinaram o movimento f́ısico

das espécies com a forma como as condições ambientais afetam sua sobrevivência e re-

produção (reação) para projetar como sua distribuição potencial mudará no futuro. [2] A

difusão representa o movimento das espécies de um local para outro, a sua dispersão, a

reação pode exibir um modelo de como as condições ambientais, como temperatura, umi-

dade e disponibilidade de recursos, influenciam a capacidade de uma espécie sobreviver,

se reproduzir e se estabelecer em um novo local.

A descoberta de difusão-reação combina essas duas forças. Ela descreve como

a densidade populacional de uma espécie muda ao longo do tempo e do espaço, consi-

derando tanto a sua capacidade de se espalhar quanto a adequação do ambiente para

sua sobrevivência. Os modelos de dinâmica de populações [13] estudam um subtema, a

dinâmica de metapopulações para entender como populações fragmentadas se conectam

ou se isolam em escalas espaciais mais amplas. Porém, o modelo de dinâmica metapo-

pulacional foi pensado segundo experiências com dinâmica de fauna, sendo fundamental

a extensão deste modelo para outros tipos de dinâmica regional que incorporem os pro-

blemas espećıficos associados ao estudo de plantas. Idéias de “populações espacialmente

expandidas” (‘spatially extended populations’) e de “conjuntos regionais de populações”

(‘regional ensemble’) foram propostas no intuito de compreender a dinâmica regional de

plantas. Podemos aplicar isso a um modelo de produtividade do café sob estresse térmico

e h́ıdrico prevendo a produtividade (sacas/hectare) em função do clima, explicando como

modelo uma função de crescimento modificada por fatores de estresse.

∂N

∂t
= D∇2N −∇ · [v(x, t)N ] + rN

(
1− N

K(x, t)

)
(1)

onde:

• N(x, t): densidade da espécie no espaço x e tempo t
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• D: coeficiente de difusão (dispersão aleatória)

• v(x, t): velocidade de advecção (movimento direcionado pelo clima)

• r: taxa de crescimento intŕınseco

• K(x, t): capacidade de suporte do ambiente, quevpode variar com o clima.

2.2 Modelo de Produtividade do Café sob Estresse Térmico e

Hı́drico

Um modelo de produtividade do café sob estresse térmico e h́ıdrico se baseia na análise

de como o aumento da temperatura e a falta de água afetam a planta, prejudicando

a fotosśıntese e causando queda na produção. Com a variedade no calor, como o café

Arábico acima de 22◦C, o impacto de perdas de água e deficiência h́ıdrica pode reduzir

a produtividade em comparação com condições ideais. O estresse h́ıdrico e térmico pode

levar a uma perda de até 95% de área plantável adequada para o café em algumas regiões,

impactando diretamente o rendimento por hectare. Pode-se prever a produtividade (sa-

cas/hectare) em função do clima, explicando como modelo uma função de crescimento

modificada por fatores de estresse.

Produtividade = Pmax · f(T ) · g(ETC) (2)

Pmax: Produtividade potencial na região (sacas/ha)

f(T ): Função de Resposta à Temperatura (cŕıtica), pode ser uma função Gaus-

siana ou quadrática que maximiza em ∼22°C e cai drasticamente acima de 30°C e abaixo

de 15°C

f(T ) = exp

(
−0.5 ·

(
T − Topt

Ttol

)2
)

(3)

g(ETC) representa a função de resposta h́ıdrica. É a relação entre a Evapo-

transpiração Real (ETA) e a Evapotranspiração da Cultura (ETC).

g(ETC) =
ETA

ETC
(valor entre 0 e 1, onde 1 significa sem estresse h́ıdrico) (4)
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2.3 Modelo Econômico da Cafeicultura

Baseado na abordagem de colheita sustentável de [9] (Seção 1.6), o lucro ĺıquido da

cafeicultura pode ser modelado como:

L(t) = p · P (T,W )− c · E − A(T ) (5)

onde: p é o preço por saca de café, c o custo unitário do esforço de produção, E o esforço

de produção e A(T ) os custos de adaptação ao aumento de temperatura. A seguir foi

gerado um mapa de calor sobre esse modelo:

2.4 Cenários de Aquecimento Global

Essa é uma decomposição t́ıpica em análise de séries temporais de campos espaciais,

considerando o cenário de aumento de 2°C até 2050 [10], modelamos a temperatura como:

T (x, t) = T0(x) + ∆T (t) + η(x, t) (6)

onde ∆T (t) representa o aquecimento global e η(x, t) a variabilidade espacial.

T (x, t) é o campo de temperatura no ponto x e no tempo t, T0(x) é a tempera-

tura média espacial no ponto x, independente do tempo, η(x, t) é o reśıduo ou flutuação

espacialmente heterogênea, dependente de x e t.
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2.5 Dinâmica de Populações de Polinizadores e Segurança Ali-

mentar

Poucas plantas têm a capacidade de autopolinização [11], a grande maioria depende de

animais, do vento ou de água para se reproduzir. A população de polinizadores que se

baseiam em abelhas, morcegos, pássaros lagartos, etc, procuram o néctar das flores. A

contribuição dos polinizadores para a agricultura brasileira é extremamente importante.

As abelhas são os principais polinizadores de plantas nativas e cultivadas,

estima-se que o serviço de polinização realizado por elas agregue nada menos do que

43 bilhões por ano à agricultura [12]. Esses agentes enfrentam riscos em um mundo de

mudanças com a perda de seus habitats, o uso de pesticidas e as mudanças climáticas

estão ameaçando sua existência. Isso tem implicações diretas na segurança alimentar,

pois o decĺınio dos polinizadores pode reduzir a qualidade e produtividade das colheitas,

levando à escassez e ao aumento de preço dos alimentos. [1] É crucial compreender como

esses polinizadores interagem em ambientes naturais, com as mudanças em seus habitats

e consequentemente com os agrossistemas.

Dado o contexto do páıs e dimensões, é de extrema importância estudar regiões

como Chapada Diamantina ou Oeste da Bahia, regiões de grande produção de frutas e

grãos como manga, soja, algodão que dependem criticamente de polinizadores.

2.6 Ferramentação Matemática

Modelos de ecologia matemática como o de dinâmica de populações, ajudam a estudar

como as ações climáticas e uso de pesticidas afetam a polinização natural. Para quantificar

esses impactos e prever cenários futuros, modelos matemáticos de dinâmica de populações

se mostram ferramentas essenciais, através de modelos de redes mutuaĺısticas (plantas-

polinizadores) acoplados a modelos de crescimento de culturas e modelos de dinâmica

populacional para abelhas, estudar o efeito de pesticidas e da mudança climática na

fragmentação de habitat e sobrevivência de colônias pode nos levar a um entendimento

sobre economia da sustentabilidade, ou seja, a partir desses modelos podemos estudar

sobre valoração econômica do serviço de polinização para a agricultura, custo de reposição

com a polinização manual e a análise de poĺıticas de PSA para conservação de habitats
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de polinizadores.

O modelo de partida é uma extensão do clássico modelo predador-presa para

descrever a interação mutuaĺıstica entre duas espécies.

Para uma espécie de planta P e uma espécie de polinizador A:

dP

dt
= rPP

(
1− P

KP

)
+ αPAAP (7)

dA

dt
= rAA

(
1− A

KA

)
+ αAPPA (8)

Em que P , A é densidade populacional de plantas e polinizadores, respecti-

vamente; rP/ rA são as taxas de crescimento intŕınseco, KP/ KA são as capacidades de

suporte do ambiente (na ausência do mutualista); αPA é o benef́ıcio que a planta recebe

por unidade de polinizador (como por exemplo o aumento na taxa de reprodução via su-

cesso de polinização); e αAP é o benef́ıcio que o polinizador recebe por unidade de planta

(ex: acesso a néctar/pólen, aumentando a taxa de reprodução)

Este modelo bilateral é instável, se os benef́ıcios (α) forem muito grandes as

populações crescem infinitamente o que é biologicamente irrealista. Isso levou ao desen-

volvimento de modelos com saturação. O modelo abaixo é mais realista, pois assume que

o benef́ıcio que uma espécie recebe de seu mutualista satura conforme a população do

mutualista aumenta se por exemplo uma abelha só pode visitar um número limitado de

flores por dia.

Para SP espécies de plantas e SA espécies de polinizadores:

dPi

dt
= riPi

(
1− Pi

Ki

)
+

SA∑
j=1

αijAjPi

1 + h
∑SA

k=1 αikAk

(9)

dAj

dt
= rjAj

(
1− Aj

Kj

)
+

SP∑
i=1

βjiPiAj

1 + h
∑SP

k=1 βjkPk

(10)

Pi é a densidade populacional da planta da espécie i; Aj é a densidade popu-

lacional do polinizador da espécie j, SP/ SA é o número total de espécies de plantas e

polinizadores, respectivamente. αij é a taxa de benef́ıcio espećıfica que a planta i recebe

do polinizador j; βji é a taxa de benef́ıcio espećıfica que o polinizador j recebe da planta
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i e h é o tempo de manipulação ou parâmetro de saturação (controla quão rapidamente

o benef́ıcio se satura).

Os termos de soma (
∑

) são o coração do modelo de rede, eles mostram que o

benef́ıcio total para uma planta i depende de todas as espécies de polinizadores j com as

quais ela interage (e vice-versa) e a força de cada interação é ponderada pelo parâmetro

αij (ou βji).

2.6.1 A Estrutura da Rede: Matrizes de Interação

A topologia da rede (quem interage com quem e com que força) é encapsulada em duas

matrizes:

α =


α11 α12 · · · α1SA

α21 α22 · · · α2SA

...
...

. . .
...

αSP 1 αSP 2 · · · αSPSA

 (11)

A linha i: mostra todos os benef́ıcios que a planta i recebe de cada polinizador

e a coluna j: mostra todos os benef́ıcios que cada planta recebe do polinizador j.

2.7 Matriz de Benef́ıcio dos Polinizadores (β)

β =


β11 β12 · · · β1SP

β21 β22 · · · β2SP

...
...

. . .
...

βSA1 βSA2 · · · βSASP

 (12)

linha j: Mostra todos os benef́ıcios que o polinizador j recebe de cada planta.

2.8 Padrões de Rede

Se a matriz α for altamente aninhada (nested)[15], significa que plantas especialistas (que

interagem com poucos polinizadores) interagem com um subconjunto dos polinizadores

que também visitam plantas generalistas. A modularidade significaria que a matriz pode

ser dividida em blocos de espécies que interagem mais fortemente entre si do que com
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espécies de outros módulos.

A1 A2

P1 P2

(A) Rede Aninhada

P1

A1

P2

A2

(B) Rede Modular

Figura 1: Padrões de redes mutuaĺısticas: (A) rede aninhada e (B) rede modular

Na rede aninhada (Figura 1A), as interações seguem um padrão hierárquico.

As espécies generalistas (como P1) interagem com a maioria das outras espécies, enquanto

as espécies especialistas (como P2) interagem principalmente com as generalistas. Isso cria

uma estrutura onde o conjunto de parceiros das espécies especialistas é um subconjunto

dos parceiros das espécies generalistas. Essa estrutura é frequentemente encontrada em

ecossistemas estáveis e é considerada robusta à extinção aleatória de espécies, pois a perda

de um especialista tem pouco efeito na rede como um todo.

Na rede modular (Figura 1B), o sistema é compartimentalizado em grupos dis-

tintos (módulos). Dentro de cada módulo, as espécies interagem fortemente entre si, mas

têm poucas ou nenhuma conexão com espécies de outros módulos. Essa estrutura pode

surgir em resposta a barreiras geográficas, especializações fenológicas ou morfológicas. Re-

des modulares podem ser resilientes à propagação de perturbações (como uma doença),

pois o efeito fica contido dentro de um módulo [15].
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3 Resultados

3.0.1 Implementação do Modelo de Difusão-Reação

O código implementa um modelo de difusão-reação baseado na equação:

∂u

∂t
= D∇2u+ ru

(
1− u

K

)
(13)

onde u representa a densidade populacional, D é o coeficiente de difusão, r: taxa de

crescimento intŕınseco, K: capacidade de suporte do ambiente

Figura 2: Dispersão da espécie ao longo do tempo.

1 !pip install matplotlib numpy scipy

2

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from matplotlib.animation import FuncAnimation

6 from IPython.display import HTML

7

8

9 print(" MODELO SIMPLES DE DIFUS~AO-REA Ç~AO")

10 print("=" * 50)

11

12 class ModeloSimples:

13 """

14 Modelo básico de difus~ao-rea ç~ao para distribui ç~ao de esp écies

15 Equa ç~ao: u / t = D * u + r * u * (1 - u/K)

16 """

17
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18 def __init__(self):

19 self.tamanho = 50

20 self.D = 0.1 # Coeficiente de difus~ao

21 self.r = 0.3 # Taxa de crescimento

22 self.K = 1.0 # Capacidade de suporte

23

24 def criar_populacao_inicial(self):

25 """Popula ç~ao inicial concentrada em uma regi~ao"""

26 u = np.zeros((self.tamanho , self.tamanho))

27 # Popula ç~ao inicial no canto inferior esquerdo

28 u[20:25 , 20:25] = 0.8

29 return u

30

31 def passo_difusao(self , u):

32 """Calcula a difus~ao (movimento da esp écie)"""

33 # Laplaciano - difus~ao em 2D

34 laplaciano = (np.roll(u, 1, axis =0) + np.roll(u, -1, axis =0) +

35 np.roll(u, 1, axis =1) + np.roll(u, -1, axis =1) - 4

* u)

36 return self.D * laplaciano

37

38 def passo_reacao(self , u):

39 """Calcula a rea ç~ao (crescimento populacional)"""

40 # Crescimento log ı́ stico

41 return self.r * u * (1 - u / self.K)

42

43 def simular(self , passos =100):

44 """Executa a simula ç~ao"""

45 u = self.criar_populacao_inicial ()

46 historico = [u.copy()]

47

48 for _ in range(passos):

49 # Equa ç~ao de difus~ao-rea ç~ao

50 du_dt = self.passo_difusao(u) + self.passo_reacao(u)

51 u += du_dt

52 u = np.clip(u, 0, self.K) # Evita valores negativos

53
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54 historico.append(u.copy())

55

56 return historico

57

58 # Executa o modelo simples

59 print(" Executando simula ç~ao simples ...")

60 modelo_simples = ModeloSimples ()

61 resultado_simples = modelo_simples.simular(passos =50)

62

63 # Visualiza ç~ao simples

64 fig , (ax1 , ax2 , ax3) = plt.subplots(1, 3, figsize =(15, 4))

65

66 # Popula ç~ao inicial

67 im1 = ax1.imshow(resultado_simples [0], cmap=’viridis ’, vmin=0, vmax =1)

68 ax1.set_title(’Popula ç~ao Inicial (t=0)’)

69 ax1.set_xlabel(’Espa ço (x)’)

70 ax1.set_ylabel(’Espa ço (y)’)

71 plt.colorbar(im1 , ax=ax1)

72

73 # Popula ç~ao intermedi ária

74 im2 = ax2.imshow(resultado_simples [25], cmap=’viridis ’, vmin=0, vmax =1)

75 ax2.set_title(’Popula ç~ao Intermedi ária (t=25)’)

76 ax2.set_xlabel(’Espa ço (x)’)

77 ax2.set_ylabel(’Espa ço (y)’)

78 plt.colorbar(im2 , ax=ax2)

79

80 # Popula ç~ao final

81 im3 = ax3.imshow(resultado_simples [-1], cmap=’viridis ’, vmin=0, vmax =1)

82 ax3.set_title(’Popula ç~ao Final (t=50)’)

83 ax3.set_xlabel(’Espa ço (x)’)

84 ax3.set_ylabel(’Espa ço (y)’)

85 plt.colorbar(im3 , ax=ax3)

86

87 plt.tight_layout ()

88 plt.show()

89

90 print("\ n Simula ç~ao simples conclu ı́da!")
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91 print(" Observe a dispers~ao da esp écie ao longo do tempo")

Listing 1: Implementação do modelo de difusão-reação para dispersão de espécies

3.0.2 Códigos Python dos modelos matemáticos

Do estudo sobre a cafeicultura do Sul de Minas pode ser feito algumas simulações sobre a

variação da temperatura ao longo de 2 semanas. O modelo de produtividade implemen-

tado segue a estrutura proposta por [8] e [7], incorporando funções de resposta não-lineares

à temperatura [14, 16] e estresse h́ıdrico [6].

Figura 3: Modelo de dispersão da espécie ao longo do tempo.

RESUMO DA SIMULAÇÃO (15 dias):

Produtividade total acumulada: 828.3 sacas/ha
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Produtividade média diária: 55.2 sacas/ha

Produtividade potencial máxima: 120 sacas/ha

Eficiência global do sistema: 46.0

1 # -*- coding: utf -8 -*-

2 """

3 Modelo de Produtividade Agricola com Resposta a Temperatura e Deficit

Hidrico

4

5 import numpy as np

6 import matplotlib.pyplot as plt

7 from matplotlib import gridspec

8

9 class ModeloProdutividade:

10 """

11 Classe que implementa o modelo de produtividade agricola

12 P = P_max * f(T) * g(ETC)

13 """

14

15 def __init__(self , P_max , T_opt , T_tol):

16 """

17 Inicializa o modelo com parametros especificos

18

19 Args:

20 P_max (float): Produtividade potencial maxima (sacas/ha)

21 T_opt (float): Temperatura otima para a cultura ( C )

22 T_tol (float): Tolerancia a temperatura (desvio padrao da

gaussiana)

23 """

24 self.P_max = P_max

25 self.T_opt = T_opt

26 self.T_tol = T_tol

27

28 def f_T(self , temperatura):

29 """

30 Funcao de resposta a temperatura - Funcao Gaussiana

31 f(T) = exp(-0.5 * ((T - T_opt) / T_tol)^2)

32
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33 Args:

34 temperatura (float ou array): Temperatura(s) em C

35

36 Returns:

37 float ou array: Fator de reducao por temperatura (0-1)

38 """

39 return np.exp(-0.5 * (( temperatura - self.T_opt) / self.T_tol)

** 2)

40

41 def g_ETC(self , ETA , ETC):

42 """

43 Funcao de resposta hidrica

44 g(ETC) = ETA / ETC

45

46 Args:

47 ETA (float ou array): Evapotranspiracao Real

48 ETC (float ou array): Evapotranspiracao da Cultura

49

50 Returns:

51 float ou array: Fator de reducao hidrica (0-1)

52 """

53 # Garante que a razao nao ultrapasse 1 (sem estresse)

54 return np.minimum(ETA / ETC , 1.0)

55

56 def calcular_produtividade(self , temperatura , ETA , ETC):

57 """

58 Calcula a produtividade usando o modelo completo

59

60 Args:

61 temperatura (float ou array): Temperatura(s) em C

62 ETA (float ou array): Evapotranspiracao Real

63 ETC (float ou array): Evapotranspiracao da Cultura

64

65 Returns:

66 float ou array: Produtividade estimada (sacas/ha)

67 """

68 fator_temp = self.f_T(temperatura)
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69 fator_hidrico = self.g_ETC(ETA , ETC)

70

71 return self.P_max * fator_temp * fator_hidrico

72

73 def visualizar_funcao_temperatura ():

74 """Visualiza o comportamento da funcao de resposta a temperatura"""

75 print("=== ANALISE DA FUNCAO DE RESPOSTA A TEMPERATURA ===")

76

77 # Cria modelo exemplo para soja

78 modelo = ModeloProdutividade(P_max=80, T_opt=25, T_tol =5)

79

80 # Gama de temperaturas

81 temperaturas = np.linspace (10, 40, 100)

82 fator_temp = modelo.f_T(temperaturas)

83

84 plt.figure(figsize =(10, 6))

85 plt.plot(temperaturas , fator_temp , ’b-’, linewidth=2, label=’f(T)’)

86 plt.axvline(x=modelo.T_opt , color=’r’, linestyle=’--’,

87 label=f’Temperatura Otima ({ modelo.T_opt} C )’)

88 plt.axhline(y=0.5, color=’g’, linestyle=’--’,

89 label=’f(T) = 0.5 (Reducao de 50%) ’)

90

91 plt.xlabel(’Temperatura ( C )’)

92 plt.ylabel(’Fator de Reducao f(T)’)

93 plt.title(’Funcao de Resposta a Temperatura - Comportamento

Gaussiano ’)

94 plt.grid(True , alpha =0.3)

95 plt.legend ()

96 plt.show()

97

98 # Calcula temperaturas onde f(T) = 0.5

99 idx_50 = np.where(fator_temp >= 0.5) [0]

100 T_min_efetiva = temperaturas[idx_50 [0]]

101 T_max_efetiva = temperaturas[idx_50 [-1]]

102

103 print(f"Temperatura otima: {modelo.T_opt} C ")

104 print(f"Faixa efetiva (f(T) 0.5): {T_min_efetiva :.1f} C a {
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T_max_efetiva :.1f} C ")

105 print(f"Tolerancia termica (T_tol): {modelo.T_tol} C ")

106

107 def analisar_cenario_completo ():

108 """Analisa um cenario completo de produtividade"""

109 print("\n=== ANALISE DE CENARIO COMPLETO ===")

110

111 # Parametros para cultura de soja

112 P_max = 75 # sacas/ha

113 T_opt = 25 # C

114 T_tol = 4 # C

115

116 modelo = ModeloProdutividade(P_max , T_opt , T_tol)

117

118 # Dados de exemplo para 5 dias

119 dias = np.array([1, 2, 3, 4, 5])

120 temperaturas = np.array ([22, 26, 30, 18, 24]) # C

121 ETA = np.array ([4.2, 4.8, 5.1, 3.5, 4.5]) # mm/dia

122 ETC = np.array ([5.0, 5.0, 5.0, 5.0, 5.0]) # mm/dia

123

124 # Calculos

125 fator_temp = modelo.f_T(temperaturas)

126 fator_hidrico = modelo.g_ETC(ETA , ETC)

127 produtividade_diaria = modelo.calcular_produtividade(temperaturas ,

ETA , ETC)

128

129 # Tabela de resultados

130 print("\nDia | Temp ( C ) | ETA/ETC | f(T) | Prod (sacas/ha)")

131 print("-" * 55)

132 for i in range(len(dias)):

133 print(f"{dias[i]:3} | {temperaturas[i]:9} | {ETA[i]/ETC[i]:7.2f}

| {fator_temp[i]:5.2f} | {produtividade_diaria[i]:15.2f}")

134

135 # Produtividade media do periodo

136 produtividade_media = np.mean(produtividade_diaria)

137 print(f"\nProdutividade media do periodo: {produtividade_media :.2f}

sacas/ha")
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138 print(f"Produtividade potencial maxima: {P_max} sacas/ha")

139 print(f"Reducao total: {(( P_max - produtividade_media)/P_max *100) :.1

f}%")

140

141 def simulacao_sensibilidade ():

142 """Simula a sensibilidade do modelo a diferentes fatores"""

143 print("\n=== ANALISE DE SENSIBILIDADE ===")

144

145 # Configuracao base

146 modelo_base = ModeloProdutividade(P_max=70, T_opt=24, T_tol =4)

147

148 # Cenarios de temperatura

149 temp_cenarios = np.linspace (15, 35, 50)

150

151 # Diferentes condicoes hidricas

152 condicoes_hidricas = {

153 ’Ideal (ETA/ETC =1.0) ’: 1.0,

154 ’Leve estresse (ETA/ETC =0.8) ’: 0.8,

155 ’Moderado estresse (ETA/ETC =0.6) ’: 0.6,

156 ’Severo estresse (ETA/ETC =0.4) ’: 0.4

157 }

158

159 plt.figure(figsize =(12, 8))

160

161 for condicao , fator_hidrico in condicoes_hidricas.items():

162 produtividade = modelo_base.calcular_produtividade(

163 temp_cenarios ,

164 fator_hidrico * 5.0, # ETA = fator_hidrico * ETC

165 5.0 # ETC fixo

166 )

167 plt.plot(temp_cenarios , produtividade ,

168 label=condicao , linewidth =2)

169

170 plt.xlabel(’Temperatura ( C )’)

171 plt.ylabel(’Produtividade (sacas/ha)’)

172 plt.title(’Sensibilidade do Modelo: Temperatura vs Condicoes

Hidricas ’)
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173 plt.grid(True , alpha =0.3)

174 plt.legend ()

175 plt.show()

176

177 def exemplo_aplicacao_real ():

178 """Exemplo de aplicacao com dados mais realistas"""

179 print("\n=== EXEMPLO DE APLICACAO PRATICA ===")

180

181 # Parametros para milho

182 modelo_milho = ModeloProdutividade(

183 P_max =120, # sacas/ha

184 T_opt=26, # C

185 T_tol =4.5 # C

186 )

187

188 # Simulacao para uma quinzena (15 dias)

189 dias = np.arange(1, 16)

190

191 # Dados simulados mais realistas

192 np.random.seed (42) # Para reproducibilidade

193 temperaturas = 24 + 5 * np.sin(2 * np.pi * dias / 15) + np.random.

normal(0, 1.5, 15)

194 ETC = 5.5 + 0.3 * np.sin(2 * np.pi * dias / 15) # Variacao sazonal

da ETC

195 ETA = ETC * np.clip (0.7 + 0.2 * np.sin(2 * np.pi * dias / 15) + np.

random.normal(0, 0.1, 15), 0.3, 1.0)

196

197 # Calculos

198 resultados = []

199 for i in range(len(dias)):

200 prod = modelo_milho.calcular_produtividade(

201 temperaturas[i], ETA[i], ETC[i]

202 )

203 resultados.append ({

204 ’dia ’: dias[i],

205 ’temp ’: temperaturas[i],

206 ’ETA_ETC ’: ETA[i]/ETC[i],
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207 ’f_T ’: modelo_milho.f_T(temperaturas[i]),

208 ’produtividade ’: prod

209 })

210

211 # Plot resultados

212 fig , (ax1 , ax2 , ax3) = plt.subplots(3, 1, figsize =(12, 10))

213

214 # Grafico 1: Temperatura e f(T)

215 ax1.plot(dias , temperaturas , ’ro -’, label=’Temperatura ( C )’)

216 ax1.axhline(y=modelo_milho.T_opt , color=’r’, linestyle=’--’, label=’

T otima ’)

217 ax1.set_ylabel(’Temperatura ( C )’)

218 ax1.legend(loc=’upper left ’)

219 ax1.grid(True , alpha =0.3)

220

221 ax1_twin = ax1.twinx()

222 ax1_twin.plot(dias , [r[’f_T ’] for r in resultados], ’b-’,

223 label=’f(T)’, alpha =0.7)

224 ax1_twin.set_ylabel(’f(T)’)

225 ax1_twin.legend(loc=’upper right ’)

226

227 # Grafico 2: Condicoes hidricas

228 ax2.plot(dias , ETC , ’g-’, label=’ETC ’, linewidth =2)

229 ax2.plot(dias , ETA , ’b-’, label=’ETA ’, linewidth =2)

230 ax2.set_ylabel(’ET (mm/dia)’)

231 ax2.legend ()

232 ax2.grid(True , alpha =0.3)

233

234 ax2_twin = ax2.twinx()

235 ax2_twin.plot(dias , [r[’ETA_ETC ’] for r in resultados], ’k--’,

236 label=’ETA/ETC ’)

237 ax2_twin.set_ylabel(’ETA/ETC ’)

238 ax2_twin.legend ()

239

240 # Grafico 3: Produtividade

241 ax3.bar(dias , [r[’produtividade ’] for r in resultados],

242 alpha =0.7, color=’orange ’, label=’Produtividade Diaria ’)
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243 ax3.axhline(y=modelo_milho.P_max , color=’red ’, linestyle=’--’,

244 label=’Produtividade Maxima ’)

245 ax3.set_xlabel(’Dia ’)

246 ax3.set_ylabel(’Produtividade (sacas/ha)’)

247 ax3.legend ()

248 ax3.grid(True , alpha =0.3)

249

250 plt.tight_layout ()

251 plt.show()

252

253 # Estatisticas finais

254 prod_total = sum([r[’produtividade ’] for r in resultados ])

255 prod_media = prod_total / len(dias)

256

257 print(f"\nRESUMO DA SIMULACAO (15 dias):")

258 print(f"Produtividade total acumulada: {prod_total :.1f} sacas/ha")

259 print(f"Produtividade media diaria: {prod_media :.1f} sacas/ha")

260 print(f"Produtividade potencial maxima: {modelo_milho.P_max} sacas/

ha")

261 print(f"Eficiencia global do sistema: {( prod_media/modelo_milho.

P_max *100) :.1f}%")

262

263 def main():

264 """Funcao principal que executa todas as analises"""

265 print("""

266 MODELO DE PRODUTIVIDADE AGRICOLA

267 ================================

268 Equacao: P = P_max * f(T) * g(ETC)

269 Onde:

270 - P_max: Produtividade potencial maxima

271 - f(T): Funcao Gaussiana de resposta a temperatura

272 - g(ETC): Razao ETA/ETC (resposta hidrica)

273 """)

274

275 # Executa todas as analises

276 visualizar_funcao_temperatura ()

277 analisar_cenario_completo ()
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278 simulacao_sensibilidade ()

279 exemplo_aplicacao_real ()

280

281

282 # Executa o programa principal

283 if __name__ == "__main__":

284 main()

Listing 2: Implementação do modelo de produtividade agŕıcola com resposta à

temperatura e déficit h́ıdrico

onde P max é a produtividade potencial máxima (70-120 sacas/ha), T opt é a

temperatura ótima (24-26°C), T tol é a tolerância térmica (4-5°C), ETA é a evapotrans-

piração real (3-6 mm/dia) e ETC é a evapotranspiração da cultura (5-6 mm/dia).

3.0.3 Implementação do Modelo de lucro 3D em função da Temperatura vs

Umidade

L(t) = p · P (T,W )− c · E − A(T ) (14)

p: preço por saca de café, P (T,W ) é a produtividade em função da tempe-

ratura e umidade, c e o custo unitário do esforço de produção, E se refere ao esforço de

produção, A(T ) são os custos de adaptação à temperatura

O código implementa uma análise bidimensional do lucro agŕıcola conside-

rando o grid de variáveis e cria uma malha de temperaturas (16-32°C) e condições h́ıdricas

(ETA/ETC de 0.3-1.0), o cálculo do lucro calcula o lucro para cada combinação temperatura-

umidade. A visualização 3D mostra a Superf́ıcie tridimensional com a relação entre

variáveis. O mapa de contorno mostra uma visualização 2D com curvas de ńıvel do lucro,

o ponto ótimo mostra a identificação da combinação ideal de temperatura e umidade.

Para fins de visualização, foi fixado a temperatura na Faixa de 16°C a 32°C (50

pontos), condições h́ıdricas em ETA/ETC de 0.3 (seco) a 1.0 (ideal), as cores vermelho-

amarelo-verde para representam o lucro, ponto ótimo é 22°C com ETA/ETC = 1.0, linha

de equiĺıbrio com a curva de ńıvel em lucro = 0 (preto)

A função gera dois gráficos, um gráfico 3D com a superf́ıcie do lucro em função da tem-
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peratura e umidade e um mapa 2D com curvas de ńıvel com destaque para a região de

lucro máximo. A barra de cores mostra a escala de valores do lucro em R$/ha. A Região

Verde mostra a alta lucratividade em condições ótimas, a região amarela a lucratividade

moderada, a região vermelha, baixa ou negativa lucratividade, a linha preta o ponto de

equiĺıbrio com lucro zero e o ponto vermelho as condições ideais para maximização do

lucro.

Figura 4: Análise do lucro em função da temperatura e condições h́ıdricas

1 # Celula 4: Grafico 2 - Lucro 3D (Temperatura vs Umidade)

2

3 def plot_lucro_3d ():

4 fig = plt.figure(figsize =(15, 6))

5

6 # Criar grid de temperaturas e condicoes hidricas

7 T = np.linspace (16, 32, 50)

8 W = np.linspace (0.3, 1.0, 50) # ETA/ETC de 0.3 a 1.0

9 T_grid , W_grid = np.meshgrid(T, W)

10

11 # Calcular lucro para cada combinacao

12 Lucro_grid = np.zeros_like(T_grid)

13 for i in range(len(T)):

14 for j in range(len(W)):

15 Lucro_grid[j,i] = lucro(T_grid[j,i], W_grid[j,i])

16

17 # Plot 3D

18 ax = fig.add_subplot (121, projection=’3d’)

19 surf = ax.plot_surface(T_grid , W_grid , Lucro_grid ,
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20 cmap=’RdYlGn ’, alpha =0.8,

21 linewidth=0, antialiased=True)

22

23 ax.set_xlabel(’Temperatura ( C )’)

24 ax.set_ylabel(’ETA/ETC’)

25 ax.set_zlabel(’Lucro (R\$/ha)’)

26 ax.set_title(’Lucro: $L(t) = p \\cdot P(T,W) - c \\cdot E - A(T)$’)

27

28 # Adicionar barra de cores

29 fig.colorbar(surf , ax=ax , shrink =0.5, aspect =20,

30 label=’Lucro (R\$/ha)’)

31

32 # Plot de contorno 2D

33 ax2 = fig.add_subplot (122)

34 contour = ax2.contourf(T_grid , W_grid , Lucro_grid ,

35 levels =20, cmap=’RdYlGn ’)

36 ax2.contour(T_grid , W_grid , Lucro_grid , levels =[0],

37 colors=’black’, linewidths =2)

38

39 # Marcar ponto otimo

40 ax2.plot(22, 1.0, ’ro’, markersize =10,

41 label=’Ponto Otimo (22 C , ETA/ETC =1)’)

42

43 ax2.set_xlabel(’Temperatura ( C )’)

44 ax2.set_ylabel(’ETA/ETC’)

45 ax2.set_title(’Mapa de Lucro - Curvas de Nivel’)

46 ax2.legend ()

47 fig.colorbar(contour , ax=ax2 , label=’Lucro (R\$/ha)’)

48

49 plt.tight_layout ()

50 plt.show()

51

52 return fig

53

54 # Executar o grafico 3D

55 fig2 = plot_lucro_3d ()

Listing 3: Análise tridimensional do lucro em função da temperatura e disponibilidade
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h́ıdrica

4 Conclusão

Sobre a região do Sul de Minas pode-se ver claramente o efeito do clima e disponibilidade

água, que são consequência das mudanças climáticas, afetando a produtividade do café.

Planeja-se trabalhar num modelo de projeção de cenários representando uma

abordagem matemática para antecipar os impactos das mudanças climáticas na cafeicul-

tura, em que o sistema cafeicultor envolve produtividade, esforço de produção e lucro e

como interagem com variáveis ambientais além da temperatura/ disponibilidade h́ıdrica

atuando como forçantes externas que perturbam esse sistema ao longo do tempo. Além

disso será adicionado os custos totais, que incluem tanto os custos operacionais conven-

cionais quanto os crescentes custos de adaptação às condições climáticas adversas, estes

últimos representam investimentos em irrigação suplementar, sombreamento, manejo es-

pecializado e outras estratégias de mitigação.

É de bom tamanho também estudar um modelo para determinar se é mais

vantajoso investir em estratégias de redução de temperatura ou em eficiência h́ıdrica em

diferentes fases da trajetória climática.

Pretende-se estudar como funciona a cadeia de produção, entender todo ecos-

sistema do ciclo do café a fim de modelar poĺıticas compensatórias para perdas climáticas,

o quanto é perdido ao longo dos anos, seja por custos de adaptação ou queda do lucro da

cafeicultura.

Na questão da dinâmica de populações dos polinizadores e segurança alimen-

tar, pretende-se estudar mais afundo sobre o tema simulando como perturbações externas,

pesticidas ou perda de habitat e como afetam a estabilidade da rede de polinização e con-

sequentemente, a produtividade agŕıcola com estudos quantitativos sobre essa dinâmica

em alimentos espećıficos que realmente tenha valor agregado e causem impacto na cadeia

de produção no páıs, como por exemplo, no oeste da Bahia com itens como cacau, café,

banana, mamão ou coco, podendo até mesmo integrar com o segundo tema pesquisado.
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