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Resumo

Este projeto propõe o desenvolvimento de ummodelo de aprendizado de máquina

para previsão cont́ınua e não invasiva da pressão arterial em indiv́ıduos com lesão me-

dular, utilizando sinais multivariados obtidos por sensores vest́ıveis. Para isso, serão

consolidadas bases de dados de macacos com lesão medular, aplicando-se técnicas de

pré-processamento (filtragem de intervalos comuns, remoção de outliers e time warping)

e de feature engineering. Inicialmente, foi estabelecido um modelo baseline com regressão

linear; em seguida, exploraram-se modelos com termos penalizadores para melhorar o

desempenho preditivo e realizar seleção automática de variáveis. A otimização de hi-

perparâmetros foi feita via validação cruzada, e o desempenho avaliado por métricas de

regressão (RMSE, MRE e R²). Espera-se oferecer uma alternativa acesśıvel e precisa aos

métodos convencionais de aferição, com potencial de integração em smartwatches e apli-

cativos de saúde, beneficiando não apenas pacientes com lesão medular, mas ampliando

as opções de monitoramento cont́ınuo no cuidado à saúde.
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Abstract

This project proposes the development of a machine learning model for conti-

nuous and non-invasive blood pressure prediction in individuals with spinal cord injury,

using multivariate signals obtained from wearable sensors. To achieve this, databases from

monkeys with spinal cord injury will be consolidated, applying preprocessing techniques

(common interval filtering, outlier removal, and time warping) and feature engineering.

Initially, a baseline model was established using linear regression; subsequently, models

with penalty terms were explored to improve predictive performance and perform automa-

tic variable selection. Hyperparameter optimization was performed via cross-validation,

and performance was evaluated using regression metrics (RMSE, MRE, and R²). It is

expected to offer an accessible and accurate alternative to conventional measurement

methods, with the potential for integration into smartwatches and health applications,

benefiting not only patients with spinal cord injury but also expanding the options for

continuous monitoring in healthcare.
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1 Introdução

O presente projeto propõe o desenvolvimento de um modelo de aprendizado

de máquina capaz de prever a pressão arterial de indiv́ıduos com lesão medular a partir

de um conjunto diversificado de features. Essa abordagem tem o potencial de contornar

as limitações impostas pelos métodos convencionais, os quais, ao serem aplicados, podem

desencadear alterações na pressão do paciente. A ideia é, por meio de técnicas de machine

learning, analisar padrões e tendências derivadas de dados que representem com precisão o

estado fisiológico dos pacientes, sem a interferência dos métodos tradicionais de medição.

A relevância deste estudo é duplamente evidenciada: primeiramente, pela pos-

sibilidade de oferecer uma alternativa mais acesśıvel e precisa para a aferição da pressão

arterial em pessoas com lesão medular; e, em segundo lugar, pelo potencial de aplicação

ampla na área da saúde, beneficiando inclusive indiv́ıduos sem as referidas limitações,

ampliando as opções de monitoramento cont́ınuo e não invasivo. Para a implementação,

foram utilizados modelos de regressão linear com termos de regularização.

Além disso, o desenvolvimento deste modelo abrirá caminho para a integração

dessa ferramenta em aplicativos de saúde executados em smartwatches, promovendo uma

medição mais simples e eficiente no dia a dia dos usuários. Essa integração não só facilitará

o monitoramento, mas também ampliará o acesso a informações essenciais para a gestão

da saúde, contribuindo para a melhoria da qualidade de vida dos pacientes.

2 Descrição do problema

2.1 Monitoramento não invasivo e seu potencial para pacientes

com lesão medular

O monitoramento de parâmetros fisiológicos pode ser realizado de forma in-

vasiva ou não-invasiva. Métodos invasivos, como a inserção de cateteres arteriais para

monitoramento hemodinâmico cont́ınuo, embora ofereçam medições precisas e em tempo

real, apresentam riscos significativos de infecção, trombose, desconforto e são inadequa-

dos para monitoramento rotineiro ambulatorial. Por outro lado, o monitoramento não-

invasivo refere-se à obtenção de parâmetros fisiológicos sem a necessidade de inserção de
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Figura 1: Fluxo do projeto de previsão de pressão arterial via IA, desde a coleta de dados
até a aplicação em smartwatches.

dispositivos no corpo do paciente. Para pessoas com lesão medular, métodos não-invasivos

são particularmente promissores.

Diante dessas limitações dos métodos convencionais, alternativas baseadas em

sensores vest́ıveis (wearables), como smartwatches, surgem como uma solução promis-

sora. Esses dispositivos oferecem uma oportunidade de obter sinais fisiológicos de ma-

neira cont́ınua, confortável e com menos riscos de saúde [Vijayalakshmi et al., 2021]. Isso

contribui para um acompanhamento mais preciso da saúde cardiovascular e pode ser uma

importante ferramenta de empoderamento desses pacientes no controle da própria saúde

[Adeghe et al., 2024].

2.2 Previsão de pressão arterial como parte da medicina de pre-

cisão

O problema de prever a pressão arterial a partir de outros sinais vitais está

fortemente alinhado com os prinćıpios da Medicina de Precisão, abordagem médica que

busca adaptar diagnósticos, tratamentos e estratégias de monitoramento ao perfil indi-

vidual de cada paciente. Como destacado por Aziz et al. [2024], o uso de wearables

IoT, aliados a técnicas de aprendizado de máquina e inteligência artificial, permite cap-

turar sinais fisiológicos em tempo real, analisar padrões e tendências e, a partir disso,

gerar intervenções personalizadas. No contexto da saúde de pacientes com lesão medular,

isso representa um avanço significativo, já que possibilita um cuidado cont́ınuo, remoto

e individualizado. Além disso, tais tecnologias contribuem para a detecção precoce de
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alterações, possibilitando respostas cĺınicas mais ágeis e eficazes.

3 Desenvolvimento

3.1 Fontes e caracteŕısticas dos dados

A etapa de coleta de dados será realizada pelo Centro de Primatas de Davis

(Califórnia). Os dados estão sendo coletados sob os protocolos IACUC. Os protocolos

contam com etapas de anonimização e dessensibilização dos dados desta pesquisa, dis-

pensando este projeto de pesquisa da aprovação junto ao Comitê de Ética em Pesquisa

conforme Resolução nº 466, de 12 de dezembro de 2012, do Conselho Nacional de Saúde.

Os dados utilizados neste projeto são fornecidos por pesquisadores da instituição menci-

onada acima e estão organizados em formato CSV. Entre as principais variáveis registra-

das estão a taxa de oxigenação do sangue, ı́ndice de perfusão, pulsação (bpm), pressão

sistólica (mmHg), pressão diastólica (mmHg), pressão arterial média (mmHg), respirações

por minuto (bpm). Essas variáveis permitem a análise detalhada do perfil fisiológico dos

indiv́ıduos e serão a base para a previsão da pressão arterial.

Dois tipos de aparelhos serão usados para compor o banco de dados. Ox́ımetros

do tipo Radical-7 (R7)† serão responsáveis pela coleta de dados de batimentos card́ıacos,

oxigenação e ı́ndice de perfusão. Já os dados de pressão arterial e batimento card́ıaco

serão de responsabilidade de um aparelho de pressão arterial do tipo beat-to-beat (B2B)

da empresa Caretaker (CT). A Figura 2 apresenta os aparelhos utilizados na pesquisa.

Figura 2: Aparelhos utilizados para a coleta de dados utilizada no projeto. Na esquerda,
o aparelho R7, responsável pelos dados de oxigenação, perfusão e pulsação. Na direita,
aparelho CT-B2B responsável pela pressão arterial e pulsação.

†https://www.masimo.com/products/bedside-solutions/radical-7/
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Este aparelho fornece medidas de pressão arterial não-invasivas a cada ba-

timento card́ıaco e apresenta resultados semelhantes aos métodos invasivos de medição

[Kwon et al., 2022]. Assim, os dados do aparelho CT-B2B e serão utilizados como padrão-

ouro para este trabalho. No que, mesmo o aparelho CT-B2B fornecendo dados de forma

não invasiva, a aquisição de dados via diferença de pressão não permite que o monitora-

mento ocorra de maneira efetiva fora do ambiente hospitalar.

3.2 Pré-processamento e integração dos dados

Devido aos dados serem provenientes de diferentes dispositivos com taxas de

amostragem distintas, o pré-processamento é uma etapa crucial. As principais ações

previstas incluem:

• Filtragem de intervalos comuns: Garantir que os dados sejam recortados para

um intervalo de tempo comum entre as diferentes fontes, assegurando a sincronização

temporal das medições realizadas pelos aparelhos R7 e CT-B2B.

• Remoção de outliers: Identificação e tratamento de valores at́ıpicos que possam

comprometer a qualidade do modelo.

• Time Warping: Aplicação de técnicas de Dynamic Time Warping (DTW) para

ajustar e alinhar séries temporais vindas de aparelhos de coleta diferentes e com

estruturas temporais distintas. O DTW é um algoritmo de programação dinâmica

que permite comparar e alinhar sequências que podem variar em velocidade ou fase

temporal.

A Figura abaixo ilustra a diferença conceitual entre o alinhamento Euclidiano con-

vencional e o alinhamento por DTW. No alinhamento Euclidiano (painel superior),

os pontos são comparados de forma ŕıgida baseando-se apenas em suas posições

temporais, o que pode resultar em correspondências inadequadas quando as séries

apresentam distorções temporais. Já o DTW (painel inferior) permite um alinha-

mento flex́ıvel, onde cada ponto de uma série pode ser mapeado para um ou mais

pontos da outra série, compensando diferenças de velocidade e fase entre os sinais.
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Figura 3: Comparação entre alinhamento Euclidiano (superior) e Dynamic Time Warping
(inferior). Fonte: Databricks [2019].

O algoritmo constrói uma matriz de custos acumulados D(i, j), onde cada elemento

representa a distância mı́nima para alinhar as subsequências até os pontos i e j das

séries X e Y , respectivamente. A relação de recorrência utilizada é:

D(i, j) = d(xi, yj) + min{D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)} (1)

onde d(xi, yj) representa a distância Euclidiana entre os pontos correspondentes.

Este alinhamento é essencial para garantir a sincronização adequada entre os si-

nais coletados por diferentes dispositivos, possibilitando a construção de um banco

de dados integrado e coerente para o treinamento dos modelos de aprendizado de

máquina.

• Integração: Como os dados estão em formato CSV, a integração é facilitada através

do uso de bibliotecas como pandas e numpy, permitindo a fusão e padronização dos

dados provenientes das diferentes fontes de coleta.
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3.3 Modelagem

3.3.1 Definição da variável alvo

A variável alvo escolhida para este projeto é a Pressão Arterial Média (MAP),

medida em mmHg. A MAP representa a pressão média nas artérias durante um ciclo

card́ıaco completo e é calculada a partir da pressão sistólica (SBP) e pressão diastólica

(DBP), uma aproximação para o cálcula da MAP pode ser feita usando a seguinte relação:

MAP =
SBP + 2 ·DBP

3
(2)

A escolha da MAP como variável alvo se justifica por diversos motivos. Primei-

ramente, a MAP é um indicador clinicamente relevante da perfusão tecidual e da função

cardiovascular, apresentando menor variabilidade intra-individual em curtos peŕıodos de

tempo quando comparada às pressões sistólica ou diastólica isoladamente [Kwon et al.,

2022]. Em segundo lugar, prever a pressão sistólica e diastólica simultaneamente exigi-

ria maior poder computacional e aumentaria a complexidade do modelo, uma vez que

seria necessário treinar múltiplos outputs ou modelos independentes. Além disso, caso a

pressão de pulso (PP, do inglês Pulse Pressure), definida como:

PP = SBP −DBP (3)

seja aproximadamente constante para um determinado indiv́ıduo, é posśıvel estimar essas

pressões a partir da MAP prevista, utilizando as relações inversas:

DBP = MAP − 1

3
PP (4)

SBP = MAP +
2

3
PP (5)

Esta estratégia simplifica o problema de regressão para uma única variável alvo,

reduzindo o custo computacional e facilitando a interpretação e avaliação do modelo.

Os valores de MAP obtidos pelo aparelho CT-B2B serão utilizados como

padrão-ouro para o treinamento e validação dos modelos de aprendizado de máquina,

tendo como entrada as demais variáveis fisiológicas coletadas pelos sensores R7 e CT-
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B2B.

3.3.2 Arquiteturas de modelagem

Para a previsão da MAP, foram exploradas diferentes abordagens de regressão

linear, permitindo comparar o desempenho de modelos simples com modelos regularizados

que incorporam termos penalizadores.

Regressão linear simples Como modelo baseline inicial, foi empregada a regressão

linear clássica [Géron, 2019], que busca minimizar o Erro Quadrático Médio (MSE). O

modelo faz predições através de uma combinação linear das features de entrada, buscando

ajustar os parâmetros que minimizem a função de custo:

J(β) =
1

2n

n∑
i=1

(yi − xT
i β)

2 (6)

onde yi é o valor observado da MAP, xi é o vetor de features e β é o vetor de coeficientes

a ser estimado.

Modelos com termos penalizadores Para lidar com problemas de multicolineari-

dade, overfitting e realizar seleção automática de variáveis, foram explorados modelos

de regressão linear com termos de regularização. Conforme descrito por Géron [2019], a

regularização é alcançada adicionando um termo de penalização à função de custo MSE,

restringindo os pesos do modelo e reduzindo sua capacidade de sobreajustar os dados:

• Ridge Regression (L2): Adiciona penalização quadrática aos coeficientes (ℓ2),

mantendo todos os coeficientes no modelo mas reduzindo sua magnitude [Géron,

2019]. A função de custo é:

J(β) =
1

2n

n∑
i=1

(yi − xT
i β)

2 + λ∥β∥22 (7)

• Lasso Regression (L1): Utiliza penalização baseada no valor absoluto dos coefi-

cientes (ℓ1), com a caracteŕıstica distintiva de eliminar completamente os pesos das

features menos importantes, definindo-os como zero e realizando seleção automática
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de features [Géron, 2019]. A função de custo é:

J(β) =
1

2n

n∑
i=1

(yi − xT
i β)

2 + λ∥β∥1 (8)

• Elastic Net: Representa um meio-termo entre Ridge e Lasso, combinando ambas

as penalizações L1 e L2 [Géron, 2019]:

J(β) =
1

2n

n∑
i=1

(yi − xT
i β)

2 + λ

[
α∥β∥1 +

(1− α)

2
∥β∥22

]
(9)

onde α ∈ [0, 1] controla o balanço entre L1 e L2.

O termo de penalização L1 (∥β∥1 =
∑p

j=1 |βj|) promove esparsidade, levando

alguns coeficientes a zero e, consequentemente, realizando seleção automática de variáveis.

Já o termo L2 (∥β∥22 =
∑p

j=1 β
2
j ) reduz a magnitude dos coeficientes, lidando com mul-

ticolinearidade entre features correlacionadas. A combinação de ambas as penalizações

oferece maior estabilidade quando há alta correlação entre preditores, situação comum em

dados fisiológicos multivariados.

4 Resultados e discussão

4.1 Ambiente computacional

Todos os experimentos foram executados em um notebook pessoal equipado

com processador Intel Core i5-1135G7 (2.4 GHz), 24 GB de memória RAM e GPU Intel

Iris Xe Graphics. O ambiente de desenvolvimento foi configurado com Python 3.11,

utilizando as bibliotecas pandas 2.0.3 para manipulação de dados, numpy 1.26.4 para

operações numéricas, fastdtw para o alinhamento temporal, e scikit-learn 1.4.2 para os

modelos de machine learning.

4.2 Pré-processamento dos Dados

O pré-processamento dos dados foi implementado através de uma função cus-

tomizada que integra múltiplas fontes de dados provenientes de diferentes dispositivos de
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medição. A Figura 4 ilustra o fluxo completo do pipeline de pré-processamento, desde a

conversão inicial dos timestamps até a consolidação final do dataset unificado.

Figura 4: Pipeline de pré-processamento dos dados mostrando as etapas principais.

4.2.1 Filtragem de intervalos comuns

O primeiro passo do pré-processamento consistiu na identificação e extração

do intervalo temporal comum entre os diferentes dispositivos. Dada a natureza asśıncrona

da coleta de dados, cada aparelho (R7 e CT-B2B) possui seus próprios timestamps de

ińıcio e término de gravação. Para garantir a sincronização adequada, foi implementado

o seguinte procedimento:

1. Conversão das colunas temporais para o formato datetime de todos os DataFrames;

2. Identificação dos limites temporais de cada dispositivo:

t
(i)
min = min(Timei) (10)

t(i)max = max(Timei) (11)

onde i representa cada dispositivo;
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3. Determinação do intervalo comum:

tcomum
start = max(t

(1)
min, t

(2)
min, t

(3)
min, t

(4)
min) (12)

tcomum
end = min(t(1)max, t

(2)
max, t

(3)
max, t

(4)
max) (13)

4. Filtragem de todos os DataFrames para manter apenas os dados dentro do intervalo

[tcomum
start , tcomum

end ].

Este procedimento garantiu que apenas os dados coletados simultaneamente

por todos os dispositivos fossem utilizados nas análises subsequentes, eliminando peŕıodos

onde algum aparelho não estava em operação.

4.2.2 Tratamento de valores ausentes e outliers

Após a filtragem temporal, foi realizado o tratamento de valores ausentes e

outliers presentes nos dados. Definiu-se como outlier qualquer observação que apresen-

tasse valor não-nulo na coluna Events, essa coluna continha anotações sobre a coleta,

registrando principalmente erros ou intercorrências durante o processo de aquisição dos

dados. Para garantir a qualidade do dataset, foram mantidas apenas as observações

correspondentes a valores NaN nesta coluna (indicando ausência de erros registrados),

e posteriormente a coluna foi removida, uma vez que não contribui diretamente para a

previsão da pressão arterial.

Para as variáveis de saturação de oxigênio (SpO2) e ı́ndice de perfusão (Pi),

valores representados como strings (’-’) foram convertidos para zero. Posteriormente,

todos os valores ausentes remanescentes foram preenchidos com zero.

4.2.3 Agregação multi-dispositivo e Dynamic Time Warping

Uma das etapas mais cŕıticas do pré-processamento foi a integração dos dados

provenientes de múltiplos dispositivos R7 (aparelhos 2, 3 e 4) com os dados do aparelho

CT-B2B (aparelho 1, padrão-ouro). Este processo envolveu três sub-etapas principais:

Agregação dos dispositivos R7 Os três dispositivos R7 forneceram medições para-

lelas das mesmas variáveis fisiológicas (frequência card́ıaca, SpO2, Pi). Para aumentar a
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robustez das medições e reduzir o impacto de rúıdos individuais de cada sensor, foi cal-

culada a mediana dos valores de frequência card́ıaca (PR bpm) entre os três dispositivos:

PRmediana(t) = mediana(PR2(t),PR3(t),PR4(t)) (14)

A escolha da mediana em vez da média se justifica por sua robustez a outli-

ers, caracteŕıstica importante em dados fisiológicos que podem apresentar artefatos de

movimento ou falhas momentâneas de leitura.

Alinhamento Temporal via Dynamic Time Warping Apesar da sincronização

inicial baseada em timestamps, persistem diferenças sutis nas taxas de amostragem e

latências de resposta entre os dispositivos R7 e CT-B2B. Para compensar essas distorções

temporais e garantir um alinhamento preciso entre as séries, foi aplicado o algoritmo de

Dynamic Time Warping entre a frequência card́ıaca medida pelo CT-B2B (HeartRate

(bpm)) e a mediana das frequências card́ıacas dos dispositivos R7 (Mediana PR bpm).

O DTW encontrou o caminho ótimo de alinhamento P = {(i1, j1), (i2, j2), ..., (ik, jk)}

que minimiza a distância acumulada entre as séries. Este caminho estabelece uma corres-

pondência entre os ı́ndices temporais dos dois conjuntos de dados:

P∗ = argmin
P

∑
(i,j)∈P

d(HRCT−B2B[i],PRmediana[j]) (15)

onde d representa a distância Euclidiana entre pontos correspondentes.

Para avaliar quantitativamente a eficácia do alinhamento DTW, foi realizada

uma comparação com o método de interpolação linear simples. Inicialmente, os dados

dos dispositivos R7 foram interpolados para corresponder aos timestamps do CT-B2B,

e o erro quadrático médio (MSE) entre as séries foi calculado. A Figura 5 apresenta

as séries temporais antes do alinhamento DTW, onde é posśıvel observar defasagens e

descasamentos temporais entre os sinais.

A Figura 6 sobrepõe ambas as séries no mesmo gráfico, evidenciando as dis-

crepâncias temporais. Utilizando interpolação linear simples, o MSE entre as séries foi

de 32,8 (bpm)² indicando um desalinhamento significativo que poderia comprometer a

qualidade do dataset integrado.
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(a) HeartRate (CT-B2B) (b) Mediana PR (R7)

Figura 5: Séries temporais de frequência card́ıaca antes do alinhamento DTW.

Figura 6: Comparação direta entre HeartRate (CT-B2B) e Mediana PR (R7) antes do
alinhamento DTW.

Após a aplicação do algoritmo DTW, o alinhamento temporal entre as séries

foi substancialmente melhorado. O MSE foi reduzido para 6,6 (bpm)² representando uma

redução de aproximadamente 80% no erro de alinhamento. Esta melhoria significativa

demonstra a eficácia do DTW em compensar as distorções temporais e estabelecer cor-

respondências mais precisas entre os dispositivos, garantindo a qualidade e a coerência do

dataset final para o treinamento dos modelos de aprendizado de máquina.

Reamostragem estratificada Devido às diferentes taxas de amostragem entre os dis-

positivos, o alinhamento DTW resultou em um número de amostras do CT-B2B superior

ao dos dispositivos R7. Para equalizar o número de observações mantendo a representa-

tividade temporal dos dados, foi implementada uma estratégia de reamostragem estrati-

ficada:

1. O conjunto de dados do CT-B2B mapeado pelo DTW foi dividido em 10 partições

temporalmente sequenciais;

2. De cada partição, foi amostrado aleatoriamente um número proporcional de ob-
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servações, de modo que:

ni =
⌊ntotal

10

⌋
+

1, se i < (ntotal mod 10)

0, caso contrário

(16)

onde ni é o número de amostras selecionadas da partição i e ntotal é o número total

de observações dos dispositivos R7;

3. As amostras selecionadas foram ordenadas temporalmente para preservar a sequen-

cialidade dos dados.

Esta abordagem garantiu que a distribuição temporal fosse mantida, evitando

viés de seleção que poderia surgir de uma amostragem aleatória simples ou de downsam-

pling uniforme.

4.2.4 Consolidação do dataset final

Após o alinhamento e reamostragem, os dados dos dispositivos R7 e CT-B2B

foram concatenados horizontalmente, resultando em um dataset unificado contendo:

• Variáveis dos três dispositivos R7: SpO2, Pi e PR bpm de cada sensor;

• Mediana das frequências card́ıacas dos R7;

• Variáveis do CT-B2B: frequência card́ıaca, pressão arterial (SBP, DBP, MAP), entre

outras;

• Timestamp unificado para todas as observações.

Colunas redundantes relacionadas a datas, horários duplicados e identificadores

de época foram removidas para simplificar o dataset. O resultado final foi um conjunto de

dados alinhado temporalmente, livre de valores ausentes e pronto para a etapa de feature

engineering e modelagem.

A Tabela 1 apresenta um resumo estat́ıstico do dataset após o pré-processamento,

incluindo o número de observações, features dispońıveis e estat́ısticas descritivas das prin-

cipais variáveis.
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Tabela 1: Resumo estat́ıstico do dataset após pré-processamento (n = 4.894 observações)

Variável Média Desvio Padrão Mı́n Máx
MAP (mmHg) 26,82 4,35 20,00 64,00
SBP (mmHg) 50,69 4,28 41,00 95,00
DBP (mmHg) 15,86 2,17 11,00 38,00
HeartRate (bpm) 102,04 6,06 0,00 127,00
Respiration (bpm) 19,97 3,76 0,00 24,00
Mediana SpO2 (%) 93,39 7,44 0,00 100,00
Pi Device2 2,47 1,12 0,00 5,90
Pi Device3 2,52 1,05 0,00 4,30
Pi Device4 4,52 2,27 0,00 11,00
Mediana PR (bpm) 102,71 6,20 92,00 128,00

A Figura 7 apresenta a evolução temporal das principais variáveis cardio-

vasculares para um dos indiv́ıduos (Loris) durante o experimento. O gráfico ilustra a

dinâmica simultânea da frequência card́ıaca (bpm) , pressão arterial média (mmHg),

pressão sistólica (mmHg) e pressão diastólica (mmHg) ao longo do tempo.

Figura 7: Série temporal das variáveis cardiovasculares para o indiv́ıduo Loris.
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4.3 Análise exploratória de dados

A análise exploratória teve como objetivo compreender as relações entre as

variáveis fisiológicas coletadas e a variável alvo MAP. Esta etapa foi fundamental para

identificar padrões temporais, correlações e a relevância preditiva de cada feature no

conjunto de treinamento.

4.3.1 Análise de correlação

Inicialmente, foi realizada uma análise de correlação de entre todas as variáveis

do conjunto de treinamento e o MAP. A matriz de correlação foi calculada utilizando o

método corr() do pandas, seguida pela extração e ordenação dos coeficientes de cor-

relação absolutos com a variável alvo.

A Figura 8 apresenta o ranking das correlações observadas.

Figura 8: Correlação das features com a Pressão Arterial Média (MAP). As variáveis
estão ordenadas por magnitude de correlação absoluta

Os resultados revelaram uma estratificação clara das features em diferentes

ńıveis de correlação:

• Maior correlação : Pi Value device2 (r = 0.809) apresentou a maior correlação

com MAP entre as variáveis não-triviais. O Perfusion Index Value (Pi Value) é um
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indicador da amplitude do sinal fotopletismográfico que reflete a perfusão periférica,

justificando sua forte relação com a pressão arterial média.

• Segunda e terceira maiores correlações: HeartRate (r = 0.653) e Pi Va-

lue device4 (r = 0.636) apresentaram, respectivamente, a segunda e terceira mai-

ores correlações com MAP. A frequência card́ıaca demonstrou relação substancial

com MAP, consistente com a fisiologia cardiovascular, onde alterações na frequência

card́ıaca influenciam o débito card́ıaco e, consequentemente, a pressão arterial. A

presença de múltiplos dispositivos medindo Pi Value reforça a robustez desta variável

como preditor.

• Menores correlações: Respiration (r = 0.085) e Mediana SpO2 (r = 0.010) apre-

sentaram as menores correlações com MAP. A baixa correlação da SpO2 com a

MAP é esperada neste contexto experimental, uma vez que ela deveria se manter

relativamente constante durante todo o protocolo de coleta em condições controla-

das. Essa estabilidade da SpO2 reduz sua variabilidade e, consequentemente, sua

capacidade preditiva para a pressão arterial média, mesmo sendo um importante

indicador cĺınico em outras situações.

4.3.2 Análise temporal com Cross-Correlation

Para investigar relações temporais entre as variáveis, foi implementada uma

análise de correlação cruzada (cross-correlation). Esta técnica permite identificar se existe

defasagem temporal (lag) entre as variações de uma feature e as mudanças correspondentes

no MAP.

A correlação cruzada foi calculada através da função scipy.signal.correlate,

considerando lags de até 50 pontos temporais (ou 10% do conjunto de dados, o que fosse

menor). Para cada feature, as séries temporais foram padronizadas antes do cálculo:

zt =
xt − µx

σx

(17)

onde µx e σx são a média e desvio padrão da série, respectivamente.
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A correlação cruzada normalizada no lag τ foi então calculada como:

ρxy(τ) =
1

n

∑
t

zx,t · zy,t+τ (18)

Para cada feature, foram identificados:

• O lag ótimo (que maximiza |ρxy(τ)|)

• A correlação no lag ótimo

• A correlação sem lag (τ = 0)

A Figura 9 ilustra a análise de correlação cruzada para o ı́ndice de perfusão

do Device2 (Pi Value device2), a variável com maior correlação com MAP. O gráfico

mostra a correlação em função do lag temporal, onde o ponto vermelho indica o lag ótimo

encontrado (lag = 5), que maximiza a correlação em r = 0.809. A linha tracejada rosa

representa a correlação sem lag (lag = 0), enquanto a linha tracejada verde indica o

melhor lag identificado.

Figura 9: Correlação cruzada entre Pi Value device2 e MAP. O pico de correlação ocorre
com lag de 5 pontos temporais.

Os resultados revelaram que a maioria das correlações significativas ocorrem

com lag pequeno (menor que 10), sugerindo relação temporal direta entre as variáveis

fisiológicas e o MAP, sem atrasos substanciais entre causa e efeito.
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4.3.3 Śıntese e interpretação cĺınica

A análise exploratória multifacetada evidenciou que:

1. O Pi Value emerge como o indicador não-invasivo mais fortemente correlacionado

com MAP (r = 0.809), sugerindo seu potencial como feature principal em modelos

preditivos. A consistência desta correlação entre diferentes dispositivos (device2,

device3, device4) reforça a robustez da medida.

2. A frequência card́ıaca mantém relação significativa com MAP (r = 0.653), refletindo

a interação cardiovascular entre débito card́ıaco, frequência e resistência vascular

periférica, descrita pela equação hemodinâmica fundamental.

3. A baixa correlação da SpO2 em relação ao MAP (r = 0.010) confirma que, no

contexto experimental controlado deste estudo, a saturação de oxigênio permaneceu

estável e relativamente constante, conforme esperado pelo protocolo de coleta.

4. A ausência de lags temporais significativos sugere que as variáveis respondem de

forma quase simultânea às mudanças fisiológicas, facilitando a modelagem preditiva

em tempo real sem necessidade de incorporar histórico temporal extenso.

4.4 Divisão dos dados e modelo base

Para a avaliação dos modelos, utilizou-se uma divisão temporal 80/20 dos

dados, preservando a natureza temporal da série. Esta divisão foi implementada utilizando

a biblioteca Scikit-learn, onde 80% dos registros temporais iniciais foram destinados ao

treinamento e os 20% restantes para teste.

Inicialmente, aplicou-se uma Regressão Linear como modelo baseline, obtendo

os seguintes resultados:

Tabela 2: Resultados da Regressão Linear

Métrica Treinamento Teste Diferença Absoluta
MSE 6,2232 18,1443 11,9211
MAE 1,7561 3,4600 1,7039
R² 0,7097 0,3564 0,3533
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Os resultados indicam que o modelo sofre de overfitting, com desempenho signi-

ficativamente superior no conjunto de treinamento em comparação com o teste, sugerindo

a necessidade de técnicas de regularização.

4.5 Otimização com Grid Search e regularização

Os hiperparâmetros de regularização (λ e α) foram otimizados via validação

cruzada, permitindo encontrar o equiĺıbrio ideal entre viés e variância de cada modelo.

• Ridge: 8 valores de λ testados: {0.001, 0.01, 0.1, 0.5, 1.0, 5.0, 10.0, 50.0}

• Lasso: 8 valores de λ testados: {0.001, 0.01, 0.1, 0.5, 1.0, 5.0, 10.0, 50.0}

• Elastic Net: 30 combinações de parâmetros, com λ ∈ {0.001, 0.01, 0.1, 0.5, 1.0, 5.0}

e α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}

4.5.1 Resultados dos modelos regularizados

Tabela 3: Comparação dos modelos com regularização

Modelo Parâm. escolhidos R² Treino R² Teste MSE Teste MAE Teste
Ridge λ = 5, 0 0,7097 0,3519 18,2702 3,4987
Lasso λ = 0, 1 0,6890 0,1477 24,0285 4,3721
Elastic Net λ = 0, 1, α = 0, 1 0,7097 0,3553 18,1751 3,4689

A Figura 10 apresenta o gráfico de dispersão comparando os valores reais de

MAP com os valores previstos pelo modelo Elastic Net no conjunto de teste. A linha

tracejada vermelha representa a predição perfeita (onde valores previstos seriam idênticos

aos reais), permitindo avaliar visualmente a qualidade do ajuste e identificar padrões de

erro sistemático.
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Figura 10: Comparação entre valores reais e previstos de MAP para o modelo Elastic
Net.

4.6 Análise comparativa

Observa-se que o modelo Elastic Net obteve o melhor desempenho no conjunto

de teste, com R² de 0,3553, MSE de 18,1751 e MAE de 3,4689. O modelo Ridge apresentou

resultados similares, enquanto o Lasso demonstrou performance inferior, possivelmente

devido à natureza dos dados onde muitas features podem ser relevantes.

A diferença persistente entre as métricas de treino e teste em todos os modelos

sugere limitações intŕınsecas nos dados ou a necessidade de abordagens de modelagem

mais complexas para capturar adequadamente os padrões temporais subjacentes.

5 Conclusão

Este trabalho apresentou o desenvolvimento e avaliação de modelos de apren-

dizado de máquina para previsão não invasiva da MAP em pacientes com lesão medular,
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utilizando dados multivariados de sensores vest́ıveis. A abordagem proposta demonstrou

viabilidade técnica na integração de dados provenientes de múltiplos dispositivos de mo-

nitoramento, superando desafios significativos de pré-processamento através de técnicas

como filtragem temporal, alinhamento via DTW e reamostragem estratificada.

A análise exploratória dos dados revelou que o Pi Value emerge como a variável

preditora mais relevante para a estimativa da MAP. Esta descoberta está alinhada com

os fundamentos fisiológicos, uma vez que o Pi Value reflete diretamente a perfusão te-

cidual periférica, intimamente relacionada com a dinâmica pressórica arterial. A mo-

delagem através de técnicas de regressão linear com regularização permitiu explorar o

equiĺıbrio entre capacidade preditiva e interpretabilidade do modelo, aspecto fundamen-

tal em aplicações cĺınicas.

Os resultados obtidos demonstram o potencial de sensores vest́ıveis como ferra-

mentas de monitoramento cardiovascular cont́ınuo para essa população espećıfica, contri-

buindo para o desenvolvimento de soluções tecnológicas que promovam maior autonomia

e qualidade de vida dos pacientes com lesão medular.

As limitações observadas no desempenho preditivo indicam a necessidade de

abordagens mais sofisticadas para capturar completamente a complexidade dos padrões

fisiológicos subjacentes. A persistente diferença entre métricas de treino e teste em to-

dos os modelos sugere que fatores não capturados pelas variáveis dispońıveis ou relações

temporais mais complexas podem estar influenciando a dinâmica pressórica.

Como trabalhos futuros, recomenda-se a exploração de: (i) modelos baseados

em séries temporais, como LSTM, capazes de capturar dependências temporais de longo

prazo; (ii) engenharia de features mais sofisticada; (iii) validação em conjunto de dados

mais amplo, com a inclusão de dados de outros macacos do estudo, permitindo avaliar

a capacidade de generalização dos modelos desenvolvidos para diferentes indiv́ıduos da

mesma população experimental.

Apesar das limitações, este estudo representa um avanço significativo na direção

de sistemas de monitoramento cont́ınuo e não invasivo da pressão arterial, com potencial

para integração em dispositivos vest́ıveis como smartwatches, oferecendo uma alternativa

promissora aos métodos convencionais de aferição para pacientes com lesão medular e

ampliando as opções de monitoramento cardiovascular na prática cĺınica.
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