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Resumo

Este projeto propoe o desenvolvimento de um modelo de aprendizado de maquina
para previsao continua e nao invasiva da pressao arterial em individuos com lesao me-
dular, utilizando sinais multivariados obtidos por sensores vestiveis. Para isso, serao
consolidadas bases de dados de macacos com lesao medular, aplicando-se técnicas de
pré-processamento (filtragem de intervalos comuns, remogao de outliers e time warping)
e de feature engineering. Inicialmente, foi estabelecido um modelo baseline com regressao
linear; em seguida, exploraram-se modelos com termos penalizadores para melhorar o
desempenho preditivo e realizar selecao automatica de varidveis. A otimizacao de hi-
perparametros foi feita via validagao cruzada, e o desempenho avaliado por métricas de
regressao (RMSE, MRE e R?). Espera-se oferecer uma alternativa acessivel e precisa aos
métodos convencionais de afericao, com potencial de integracao em smartwatches e apli-
cativos de saide, beneficiando nao apenas pacientes com lesao medular, mas ampliando

as opgoes de monitoramento continuo no cuidado a saude.



Abstract

This project proposes the development of a machine learning model for conti-
nuous and non-invasive blood pressure prediction in individuals with spinal cord injury,
using multivariate signals obtained from wearable sensors. To achieve this, databases from
monkeys with spinal cord injury will be consolidated, applying preprocessing techniques
(common interval filtering, outlier removal, and time warping) and feature engineering.
Initially, a baseline model was established using linear regression; subsequently, models
with penalty terms were explored to improve predictive performance and perform automa-
tic variable selection. Hyperparameter optimization was performed via cross-validation,
and performance was evaluated using regression metrics (RMSE, MRE, and R?). Tt is
expected to offer an accessible and accurate alternative to conventional measurement
methods, with the potential for integration into smartwatches and health applications,
benefiting not only patients with spinal cord injury but also expanding the options for

continuous monitoring in healthcare.
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1 Introducao

O presente projeto propoe o desenvolvimento de um modelo de aprendizado
de méaquina capaz de prever a pressao arterial de individuos com lesao medular a partir
de um conjunto diversificado de features. Essa abordagem tem o potencial de contornar
as limitacoes impostas pelos métodos convencionais, os quais, ao serem aplicados, podem
desencadear alteracoes na pressao do paciente. A ideia é, por meio de técnicas de machine
learning, analisar padroes e tendéncias derivadas de dados que representem com precisao o
estado fisiologico dos pacientes, sem a interferéncia dos métodos tradicionais de medigao.

A relevancia deste estudo é duplamente evidenciada: primeiramente, pela pos-
sibilidade de oferecer uma alternativa mais acessivel e precisa para a afericao da pressao
arterial em pessoas com lesao medular; e, em segundo lugar, pelo potencial de aplicagao
ampla na area da saide, beneficiando inclusive individuos sem as referidas limitacoes,
ampliando as opgoes de monitoramento continuo e nao invasivo. Para a implementacao,
foram utilizados modelos de regressao linear com termos de regularizacao.

Além disso, o desenvolvimento deste modelo abrira caminho para a integracao
dessa ferramenta em aplicativos de satide executados em smartwatches, promovendo uma
medicao mais simples e eficiente no dia a dia dos usuarios. Essa integragao nao sé facilitara
o monitoramento, mas também ampliard o acesso a informagoes essenciais para a gestao

da saude, contribuindo para a melhoria da qualidade de vida dos pacientes.

2 Descricao do problema

2.1 Monitoramento nao invasivo e seu potencial para pacientes

com lesao medular

O monitoramento de parametros fisiolégicos pode ser realizado de forma in-
vasiva ou nao-invasiva. Métodos invasivos, como a insercao de cateteres arteriais para
monitoramento hemodinamico continuo, embora oferecam medicoes precisas e em tempo
real, apresentam riscos significativos de infeccao, trombose, desconforto e sao inadequa-
dos para monitoramento rotineiro ambulatorial. Por outro lado, o monitoramento nao-

invasivo refere-se a obtencao de parametros fisiologicos sem a necessidade de insercao de
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Figura 1: Fluxo do projeto de previsao de pressao arterial via [A, desde a coleta de dados
até a aplicacao em smartwatches.

dispositivos no corpo do paciente. Para pessoas com lesao medular, métodos nao-invasivos
sao particularmente promissores.

Diante dessas limitacoes dos métodos convencionais, alternativas baseadas em
sensores vestiveis (wearables), como smartwatches, surgem como uma solu¢do promis-
sora. Esses dispositivos oferecem uma oportunidade de obter sinais fisiolégicos de ma-
neira continua, confortavel e com menos riscos de satde [Vijayalakshmi et al., 2021]. Isso
contribui para um acompanhamento mais preciso da satide cardiovascular e pode ser uma

importante ferramenta de empoderamento desses pacientes no controle da prépria saude

[Adeghe et al., 2024].

2.2 Previsao de pressao arterial como parte da medicina de pre-
cisao

O problema de prever a pressao arterial a partir de outros sinais vitais esta
fortemente alinhado com os principios da Medicina de Precisao, abordagem médica que
busca adaptar diagnésticos, tratamentos e estratégias de monitoramento ao perfil indi-
vidual de cada paciente. Como destacado por Aziz et al. [2024], o uso de wearables
IoT, aliados a técnicas de aprendizado de maquina e inteligéncia artificial, permite cap-
turar sinais fisiolégicos em tempo real, analisar padroes e tendéncias e, a partir disso,
gerar intervencoes personalizadas. No contexto da satde de pacientes com lesao medular,
isso representa um avanco significativo, ja que possibilita um cuidado continuo, remoto

e individualizado. Além disso, tais tecnologias contribuem para a deteccao precoce de



alteracoes, possibilitando respostas clinicas mais ageis e eficazes.

3 Desenvolvimento

3.1 Fontes e caracteristicas dos dados

A etapa de coleta de dados serd realizada pelo Centro de Primatas de Davis
(Califérnia). Os dados estao sendo coletados sob os protocolos IACUC. Os protocolos
contam com etapas de anonimizacao e dessensibilizacao dos dados desta pesquisa, dis-
pensando este projeto de pesquisa da aprovacao junto ao Comité de Etica em Pesquisa
conforme Resolucao n® 466, de 12 de dezembro de 2012, do Conselho Nacional de Satde.
Os dados utilizados neste projeto sao fornecidos por pesquisadores da instituicao menci-
onada acima e estao organizados em formato CSV. Entre as principais varidveis registra-
das estao a taxa de oxigenacdo do sangue, indice de perfusdo, pulsa¢do (bpm), pressao
sistélica (mmHg), pressao diastélica (mmHg), pressao arterial média (mmHg), respiragoes
por minuto (bpm). Essas varidveis permitem a andlise detalhada do perfil fisiolégico dos
individuos e serao a base para a previsao da pressao arterial.

Dois tipos de aparelhos serao usados para compor o banco de dados. Oximetros
do tipo Radical-7 (R7)" serdao responsaveis pela coleta de dados de batimentos cardfacos,
oxigenacao e indice de perfusao. J& os dados de pressao arterial e batimento cardiaco
serao de responsabilidade de um aparelho de pressao arterial do tipo beat-to-beat (B2B)

da empresa Caretaker (CT). A Figura 2 apresenta os aparelhos utilizados na pesquisa.

Figura 2: Aparelhos utilizados para a coleta de dados utilizada no projeto. Na esquerda,
o aparelho R7, responséavel pelos dados de oxigenacao, perfusao e pulsacao. Na direita,
aparelho CT-B2B responsavel pela pressao arterial e pulsacao.

thttps://www.masimo.com/products/bedside-solutions/radical-7/



Este aparelho fornece medidas de pressao arterial nao-invasivas a cada ba-
timento cardiaco e apresenta resultados semelhantes aos métodos invasivos de medigao
[Kwon et al., 2022]. Assim, os dados do aparelho CT-B2B e serao utilizados como padrao-
ouro para este trabalho. No que, mesmo o aparelho CT-B2B fornecendo dados de forma
nao invasiva, a aquisicao de dados via diferenca de pressao nao permite que o monitora-

mento ocorra de maneira efetiva fora do ambiente hospitalar.

3.2 Pré-processamento e integracao dos dados

Devido aos dados serem provenientes de diferentes dispositivos com taxas de
amostragem distintas, o pré-processamento é uma etapa crucial. As principais agoes

previstas incluem:

e Filtragem de intervalos comuns: Garantir que os dados sejam recortados para
um intervalo de tempo comum entre as diferentes fontes, assegurando a sincronizagao

temporal das medigoes realizadas pelos aparelhos R7 e CT-B2B.

¢ Remocao de outliers: Identificagao e tratamento de valores atipicos que possam

comprometer a qualidade do modelo.

e Time Warping: Aplicagdo de técnicas de Dynamic Time Warping (DTW) para
ajustar e alinhar séries temporais vindas de aparelhos de coleta diferentes e com
estruturas temporais distintas. O DTW é um algoritmo de programacao dinamica
que permite comparar e alinhar sequéncias que podem variar em velocidade ou fase

temporal.

A Figura abaixo ilustra a diferenca conceitual entre o alinhamento Euclidiano con-
vencional e o alinhamento por DTW. No alinhamento Euclidiano (painel superior),
os pontos sao comparados de forma rigida baseando-se apenas em suas posicoes
temporais, o que pode resultar em correspondéncias inadequadas quando as séries
apresentam distor¢oes temporais. J4 o DTW (painel inferior) permite um alinha-
mento flexivel, onde cada ponto de uma série pode ser mapeado para um ou mais

pontos da outra série, compensando diferencgas de velocidade e fase entre os sinais.
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Figura 3: Comparagao entre alinhamento Euclidiano (superior) e Dynamic Time Warping
(inferior). Fonte: Databricks [2019].

O algoritmo constréi uma matriz de custos acumulados D(%, j), onde cada elemento
representa a distancia minima para alinhar as subsequéncias até os pontos 7 e j das

séries X e Y, respectivamente. A relacao de recorréncia utilizada é:

D(i, j) = d(wi,y;) + min{ D(i = 1,j), D(i,j = 1), D(i = 1,j = 1)} (1)

onde d(x;,y;) representa a distancia Euclidiana entre os pontos correspondentes.
Este alinhamento é essencial para garantir a sincronizacao adequada entre os si-
nais coletados por diferentes dispositivos, possibilitando a construcao de um banco
de dados integrado e coerente para o treinamento dos modelos de aprendizado de

maquina.

e Integracao: Como os dados estao em formato CSV, a integracao ¢ facilitada através
do uso de bibliotecas como pandas e numpy, permitindo a fusao e padronizagao dos

dados provenientes das diferentes fontes de coleta.
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3.3 Modelagem
3.3.1 Definicao da variavel alvo

A varidvel alvo escolhida para este projeto é a Pressao Arterial Média (MAP),
medida em mmHg. A MAP representa a pressao média nas artérias durante um ciclo
cardiaco completo e é calculada a partir da pressao sistélica (SBP) e pressao diastdlica
(DBP), uma aproximacao para o calcula da MAP pode ser feita usando a seguinte relagao:

SBP+2-DBP

MAP = 2 (2)

A escolha da MAP como variavel alvo se justifica por diversos motivos. Primei-
ramente, a MAP é um indicador clinicamente relevante da perfusao tecidual e da fungao
cardiovascular, apresentando menor variabilidade intra-individual em curtos periodos de
tempo quando comparada as pressoes sistdlica ou diastélica isoladamente [Kwon et al.,
2022]. Em segundo lugar, prever a pressao sistdlica e diastdlica simultaneamente exigi-
ria maior poder computacional e aumentaria a complexidade do modelo, uma vez que
seria necessario treinar multiplos outputs ou modelos independentes. Além disso, caso a

pressao de pulso (PP, do inglés Pulse Pressure), definida como:

PP = SBP — DBP (3)

seja aproximadamente constante para um determinado individuo, é possivel estimar essas

pressoes a partir da MAP prevista, utilizando as relagoes inversas:

1
DBP = MAP — (PP (4)

SBP — MAP + %PP (5)

Esta estratégia simplifica o problema de regressao para uma tnica variavel alvo,
reduzindo o custo computacional e facilitando a interpretacao e avaliacao do modelo.

Os valores de MAP obtidos pelo aparelho CT-B2B serao utilizados como
padrao-ouro para o treinamento e validacao dos modelos de aprendizado de maquina,

tendo como entrada as demais variaveis fisiolégicas coletadas pelos sensores R7 e CT-

11



B2B.

3.3.2 Arquiteturas de modelagem

Para a previsao da MAP, foram exploradas diferentes abordagens de regressao
linear, permitindo comparar o desempenho de modelos simples com modelos regularizados

que incorporam termos penalizadores.

Regressao linear simples Como modelo baseline inicial, foi empregada a regressao
linear classica [Géron, 2019], que busca minimizar o Erro Quadratico Médio (MSE). O
modelo faz predigoes através de uma combinacao linear das features de entrada, buscando

ajustar os parametros que minimizem a funcao de custo:

n

Z(yz —z{ )’ (6)

i=1

1
o

J(B)

onde y; é o valor observado da MAP, x; é o vetor de features e 3 é o vetor de coeficientes

a ser estimado.

Modelos com termos penalizadores Para lidar com problemas de multicolineari-
dade, overfitting e realizar selecao automaética de variaveis, foram explorados modelos
de regressao linear com termos de regularizagao. Conforme descrito por Géron [2019], a
regularizacao é alcancada adicionando um termo de penalizacao a funcao de custo MSE;,

restringindo os pesos do modelo e reduzindo sua capacidade de sobreajustar os dados:

e Ridge Regression (L2): Adiciona penalizagdo quadratica aos coeficientes ({),
mantendo todos os coeficientes no modelo mas reduzindo sua magnitude [Géron,
2019]. A fungao de custo é:

n

TB) = 53 ( — 2TB) + X|BI3 o

e Lasso Regression (L1): Utiliza penalizacdao baseada no valor absoluto dos coefi-
cientes (¢1), com a caracteristica distintiva de eliminar completamente os pesos das

features menos importantes, definindo-os como zero e realizando selecao automatica

12



de features [Géron, 2019]. A funcdo de custo é:

n

> (i~ B)* + Bl (8)

=1

1
- on

J(8)

e Elastic Net: Representa um meio-termo entre Ridge e Lasso, combinando ambas

as penalizacoes L1 e L2 [Géron, 2019]:

n

1 (1—a)

_ T 3)2 2
JB) =5~ ;uﬁ —a{B)" + A |allBll + 11815 (9)
onde « € [0, 1] controla o balango entre L1 e L2.
O termo de penalizagao L1 (|| 8[|y = >_7_, |53;]) promove esparsidade, levando

alguns coeficientes a zero e, consequentemente, realizando selecao automatica de variaveis.
J& o termo L2 (||B]j3 = >_%_, 57) reduz a magnitude dos coeficientes, lidando com mul-
ticolinearidade entre features correlacionadas. A combinacao de ambas as penalizacoes
oferece maior estabilidade quando ha alta correlacao entre preditores, situagao comum em

dados fisiol6gicos multivariados.

4 Resultados e discussao

4.1 Ambiente computacional

Todos os experimentos foram executados em um notebook pessoal equipado
com processador Intel Core 15-1135G7 (2.4 GHz), 24 GB de meméria RAM e GPU Intel
Iris Xe Graphics. O ambiente de desenvolvimento foi configurado com Python 3.11,
utilizando as bibliotecas pandas 2.0.3 para manipulagao de dados, numpy 1.26.4 para
operacoes numéricas, fastdtw para o alinhamento temporal, e scikit-learn 1.4.2 para os

modelos de machine learning.

4.2 Pré-processamento dos Dados

O pré-processamento dos dados foi implementado através de uma funcao cus-

tomizada que integra miltiplas fontes de dados provenientes de diferentes dispositivos de
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medicao. A Figura 4 ilustra o fluxo completo do pipeline de pré-processamento, desde a

conversao inicial dos timestamps até a consolidacao final do dataset unificado.

Tratamento de

Intervalo Comum Dados Alinhamento
Converséo de DTW Consolidagio
Tempo Intervalo de tempo Valores ausentes e
comum outliers tratados Dados alinhados Dados de todos os
Colunas de tempo determinado entre para garantir a temporalmente dispositivos
convertidas para todos os qualidade dos usando Dynamic consolidados em
formato datetime dispositivos dados Time Warping um unico dataset

® ® 6 ©
O 0 6 o

Limites de Filtragem de Agregagdo R7 Reamostragem
Tempo Intervalo
Dados de frequéncia Dados
Limites de tempo Dados filtrados para cardiaca agregados reamostrados para
minimo e maximo manter apenas o dos dispositivos R7 equalizar o nimero
identificados para intervalo de tempo usando a mediana de observagoes
cada dispositivo comum entre os dispositivos

Figura 4: Pipeline de pré-processamento dos dados mostrando as etapas principais.

4.2.1 Filtragem de intervalos comuns

O primeiro passo do pré-processamento consistiu na identificagao e extracao
do intervalo temporal comum entre os diferentes dispositivos. Dada a natureza assincrona
da coleta de dados, cada aparelho (R7 e CT-B2B) possui seus proprios timestamps de
inicio e término de gravacao. Para garantir a sincronizacao adequada, foi implementado

o seguinte procedimento:

1. Conversao das colunas temporais para o formato datetime de todos os DataFrames;

2. Identificacao dos limites temporais de cada dispositivo:

t% = min(Time;) (10)
t9 = max(Time;) (11)

onde ¢ representa cada dispositivo;
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3. Determinagao do intervalo comum:

geomum — max(t) 12 8 ) (12)
gr]zgum = min<t£71121z7 t53u)1$7 tggzw’ tgfu)z;t) (13)

4. Filtragem de todos os DataFrames para manter apenas os dados dentro do intervalo

[tcomum comum]
start  “end

Este procedimento garantiu que apenas os dados coletados simultaneamente
por todos os dispositivos fossem utilizados nas andalises subsequentes, eliminando periodos

onde algum aparelho nao estava em operagao.

4.2.2 Tratamento de valores ausentes e outliers

Apoés a filtragem temporal, foi realizado o tratamento de valores ausentes e
outliers presentes nos dados. Definiu-se como outlier qualquer observacao que apresen-
tasse valor nao-nulo na coluna Events, essa coluna continha anotagoes sobre a coleta,
registrando principalmente erros ou intercorréncias durante o processo de aquisicao dos
dados. Para garantir a qualidade do dataset, foram mantidas apenas as observacoes
correspondentes a valores NaN nesta coluna (indicando auséncia de erros registrados),
e posteriormente a coluna foi removida, uma vez que nao contribui diretamente para a
previsao da pressao arterial.

Para as varidveis de saturagao de oxigénio (SpO2) e indice de perfusao (Pi),
valores representados como strings (’-') foram convertidos para zero. Posteriormente,

todos os valores ausentes remanescentes foram preenchidos com zero.

4.2.3 Agregacao multi-dispositivo e Dynamic Time Warping

Uma das etapas mais criticas do pré-processamento foi a integragao dos dados
provenientes de multiplos dispositivos R7 (aparelhos 2, 3 e 4) com os dados do aparelho

CT-B2B (aparelho 1, padrao-ouro). Este processo envolveu trés sub-etapas principais:

Agregacao dos dispositivos R7 Os trés dispositivos R7 forneceram medicoes para-

lelas das mesmas varidveis fisiolégicas (frequéncia cardiaca, SpO2, Pi). Para aumentar a

15



robustez das medigoes e reduzir o impacto de ruidos individuais de cada sensor, foi cal-

culada a mediana dos valores de frequéncia cardiaca (PR bpm) entre os trés dispositivos:
PR nediana(t) = mediana(PRy(t), PR3 (), PRy(1)) (14)

A escolha da mediana em vez da média se justifica por sua robustez a outli-
ers, caracteristica importante em dados fisiologicos que podem apresentar artefatos de

movimento ou falhas momentaneas de leitura.

Alinhamento Temporal via Dynamic Time Warping Apesar da sincronizagao
inicial baseada em timestamps, persistem diferencas sutis nas taxas de amostragem e
laténcias de resposta entre os dispositivos R7 e CT-B2B. Para compensar essas distor¢oes
temporais e garantir um alinhamento preciso entre as séries, foi aplicado o algoritmo de
Dynamic Time Warping entre a frequéncia cardiaca medida pelo CT-B2B (HeartRate
(bpm) ) e a mediana das frequéncias cardiacas dos dispositivos R7 (Mediana PR _bpm).
O DTW encontrou o caminho 6timo de alinhamento P = {(iy, j1), (i2, J2), -+, (ig, J&) }

que minimiza a distancia acumulada entre as séries. Este caminho estabelece uma corres-

pondeéncia entre os indices temporais dos dois conjuntos de dados:

P* = arg H%Din (Az):p d(HRer-p25lt], PRuedianalj]) (15)
%,7)€

onde d representa a distancia Euclidiana entre pontos correspondentes.

Para avaliar quantitativamente a eficacia do alinhamento DTW| foi realizada
uma comparacao com o método de interpolacao linear simples. Inicialmente, os dados
dos dispositivos R7 foram interpolados para corresponder aos timestamps do CT-B2B,
e o erro quadrdtico médio (MSE) entre as séries foi calculado. A Figura 5 apresenta
as séries temporais antes do alinhamento DTW, onde é possivel observar defasagens e
descasamentos temporais entre os sinais.

A Figura 6 sobrepoe ambas as séries no mesmo grafico, evidenciando as dis-
crepancias temporais. Utilizando interpolacao linear simples, o MSE entre as séries foi
de 32,8 (bpm)? indicando um desalinhamento significativo que poderia comprometer a

qualidade do dataset integrado.
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(a) HeartRate (CT-B2B) (b) Mediana PR (R7)

Figura 5: Séries temporais de frequéncia cardiaca antes do alinhamento DTW.

jeartRate (bpm) vs. Mediana_PR_bprr

TimeStamp (mS)

Figura 6: Comparagao direta entre HeartRate (CT-B2B) e Mediana PR (R7) antes do
alinhamento DTW.

Apoés a aplicacao do algoritmo DTW, o alinhamento temporal entre as séries
foi substancialmente melhorado. O MSE foi reduzido para 6,6 (bpm)? representando uma
reducao de aproximadamente 80% no erro de alinhamento. Esta melhoria significativa
demonstra a eficicia do DTW em compensar as distor¢oes temporais e estabelecer cor-
respondéncias mais precisas entre os dispositivos, garantindo a qualidade e a coeréncia do

dataset final para o treinamento dos modelos de aprendizado de méaquina.

Reamostragem estratificada Devido as diferentes taxas de amostragem entre os dis-
positivos, o alinhamento DTW resultou em um ntmero de amostras do CT-B2B superior
ao dos dispositivos R7. Para equalizar o numero de observagoes mantendo a representa-
tividade temporal dos dados, foi implementada uma estratégia de reamostragem estrati-

ficada:

1. O conjunto de dados do CT-B2B mapeado pelo DTW foi dividido em 10 parti¢oes

temporalmente sequenciais;

2. De cada particao, foi amostrado aleatoriamente um nimero proporcional de ob-
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servagoes, de modo que:

o {ntotalJ n 1, sei < (N mod 10)

10 (16)

0, caso contrario

onde n; é o nimero de amostras selecionadas da particao @ e nyue ¢ 0 niimero total

de observacoes dos dispositivos R7;

3. As amostras selecionadas foram ordenadas temporalmente para preservar a sequen-

cialidade dos dados.

Esta abordagem garantiu que a distribuigao temporal fosse mantida, evitando
viés de selecao que poderia surgir de uma amostragem aleatoria simples ou de downsam-

pling uniforme.

4.2.4 Consolidagao do dataset final

Apoés o alinhamento e reamostragem, os dados dos dispositivos R7 e CT-B2B

foram concatenados horizontalmente, resultando em um dataset unificado contendo:

e Variaveis dos trés dispositivos R7: SpO2, Pi e PR bpm de cada sensor;
e Mediana das frequéncias cardiacas dos R7;

e Varidveis do CT-B2B: frequéncia cardiaca, pressao arterial (SBP, DBP, MAP), entre

outras;

e Timestamp unificado para todas as observagcoes.

Colunas redundantes relacionadas a datas, horarios duplicados e identificadores
de época foram removidas para simplificar o dataset. O resultado final foi um conjunto de
dados alinhado temporalmente, livre de valores ausentes e pronto para a etapa de feature
engineering e modelagem.

A Tabela 1 apresenta um resumo estatistico do dataset apds o pré-processamento,
incluindo o niimero de observacoes, features disponiveis e estatisticas descritivas das prin-

cipais variaveis.
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Tabela 1: Resumo estatistico do dataset apds pré-processamento (n = 4.894 observagoes)

Variavel Média Desvio Padrao Min Max
MAP (mmHg) 26,82 4,35 20,00 64,00
SBP (mmHg) 50,69 4,28 41,00 95,00
DBP (mmHg) 15,86 2,17 11,00 38,00
HeartRate (bpm) 102,04 6,06 0,00 127,00
Respiration (bpm) 19,97 3,76 0,00 24,00
Mediana SpO2 (%) 93,39 7,44 0,00 100,00
Pi Device2 2,47 1,12 0,00 5,90

Pi Device3 2,52 1,05 0,00 4.30

Pi Deviced 452 2,97 0,00 11,00
Mediana PR (bpm) 102,71 6,20 92,00 128,00

A Figura 7 apresenta a evolugao temporal das principais varidveis cardio-
vasculares para um dos individuos (Loris) durante o experimento. O gréfico ilustra a
dindmica simultanea da frequéncia cardiaca (bpm) , pressdo arterial média (mmHg),

pressao sistélica (mmHg) e pressao diastélica (mmHg) ao longo do tempo.

Time Series of Heart Rate, MAP, SBP, and DBP (Loris)

— Heart Rate
MAP
—— SBP

1204 DBP

100 A

80

Values

60

40 A

T T T T T
14 1.6 18 2.0 2.2
Time (s) le7+1.7055el2

Figura 7: Série temporal das variaveis cardiovasculares para o individuo Loris.
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4.3 Analise exploratoria de dados

A andlise exploratéria teve como objetivo compreender as relagoes entre as
variaveis fisiologicas coletadas e a varidavel alvo MAP. Esta etapa foi fundamental para
identificar padroes temporais, correlacoes e a relevancia preditiva de cada feature no

conjunto de treinamento.

4.3.1 Analise de correlagao

Inicialmente, foi realizada uma anélise de correlacao de entre todas as variaveis
do conjunto de treinamento e o MAP. A matriz de correlacao foi calculada utilizando o
método corr() do pandas, seguida pela extracao e ordenacao dos coeficientes de cor-
relacao absolutos com a variavel alvo.

A Figura 8 apresenta o ranking das correlagoes observadas.

Mediana
SpO2
%

value

Respiration
(Bpm)

Mediana_PR_bpm
P
Value_device3

P
Value_device4

HeartRate (bpm)

A 0.809
Value_device2

0.‘0 D.‘Z 0:4 0.‘6 0.8 1.'()
Correlagao Absoluta com MAP (mmHg)

Figura 8: Correlagao das features com a Pressao Arterial Média (MAP). As varidveis
estao ordenadas por magnitude de correlagao absoluta

Os resultados revelaram uma estratificacao clara das features em diferentes

niveis de correlagao:

e Maior correlacao : Pi Value_device2 (r = 0.809) apresentou a maior correlagao

com MAP entre as varidveis nao-triviais. O Perfusion Index Value (Pi Value) é um
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indicador da amplitude do sinal fotopletismografico que reflete a perfusao periférica,

justificando sua forte relagao com a pressao arterial média.

e Segunda e terceira maiores correlagoes: HeartRate (r = 0.653) e Pi Va-
lue_deviced (r = 0.636) apresentaram, respectivamente, a segunda e terceira mai-
ores correlagoes com MAP. A frequéncia cardiaca demonstrou relagao substancial
com MAP, consistente com a fisiologia cardiovascular, onde alteracoes na frequéncia
cardiaca influenciam o débito cardiaco e, consequentemente, a pressao arterial. A
presenca de multiplos dispositivos medindo Pi Value reforca a robustez desta varidvel

como preditor.

e Menores correlagoes: Respiration (r = 0.085) e Mediana SpO2 (r = 0.010) apre-
sentaram as menores correlacoes com MAP. A baixa correlacao da SpO2 com a
MAP é esperada neste contexto experimental, uma vez que ela deveria se manter
relativamente constante durante todo o protocolo de coleta em condigoes controla-
das. Essa estabilidade da SpO2 reduz sua variabilidade e, consequentemente, sua
capacidade preditiva para a pressao arterial média, mesmo sendo um importante

indicador clinico em outras situagoes.

4.3.2 Analise temporal com Cross-Correlation

Para investigar relacoes temporais entre as variaveis, foi implementada uma
andlise de correlagao cruzada (cross-correlation). Esta técnica permite identificar se existe
defasagem temporal (lag) entre as variagoes de uma feature e as mudangas correspondentes
no MAP.

A correlacao cruzada foi calculada através da funcao scipy.signal.correlate,
considerando lags de até 50 pontos temporais (ou 10% do conjunto de dados, o que fosse

menor). Para cada feature, as séries temporais foram padronizadas antes do célculo:

Zt = _th ; fa (17)

onde p, e 0, sao a média e desvio padrao da série, respectivamente.
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A correlacao cruzada normalizada no lag 7 foi entao calculada como:
1
Pay(T) = n Z Rt * Ryt (18)
t

Para cada feature, foram identificados:
e O lag étimo (que maximiza |pg, (7))
e A correlagao no lag 6timo
e A correlagao sem lag (1 = 0)

A Figura 9 ilustra a analise de correlagao cruzada para o indice de perfusao
do Device2 (Pi Value_device2), a varidvel com maior correlagdio com MAP. O gréfico
mostra a correlagao em funcao do lag temporal, onde o ponto vermelho indica o lag étimo
encontrado (lag = 5), que maximiza a correlagdo em r = 0.809. A linha tracejada rosa
representa a correlagdo sem lag (lag = 0), enquanto a linha tracejada verde indica o

melhor lag identificado.

Correlagdo Cruzada - Pi Value_device2...
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S I
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[
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Figura 9: Correlacao cruzada entre Pi Value_device2 e MAP. O pico de correlagao ocorre
com lag de 5 pontos temporais.

Os resultados revelaram que a maioria das correlagoes significativas ocorrem
com lag pequeno (menor que 10), sugerindo relagdo temporal direta entre as varidveis

fisiolégicas e o MAP, sem atrasos substanciais entre causa e efeito.
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4.3.3 Sintese e interpretacao clinica

4.4

A andlise exploratéria multifacetada evidenciou que:

O Pi Value emerge como o indicador nao-invasivo mais fortemente correlacionado
com MAP (r = 0.809), sugerindo seu potencial como feature principal em modelos
preditivos. A consisténcia desta correlagdo entre diferentes dispositivos (device2,

device3, device4) reforga a robustez da medida.

. A frequéncia cardiaca mantém relagao significativa com MAP (r = 0.653), refletindo

a interagao cardiovascular entre débito cardiaco, frequéncia e resisténcia vascular

periférica, descrita pela equagao hemodinamica fundamental.

. A baixa correlagdo da SpO2 em relagdo ao MAP (r = 0.010) confirma que, no

contexto experimental controlado deste estudo, a saturacao de oxigénio permaneceu

estavel e relativamente constante, conforme esperado pelo protocolo de coleta.

. A auseéncia de lags temporais significativos sugere que as variaveis respondem de

forma quase simultanea as mudancas fisioldgicas, facilitando a modelagem preditiva

em tempo real sem necessidade de incorporar histérico temporal extenso.

Divisao dos dados e modelo base

Para a avaliacdo dos modelos, utilizou-se uma divisdo temporal 80/20 dos

dados, preservando a natureza temporal da série. Esta divisao foi implementada utilizando

a biblioteca Scikit-learn, onde 80% dos registros temporais iniciais foram destinados ao

treinamento e os 20% restantes para teste.

Inicialmente, aplicou-se uma Regressao Linear como modelo baseline, obtendo

os seguintes resultados:

Tabela 2: Resultados da Regressao Linear

Meétrica Treinamento Teste Diferenca Absoluta

MSE 6,2232 18,1443 11,9211
MAE 1,7561 3,4600 1,7039
R2 0,7097 0,3564 0,3533
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Os resultados indicam que o modelo sofre de overfitting, com desempenho signi-
ficativamente superior no conjunto de treinamento em comparacao com o teste, sugerindo

a necessidade de técnicas de regularizacao.

4.5 Otimizacao com Grid Search e regularizagao

Os hiperparametros de regularizagdo (A e «) foram otimizados via validagao

cruzada, permitindo encontrar o equilibrio ideal entre viés e variancia de cada modelo.

e Ridge: 8 valores de A testados: {0.001,0.01,0.1,0.5,1.0,5.0,10.0,50.0}
e Lasso: 8 valores de A testados: {0.001,0.01,0.1,0.5,1.0,5.0,10.0,50.0}

e Elastic Net: 30 combinagdes de parametros, com A € {0.001,0.01,0.1,0.5,1.0,5.0}
ea€{0.1,0.3,0.5,0.7,0.9}

4.5.1 Resultados dos modelos regularizados

Tabela 3: Comparagao dos modelos com regularizagao

Modelo Param. escolhidos R? Treino R? Teste MSE Teste MAE Teste

Ridge A=5,0 0,7097 0,3519 18,2702 3,4987
Lasso A=0,1 0,6890 0,1477 24,0285 4,3721
Elastic Net A=0,1,a=0,1 0,7097 0,3553 18,1751 3,4689

A Figura 10 apresenta o grafico de dispersao comparando os valores reais de
MAP com os valores previstos pelo modelo Elastic Net no conjunto de teste. A linha
tracejada vermelha representa a predicao perfeita (onde valores previstos seriam idénticos
aos reais), permitindo avaliar visualmente a qualidade do ajuste e identificar padroes de

erro sistematico.
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Figura 10: Comparagao entre valores reais e previstos de MAP para o modelo Elastic
Net.

4.6 Analise comparativa

Observa-se que o modelo Elastic Net obteve o melhor desempenho no conjunto
de teste, com R2 de 0,3553, MSE de 18,1751 e MAE de 3,4689. O modelo Ridge apresentou
resultados similares, enquanto o Lasso demonstrou performance inferior, possivelmente
devido a natureza dos dados onde muitas features podem ser relevantes.

A diferenca persistente entre as métricas de treino e teste em todos os modelos
sugere limitagoes intrinsecas nos dados ou a necessidade de abordagens de modelagem

mais complexas para capturar adequadamente os padroes temporais subjacentes.

5 Conclusao

Este trabalho apresentou o desenvolvimento e avaliagao de modelos de apren-

dizado de maquina para previsao nao invasiva da MAP em pacientes com lesao medular,
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utilizando dados multivariados de sensores vestiveis. A abordagem proposta demonstrou
viabilidade técnica na integracao de dados provenientes de multiplos dispositivos de mo-
nitoramento, superando desafios significativos de pré-processamento através de técnicas
como filtragem temporal, alinhamento via DTW e reamostragem estratificada.

A anélise exploratoria dos dados revelou que o Pi Value emerge como a variavel
preditora mais relevante para a estimativa da MAP. Esta descoberta estd alinhada com
os fundamentos fisiolégicos, uma vez que o Pi Value reflete diretamente a perfusao te-
cidual periférica, intimamente relacionada com a dinamica pressérica arterial. A mo-
delagem através de técnicas de regressao linear com regularizacao permitiu explorar o
equilibrio entre capacidade preditiva e interpretabilidade do modelo, aspecto fundamen-
tal em aplicacoes clinicas.

Os resultados obtidos demonstram o potencial de sensores vestiveis como ferra-
mentas de monitoramento cardiovascular continuo para essa populagao especifica, contri-
buindo para o desenvolvimento de solugoes tecnoldgicas que promovam maior autonomia
e qualidade de vida dos pacientes com lesao medular.

As limitagoes observadas no desempenho preditivo indicam a necessidade de
abordagens mais sofisticadas para capturar completamente a complexidade dos padroes
fisiologicos subjacentes. A persistente diferenca entre métricas de treino e teste em to-
dos os modelos sugere que fatores nao capturados pelas variaveis disponiveis ou relacoes
temporais mais complexas podem estar influenciando a dinamica pressérica.

Como trabalhos futuros, recomenda-se a exploragao de: (i) modelos baseados
em séries temporais, como LSTM, capazes de capturar dependéncias temporais de longo
prazo; (ii) engenharia de features mais sofisticada; (iii) valida¢do em conjunto de dados
mais amplo, com a inclusao de dados de outros macacos do estudo, permitindo avaliar
a capacidade de generalizacao dos modelos desenvolvidos para diferentes individuos da
mesma populagao experimental.

Apesar das limitacoes, este estudo representa um avanco significativo na direcao
de sistemas de monitoramento continuo e nao invasivo da pressao arterial, com potencial
para integracao em dispositivos vestiveis como smartwatches, oferecendo uma alternativa
promissora aos métodos convencionais de afericao para pacientes com lesao medular e

ampliando as opg¢oes de monitoramento cardiovascular na pratica clinica.
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