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Resumo

Este texto é um estudo baseado em [1, 2], focado na aplicação de algoritmos

quânticos variacionais (VQAs) em problemas de aprendizado por reforço (reinforcement

learning). A estratégia utilizada foi de iniciar pelo estudo de redes neurais clássicas em

um problema de classificação binária, passando, em seguida, para a versão quântica do

mesmo, utilizando VQAs. Em seguida, estudou-se o problema de reinforcement learning

clássico, e, por fim, a utilização de VQAs para aproximar a política ótima em um algoritmo

de deep Q-learning, utilizado para resolver o problema canônico Cart Pole [3]. Os autores

do artigo [1] criaram um algoritmo que usa cerca de um terço dos parâmetros da sua

versão clássica para uma mesma pontuação acumulada e tempo de treino. Ao rodarmos

o código disponível 10 vezes, extraindo o comportamento médio, a evolução no treino do

agente também foi perceptível.
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Abstract

This text is a study based on [1, 2], focused on applying variational quantum

algorithms (VQAs) to reinforcement learning (RL) problems. The strategy used for this

study was starting by understanding classical neural networks in a binary classification

problem, moving, afterward, to the quantum version of the same problem, which uses

VQAs instead. After that, we studied classical RL algorithms, and, finally, the application

of VQAs to approximate the optimal policy on a deep Q-learning problem, whose solution

was used to solve the canonical problem Cart Pole [3]. The authors of the article [1]

created an algorithm that requires about one-third of the parameters of the classical

version for a given score and training episode. By running the available code 10 times,

and extracting the average behavior, the evolution of the agent’s training was also clear

to us.
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1 Introduction

1.1 Quantum computing

Quantum computing has been a very active field in the past few decades. With

some promising results of quantum processors achieving the so-called quantum supremacy

in specific problems that classical computers would take much longer to solve, such as

Google’s Sycamore processor’s solution to a benchmark problem [4], this field has been

quickly evolving and gaining attention from the scientific community and industry.

A quantum computer is a machine that can leverage the power of collective

properties of quantum mechanics, such as interference, superposition, and entanglement,

to perform calculations [5]. The main difference from classical computers is that quantum

computers do not use individual bits for encoding information. Instead, they can create

superpositions of several states, and manipulate the probability distribution so that the

readout - which is made by performing averages of the quantum states - yields larger

probabilities for states that lead to the correct answers and lower ones for those leading

to incorrect answers.

1.1.1 Variational quantum algorithms

Variational quantum algorithms (VQAs) are a class of quantum algorithms

that uses a quantum circuit whose operations depend on parameters that can be clas-

sically tuned to achieve specific tasks. The gates on a quantum variational circuit are

tunable utilizing a set of parameters Θ. VQAs have several applications, especially in ar-

tificial intelligence, in which the tunable circuits can be used to statistically learn the best

configuration so that the circuit can solve tasks for itself. The VQA then acts similarly

to a neural network, and one can use this configuration for the applications we explain in

the next section.

1.2 Machine learning

Machine learning techniques are statistical-computational methods used to

make predictions or fit data in a way that is not directly dependent on external influence.
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Once the objective function to be optimized is defined, the algorithm itself learns the best

solution to the problem.

This is a field that has received much attention in the last years since it has

several proven useful applications both in science and industry.

Machine learning techniques fall into three categories: supervised learning,

unsupervised learning, and reinforcement learning.

1.2.1 Supervised versus unsupervised learning

Supervised learning is a class of machine learning methods that aims at learning

a function that solves specific problems, given a so-called training set, which is a set of data

points {(xi, y(xi))} with input xi and expected output yi = y(xi), providing a template

for validating the method. Once the algorithm has achieved satisfactory performance in

the training data, it can be used to create predictions for data that was unseen before,

thus generalizing what it has learned.

Unsupervised learning, on the other hand, does not use a training set, and it is

usually focused on recognizing patterns in unclassified data, for instance, solving grouping

or classification tasks in which data points that are more similar to each other, according

to some metric, fall in the same group, while points which are dissimilar fall into different

ones. Unsupervised learning methods are trained for minimizing a cost function, such as

the sum of the Euclidean distances of points in the same group, in the given example.

1.2.2 Reinforcement learning: one step forward

Along with the two other types, there is a third one, focused not only on

approximating a function that fits the data well or recognizing unclassified patterns but

also on making decisions based on a policy that states what action to take at each given

step. Problems of this category are labeled reinforcement learning (RL). In this category,

one is faced with the challenge of making an autonomous agent navigate through an

unknown environment, and generate an optimal policy, which consists of a set of rules

that shape the decision-making of the agent on how to react to the barriers and obstacles.

This policy is what allows the agent to build its navigability strategy in the environment.

It is a conditional probability distribution π(a|s), which maps each state s to an action a
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that the agent can take.

Apart from the addition of the decision-making process, one key difference

between reinforcement learning problems and both supervised and unsupervised learning

is that in the former, the data based on which the algorithm will learn is not readily

available - instead, it is dynamically acquired while it moves through the environment.

Some reinforcement learning algorithms find the optimal policy by maximizing

the expectation of return the agent has when choosing each state. This expectation is

called value function, or Q-function∗, so that algorithms of this class are called Q-learning.

When, furthermore, the policy learned is not the optimal one, but rather an approximation

of it, relying on neural networks to make this approximation, the method is called Deep

Q-Learning, and it is the one we will use to adapt to the quantum realm in this text.

It is important to notice that the goal of reinforcement learning problems is

to not only build special-purpose learning algorithms, that can only learn how to master

one environment - that is, an agent that can only play well a single game - but can also

perform satisfactorily in several different environments.

When, apart from being agnostic to the choice of environment, the agent also

does not need to be retrained when switching environments, we have what is called transfer

learning [6], which are state-of-the-art reinforcement learning algorithms that use parts

of the training focused on one task to solve other tasks.

1.3 Quantum reinforcement learning

When we bring together quantum computing and reinforcement learning, we

get what is called quantum reinforcement learning. This is an interface field, which has

only recently taken shape, with most papers being published in the last five years.

There are a few ways to turn classical reinforcement learning problems into

quantum ones. Most of them result in a hybrid classical-quantum scheme, in which part

of the processing is made on a quantum machine (or in a classical simulator of a quantum

machine), and the remaining steps - usually the optimization parts - are done classically.

One example of a quantum reinforcement learning problem is the so-called

Quantum Maze [7] - which uses a classical RL technique applied to a quantum problem:
∗Be aware that “Q” here stands for “quality”, not “quantum” - originally, this is a classical algorithm
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a quantum particle in a maze that can change its pathways randomly. Another example,

which is the one we will be focusing on in this paper, has both the agent and the environ-

ment behaving classically, but the neural network that is used to get an approximation

for the optimal policy is replaced by a variational quantum circuit [1], defining what we

call a quantum deep Q-learning algorithm.

1.4 Content organization

As mentioned, this text aims to study the theory and reproduce the imple-

mentation of a quantum deep Q-learning algorithm to solve a problem in which both the

agent and environment are classical, but using a variational quantum circuit instead of a

neural network. For this reason, we decided to use the following strategy:

• We will first briefly introduce classical neural networks, focusing on the feed-forward

topology for classification tasks [8];

• We will then bring that same problem into the quantum realm, studying the math-

ematics of VQAs applied to quantum binary classifiers, following [2];

• In this same section, we will study a Python implementation of VQA solving the

bit string parity problem, according to [9];

• Next, we will understand the basics of the classical reinforcement learning problem,

focusing on the deep Q-learning method, following [10];

• Once having both a good grasp on VQAs and classical deep Q-networks, we will

address the quantum deep Q-learning problem, using what was studied in the pre-

vious sections to build a VQA that learns a policy capable of solving a few simple

problems on reinforcement learning, following the methodology described on [1].

The central idea of this text is therefore to introduce the student to quantum

reinforcement learning through a literature review, starting from classical machine learn-

ing techniques, all the way up to the framework described in [1]. In this path, we will also

reproduce a few computational implementations available online in open-source Python

libraries, such as PennyLane [11] and Cirq [12].
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2 Classical neural networks

An "artificial neural network" (ANN) - or, simply "neural network" (NN) - is

a statistical method inspired by brain networks [13], which is used in machine learning to

approximate a function f , which is unknown, but whose main properties can be inferred

from the problem at hand.

This is usually done through supervised learning, with available training sets

containing input vectors together with the expected output, and the goal of the NN is

to learn a function that best fits the training data, and which can also be used in other,

uncategorized data.

Below, there is a schematic of a classical artificial neural network, of a topology

called feed-forward :

Figure 1: Schematic of a feed-forward classical neural network [8].

The way a neural network learns the function that best fits the training data

is by composing a set of linear operations and a nonlinear function, called the activation

function. Each of these combined operations - applying the linear map and the nonlinear

activation - defines what is called a neuron, which is usually a real number resulting from

the operations. A set of neurons acting together is called a layer, and it represents one

iteration of a chain of composite functions that approximate f . The function resulting

from the composition of several layers is:

F (x) = fN(fN−1(. . . f2(f1(x)) . . .)) (1)
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Here, each fi represents the result of operation of layer i. Each neuron value is generated

by a linear function, followed by a nonlinear activation. The application of a layer of

neurons on an input then reads:

zi = Wi xi−1 + bi (2)

xi = Σ(zi), (3)

where zi represents the linear output of layer i, using xi−1 as input (the result of the

function in the previous layer), together with Wi (the weights matrix), and bi (the bias

vector) - both of which will be discussed next - while xi is the final result of the operations

of layer i, including the nonlinear activation function Σ. In this notation, Σ is the scalar

field that applies σ to each of the neurons in the layer. To understand how an NN works,

let us look at each of these terms in detail, applied to the simplest possible topology of

neural networks: feed-forward NNs.

2.1 Feed-forward neural networks

This specific topology has a tree structure (no self-loops and no backward flow

in the calculations) and is composed of three types of layers: one input, or feature layer,

a set of one or more hidden layers, and one output layer.

This topology is used in a process that has two parts: forward and backward

passes. In the former, the network receives as input one of the vectors from the training

set, xi, and outputs a value that depends on the network’s weights and biases. The process

then moves to the latter part, which consists in comparing the output value, ŷi, with the

expected one, yi, and adjusting the weights and biases to reduce the difference between

them. This alternation between different passes is repeated up until a satisfactory result

comes out of the network.

2.1.1 Forward pass

The forward pass, as described before, receives as input the training vectors,

which are, layer-by-layer, processed by the NN to provide an output.

The first layer is used to encode data in a way that is readable by the network.
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This can be done using several different methods, depending on the problem at hand. For

example, in networks used to classify images, each pixel of the image can be stored as an

entry for the input vector of the network, so that in an N by M pixels image, one would

have an NM by 1 input vector [14].

The second is a set of one or more layers, which are responsible for the “learn-

ing” part. They take the encoded data from the previous layer and apply transformations

to it until it generates an output. To move from one layer to the next one, vector calcu-

lations of the form (2) are carried out.

To decide which of the neurons of the previous layer have a larger impact on

the current one, we define the weights matrix WL, with entry wij giving the importance

of neuron j in the (L − 1)-th layer to the value of neuron i in the L-th layer. The bias

term allows for more flexibility in the approximation process. On top of the weights and

biases, which act as an affine transformation on xi−1, we apply the nonlinear function σ.

The function σ, inspired by the activation of neurons in the human brain [15],

is used to allow for nonlinear maps in the input xi, so the neural network can go beyond

a linear classifier technique. Function σ can be of several different shapes. In the early

papers of ANNs, σ was taken to be a sigmoid function, which provides output values

between 0 and 1 that can be taken as a proxy for probability. This function is defined as:

σ(x) =
1

1 + e−x
(4)

However, in more recent applications, this function is usually replaced by oth-

ers, due to several problems associated with it, such as training performance and the

vanishing gradient problem [16]. One of the most used nonlinear activation functions in

current applications [15] is the so-called ReLU (an acronym for Rectified Linear Unit),

which is defined as:

σ(x) = max(x, 0) (5)

Apart from those two examples, several other activation functions are currently

in use, and they all have the same goal: adding flexibility to the method to approximate

nonlinear functions.
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Finally, after the operations are carried out by the hidden layers, the output

layer is responsible for retrieving the values produced by the last hidden layer and gen-

erating an answer to the problem. This answer can come in the form of a vector, but

for simple problems such as the binary classification [17], the output is usually a number

(0 vs 1, for example). This value that the network outputs can then be compared with

the expected answer for that input, stored in the training set. If the output value is too

distant from the expected one, the weights and biases need to be tuned so the network

outputs a value that is closer to the expected. This mechanism is based on the backward

pass of the method, which we discuss next.

2.1.2 Backward pass

This part moves in the opposite direction as the forward pass. After having

run the network to output a value ŷi given one of the inputs xi in the training set, that

value is compared to the corresponding target value in the training set, yi. Sweeping over

all training points and taking the average difference from output to target, we can define

a cost to be minimized, usually called loss function. The loss function can take up several

forms, one of which is the Mean Squared Error (MSE) [18]:

L(ŷi, yi) =
1

|T |

√∑
i

(ŷi − yi)2 , (6)

where the i index sweeps over all the data points in the training set T , of cardinality |T |,

which we assume here to be finite.

In order to reach optimal values for L, one varies the weights and biases of the

network. But doing so in a random fashion would be computationally slow, so gradient-

descent methods are employed. To do that, we first build a vector that contains all weights

and biases of the network, layer-by-layer (each layer tagged by the super-index (L)):

vT =
[
w

(1)
11 . . . w

(1)
1n w

(1)
21 . . . w

(1)
2n . . . w

(1)
mn b

(1)
1 . . . b

(1)
n . . . w

(2)
11 . . .

]
(7)

Then, we apply the gradient-descent (GD) method to this vector. There are

several variations of the classical GD method, both using momentum and stochastic
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batches [19]. The classical update of the method is given by:

vk = vk−1 − γ∇L(vk−1) , (8)

where k indexes the iteration in which we are at.

One important feature is that, since we have an explicit rule to go from one

layer to the next one, we can adjust weights in the initial layers by employing the derivative

chain rule, to compute how the loss varies with respect to every term in v.

Once the weights and biases are adjusted to get closer to an optimal point,

evaluating all input points of the training set, the forward pass is repeated, and a new

loss value is computed. We repeat this process until we are ϵ-close to the minimum (that

is, L < ϵ) or by limiting the number of times we evaluate the whole training set. Each of

these full passes is called an epoch.

This way, a neural network takes as input a training dataset, and tunes its own

inner parameters (weights and biases) to the best possible values, generating an output

function that best solves the problem. In the case of a ReLU-activated network, that

function is piece-wise linear.

This network can then be used to infer values for data that is not in the training

set, and the accuracy with which it does so can vary depending on the size and variety of

the training set, and also on how many epochs the algorithm runs through.
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3 Variational quantum algorithms

Similarly to classical networks studied in the previous section, one can use a

quantum circuit with tunable parameters to approximate a function that solves a partic-

ular problem. Let us now deep dive into how this is done.

3.1 Quantum circuits

To understand what a quantum circuit is, we first need to introduce the idea

of a qubit. A qubit is the unit of information on quantum computing, and, unlike the

classical bit, which can only be at state 0 or 1 at a given time, a qubit can be in a

superposition of both states, so it is represented, using Dirac’s notation [20], by:

|ψ⟩ = α |0⟩+ β |1⟩ =

α
β

 , (9)

where |0⟩ and |1⟩ are the two states in the so-called computational basis and α and

β are two complex numbers. These numbers have a probabilistic interpretation: the

probability that the qubit’s wavefunction collapses to state |0⟩ after a measurement is

P (|0⟩) = |α|2. Similarly, the probability of it collapsing to state |1⟩ is P (|1⟩) = |β|2 [20].

While no measurement is performed, the qubit is in neither of the basis states, but in a

superposition of both.

It can be shown that, apart from a global phase factor, any qubit can be

represented as a point on the surface of a sphere, called Bloch sphere [21, 22] as follows:

Figure 2: Representation of a qubit |ψ⟩ as a vector on the Bloch sphere.
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Another important definition is that of a quantum operator. Quantum opera-

tors are linear maps from a Hilbert space to itself [20]. Operators can be represented as

matrices on the computational basis, so the action of an operator on a qubit becomes a

matrix product. One important feature of quantum operators is that they can only be

represented by unitary matrices, which means that, given a Hilbert space H, an operator

U is a linear map H → H with the following property:

U U † = U † U = I ,

where U † is the Hermitian conjugate of U (i.e. the complex conjugate of U transposed).

When we compose one or more operators, which we will call gates, acting on

one or more qubits, we have a quantum circuit.

Therefore, a quantum circuit is a composition of quantum gates applied to a

tensor product of input qubits. These gates are operators that can act on one, or more

qubits at a time and the composition results in a linear transformation. Since quantum

operators are unitary, the resulting composition is also unitary.

We represent quantum circuits by diagrams such as the following:

|0⟩ H

|0⟩

|0⟩

In this circuit example - which is called GHZ state, a 3-qubit implementation of a Bell-state

[23] - one starts with the tensor product |000⟩, represented by the 3 wires, each containing

a |0⟩ ket. The first ket is acted upon by a single-qubit operator called Hadamard gate,

and the two other ones are both acted by a gate called Controlled-NOT (CNOT), which

is said to be controlled by the first qubit. After the two controlled operations, all three

qubits are measured, so it can be shown that the net effect of this circuit is the map:

|000⟩ 7→ 1√
2
(|000⟩+ |111⟩)
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The two gates mentioned here - Hadamard and CNOT - are two important

quantum operators. The Hadamard gate is used in several quantum circuits, such as the

single-qubit interference circuit [24]. This gate can be represented by the matrix:

H =
1√
2

1 1

1 −1

 (10)

This gate operates on one qubit only, as follows:

|0⟩ 7→ 1√
2
(|0⟩+ |1⟩)

|1⟩ 7→ 1√
2
(|0⟩ − |1⟩)

On the other hand, the CNOT gate acts on pairs of qubits, the first being

called the control qubit, and the second, the target one. This gate flips the second qubit

if the first one is on state |1⟩, and applies the identity matrix otherwise. The matrix

representation of the CNOT is, therefore:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (11)

The circuit discussed so far is an example illustration of the way we build

quantum circuit diagrams: wires represent the different qubits, boxes with letters or

symbols are the unitaries that operate on them, and meter boxes represent quantum

measurements, carried out by taking the average of the output.

The circuit topology varies according to the problem, but it is noticeable the

similarity between quantum circuits and neural networks, in the sense that both are a set

of operations acting, in a network-distributed fashion, on inputs, and yielding measur-

able outputs. On the other hand, neural networks, as seen in the previous section, can

approximate almost any function using the nonlinear activation over the neurons, while

quantum circuits are restricted to operating linearly on inputs unless specific techniques

18



to introduce nonlinearities are used [25]. Another important difference between NNs and

VQCs is that the latter leverage the properties of interference and superposition through-

out the circuit, and the manipulation is made only to the probability amplitudes, not to

the numbers (neurons) themselves, so one can only access the result of the calculations

at the output measurement.

3.2 Variational quantum circuits

When one or more of the quantum gates in a quantum circuit depend on

a set of parameters {θi}, which can be adjusted to enable the circuit to solve certain

problems, we have what is called a Variational Quantum Circuit (VQC), or, equivalently, a

Parametrized Quantum Circuit (PQC). These circuits are particularly interesting because

they share similarities with classical neural networks, as we will see in the example below.

Algorithms that run on variational quantum circuits are called Variational Quantum

Algorithms (VQAs).

3.2.1 Quantum binary classification

To show how to use a quantum circuit similarly to a neural network, we present

a method for solving the benchmark binary classification problem, which is well-known

in classical supervised learning [17], and is here adapted to run in quantum circuits.

This problem entails finding a function f that correctly yields 0 or 1 depending

on the input, which is a binary string. To find f , one first needs to ensure that it is possible

to build such a function for a generic binary input, which is a non-trivial question, given

that quantum circuits can only apply linear operations.

3.2.2 Boolean functions in quantum circuits

To show that this problem is generally solvable in a quantum machine, we refer

to the proof in [2] that a method that outputs any label function l : {−1, 1}N −→ {−1, 1}

can be built using the following unitary, representing the whole quantum circuit:

Ul = exp
[
i
π

4
l(Z)Xn+1

]
=⇒ Ul |z, zn+1⟩ = exp

[
i
π

4
l(z)Xn+1

]
|z, zn+1⟩ (12)
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Here z is the input bit string, which, in the quantum circuit, corresponds to a tensor

product of inputs, and zn+1 is the auxiliary qubit where the measurement happens. In

this notation, l(Z) is the operator that is diagonal when acting on a tensor product of

qubits associated with the computational basis (i.e. l(Z) |z, zn+1⟩ = l(z) |z, zn+1⟩).

To illustrate the operation of l(Z), take as an example a circuit with input bit

strings of size 1 (so we need 2 qubits to produce |z, zn+1⟩). This means that, by varying

both the input string and the output qubit, an arbitrary state |ψ⟩ will be of the form:

|ψ⟩ = c1 |00⟩+ c2 |01⟩+ c3 |10⟩+ c4 |11⟩ (13)

In this case, and considering that a +1 in the bit string maps to ket |0⟩ and −1 maps to

|1⟩ (the other opposite mapping would work just as well), the representation of l(Z) in

the computational basis is:

l(Z) |00⟩ = l(+1) |00⟩ l(Z) |01⟩ = l(+1) |01⟩

l(Z) |10⟩ = l(−1) |10⟩ l(Z) |11⟩ = l(−1) |11⟩

which, in matrix notation becomes:

l(Z) |ψ⟩ =


l(+1) 0 0 0

0 l(+1) 0 0

0 0 l(−1) 0

0 0 0 l(−1)




c1

c2

c3

c4

 =


l(+1)c1

l(+1)c2

l(−1)c3

l(−1)c4

 (14)

If we restrict our analysis only to the basis states - which is the case in our problem, since

qubits are input independently for each wire, so the entire state is simply a tensor product

of them - the matrix representation of the operator l(Z) in the computational basis can

only be nonzero for one of the entries in the diagonal, and zero for the others.

Now, given that there exists such a unitary operator representing the whole

circuit, it remains to understand how to decompose it into 2-qubit gates, to build a circuit

topology that is feasible in real-world applications, since the larger the number of qubits
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operated at the same time by a single gate, the more prone to errors the circuit is. This is

also important because a bad choice of topology (or ansatz ) can limit how well our circuit

can learn [2].

To achieve that, we first switch the z variable, z ∈ {−1, 1} to ordinary Boolean

variables, with the transformation bi = 1
2
(1−zi), where each zi is a bit in the i-th position

on the binary string z. Now b can be decomposed using the Reed-Muller (RM) expansion,

as proven in the appendix A.

With this change of variables, the unitary of the whole circuit, which depends

on the label function l, can be re-written as:

Ul |z, zn+1⟩ = exp
[
i
π

4
(1− 2B)Xn+1

]
|z, zn+1⟩ = exp

[
i
π

4
Xn+1

]
exp

[
−iπ

2
BXn+1

]
|z, zn+1⟩

(15)

Here, B is the matrix that is diagonal in the computational basis and that corresponds

to b, similarly to the matrix representation of the operator l(Z) we had before the change

of variables.

Now, given that we have an explicit function that solves the problem using

2-qubit unitaries, we can proceed to solve the parity classification problem.
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3.2.3 Subset parity classification

In our example, we intend to build a quantum circuit whose task is to learn a

Boolean function f : {0, 1}N −→ {0, 1}, in order to classify the parity of a binary string z.

Function f should be able to have the following property:

f(z) =

0, if there is an even number of 1s in z

1, otherwise

In the parity problem, we will be focusing only on the linear part of the RM

expansion [2], because one can retrieve the parity of a subset S with the formula:

PS =
⊕
j

ajbj (16)

Recalling that the coefficients aj correspond to Boolean differences, which are

equal to one only if the function changes when changing the input, the ajs are all zero for

bits j that are not contained in set S. Also recall that the binary addition ⊕ is 0 when

the operands are equal and 1 otherwise, so we can see that PS = 0 when the number of

zeros and ones is even, and PS = 1 otherwise, as required in the problem statement.

Now, using PS as the RM expansion for the function we want our circuit to

learn, the unitary in (15) becomes:

UPS = exp
[
i
π

4
Xn+1

]
exp

[
−iπ

2

⊕
j

ajBjXn+1

]
(17)

With this formula at hand, the hardware implementation becomes, simply, a

series of bit flips acting on pairs of qubits, one being the control, and the other the target.
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3.2.4 Circuit ansatz

Since we derived the main properties our circuit needs to have to learn the

parity of a bit string, which is equivalent to composing several controlled bit flips, we can

use the following circuit topology, retrieved from [26]:

Figure 3: Schematic of one possible topology for this problem [26].

Note that there are 2N gates to cover all possible input bit string combinations,

and the G’s are CNOT gates conditioned on zero, one or more of the input qubits. To see

the correspondence between the gates and the RM coefficients that generate each possible

Boolean function, consider the following table image, also taken from [26]:

Figure 4: Example for 2-sized input bit strings (N = 2), showing that all Reed-Muller
coefficients can be represented by a unique configuration of controlled-NOT gates [26].
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3.2.5 Learning

The algorithm described so far is hybrid (quantum and classical), in the sense

that it is only the circuit, which replaces the neural network, that is quantum. All the

optimization and updates are carried out classically.

After running the quantum circuit for all training inputs in the set {z}, we

measure the output qubit, |zn+1⟩, estimating the average value of a Pauli-Y operator,

obtaining:

⟨z, zn+1|U †(θ⃗)Yn+1 U(θ⃗) |z, zn+1⟩ (18)

With this average output, for each fixed z, we can then carry on classically in

the backward pass, by first defining a loss function:

loss(θ⃗, z) = 1− l(z) ⟨z, zn+1|U †(θ⃗)Yn+1 U(θ⃗) |z, zn+1⟩ (19)

This function is zero if the output of the circuit is equal to the expected label

for that input, l(z), and it is larger than zero in the case of opposite labels. Here we use

the variable before the Boolean transformation (that is, z ∈ {−1, 1}N).

3.2.6 Computational implementation

Having studied the theory behind one of the simplest quantum variational clas-

sifiers in the literature, in this section we follow the implementation suggested in [9], using

a classical simulator for the quantum operations, and the Nesterov momentum algorithm

for the gradient descent [19]. Furthermore, since the parity classification problem can be

solved by using only the first order of the Reed-Muller expansion, the first N unitaries of

the ansatz of figure 3 are sufficient, so the circuit only connects first-neighboring pairs of

wires, in a ring topology.
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By running the algorithm, which can be found in the GitHub repository created

for this project [27], with a 4-qubit input circuit, we get the following charts:

Figure 5: Graphs of the cost function and accuracy value by iteration.

As can be seen from the charts, in the case of short bit strings (4 qubits), the

learning process is fast, reaching 100% accuracy after 8 steps, and the cost function also

declines fast in a training set containing 16-bit strings. One of the reasons for choosing

small bit strings is due to the limits imposed by the classical implementation of a quantum

simulator, making the computing time scale exponentially with bit string length.
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4 Classical reinforcement learning

4.1 Introduction

Reinforcement learning problems aim at finding the optimal policy for an agent

to navigate through an environment. Assuming a discrete evolution, at each time step

t, the agent is at a state st ∈ S. The set S represents all possible configurations for the

variables that define the relationship of the agent with the environment (e.g. position,

velocity, etc), and the agent can take actions a ∈ A, driving it from st to st+1. An optimal

policy is a probability distribution π∗(a|st) that maps state st to the action a that brings

the best results by some metric. In this text, we will focus on Q-learning, which uses a

value function to define this metric.

4.2 Q-learning

As mentioned, this type of reinforcement learning problem focuses on optimiz-

ing a so-called value function to get as close as possible to solving an optimality equation,

called Bellman equation. For us to understand how this process works, we first need to

make some assumptions about the nature of the system.

4.2.1 Environment returns

The first thing to notice is that, in RL problems, the agent’s objective is not to

maximize individual rewards coming from each possible action, but an overall return from

all future actions. This return is a sum of all future individual rewards. If one is dealing

with a finite process, in which there are episodes, after which the dynamics restart, the

reward at time t can be defined as simply:

Gt = Rt+1 + Rt+2 + . . .+ RT , (20)

where T denotes the time step associated with the end of the episode. Alternatively, if

there are no clear definition of episodes, and the environment interaction can continue
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indefinitely, we have to use a discounted version of this definition, such as:

Gt = Rt+1 + γRt+2 + γ2Rt+2 + . . . =
∞∑
k=0

γkRt+k+1 , (21)

where γ, 0 ≤ γ < 1, is a discounting factor, which conveys the idea that future rewards

impact present decisions less than current ones. Both of the previous definitions can be

merged into one:

Gt =
T−t−1∑
k=0

γkRt+k+1 (22)

Here T can be taken as T → ∞ to account for the continued interaction and γ can be

set to 1 for the finite one, but not both conditions at the same time (otherwise the series

may diverge depending on the rewards).

One point to notice is that, although most of the reinforcement learning process

focuses on maximizing the return expectation, through a strategy called exploitation, it

is sometimes useful to choose random actions in some of the steps, to make sure not to

get stuck into local maxima. This is usually done through an ϵ-greedy algorithm, which

defines a parameter ϵ, 0 ≤ ϵ ≤ 1, such that the agent takes the action that maximizes the

expectation of returns with probability (1− ϵ), but with probability ϵ, it picks a random

action, in a strategy called exploration of the environment.

4.2.2 Markov decision processes

In the previous section, we have defined the returns function at each time

step, and now, to construct an objective function and for the RL problem to be reduced

to solving a set of equations, we need an extra ingredient, called the Markov hypothesis.

To understand it, consider an agent at time t taking an action that leads, at time t+1, to

a response from the environment. This response, in the most general case, may depend on

all past actions the agent has taken and states it has been at. For Markovian systems, on

the other hand, the only variables that may influence how the environment will behave at

t+ 1 are the current action and state. This means that, under this hypothesis, we have:

P (Rt+1 = r, St+1 = s′ |S0, A0;S1, A1; . . . ;St, At) = P (Rt+1 = r, St+1 = s′ |St, At) (23)

27



This means that the conditional probability that the environment will behave

as to provide r as a reward and settle at state s′ at time t+1 given all its previous states

and actions of the agent only depends on the current action and state. This is analogous

to the path independence hypothesis, which is often used as an ideal approximation for

solving problems. In the same way, in some cases, it is safe to assume the Markov property

as an approximation for real-world problems that would be too complex to solve otherwise.

4.2.3 Value functions

Value functions are a way of quantifying the quality of a given action in a given

state, provided we have an estimate of the future rewards coming from that choice.

A policy is a conditional probability distribution of the agent to take action a

given that it is currently at state s. It defines a protocol for the agent on how to act at

each state, by probabilistically sampling from this distribution, and it is denoted π(a|s).

With these concepts, we can define the state-value function for state s under

policy π as the expectation under π of the returns, provided the state is s:

vπ(s) = E
π
[Gt |St = s] = E

π

[∑
k

γkRt+k+1

∣∣∣∣St = s

]
(24)

If, instead of being at state s at time t and following the policy π thereafter,

the agent takes action a, and only then follow π, we define another value function, the

action-state-value function qπ(s, a), which is similar to the state-value function, but also

conditioning on action a being taken at time t:

qπ(s, a) = E
π
[Gt |St = s, At = a] = E

π

[∑
k

γkRt+k+1

∣∣∣∣St = s, At = a

]
(25)

One advantage in dealing with value functions is that they satisfy recursive

relationships, such as the one proven in appendix B:

vπ(s) = E
π
[Rt+1 + γvπ(St+1) |St = s] =

∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)] (26)

This equation relates the value of state s under policy π with the values of all its possible
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successor states, s′. This represents a sum over all possibilities of the three variables,

a, s′, and r, weighted by the policy. Equation (26) is called Bellman equation, and it

represents a value transfer from all possible successor states back to state s, creating a

tree-like structure and connecting the value of the full path to the next step. It is the

basis of the class of RL algorithms called Q-learning.

4.2.4 Optimality relations

The goal of reinforcement learning algorithms is to maximize the total expected

return, which is the sum of rewards over time. Having defined value functions, we can use

them to define a partial ordering over the family of policy functions in the following way:

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′(s), ∀s ∈ S

Again, S is the set of all possible states the agent can take, assumed finite in our case.

With this finite partial ordering, there is always one policy that is better than

or equal to all other ones, which is called the optimal policy, denoted as π∗. If there is

more than one policy sharing the same optimal state-value, all of them are said to be

optimal and denoted π∗. And their value functions are:

v∗(s) = maxπvπ(s), ∀s ∈ S

q∗(s, a) = maxπqπ(s, a), ∀s ∈ S, ∀a ∈ A(s)

Note that A(s) is the set of all possible actions to be taken at state s ∈ S.

Under this (set of) policy(ies), it can be shown [10] that Bellman equation

takes a special form, called Bellman optimality equation, which does not depend on the

policy, since optimal policies are uniquely defined as having the largest state-values:

v∗(s) = maxa∈A(s)

∑
s′,r

p(s′, r|s, a)[r + γ v∗(s
′)] (27)

29



Or, in terms of the action-state-value function:

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γmaxa′q∗(s
′, a′)] (28)

Note that, since there are N possible states, we have one Bellman optimality

equation for each state - that is, a set of N nonlinear equations with N unknowns (each

of the v∗(s)). Moreover, it can be proven that, when one is dealing with a finite Markov

decision process, equation (28) has a unique solution [10].

Also note that, given v∗(s), obtaining the optimal policy is simple: for each

state s, there is one (or more) actions a leading to the maximum value v∗(s). Since only

those actions are relevant to us, we build a policy by simply assigning nonzero probability

only to them, and zero to all others. We have a similar protocol for q∗, but with one less

step, since action a is already chosen as a conditional of the value function.

Value functions are therefore important because they connect long-term be-

havior (maximization of the sum of all future rewards) to short-term. Once the optimal

policy is determined through this process, the locally optimal solution is equivalent to the

globally optimal, and one can then proceed greedily to find the most suitable path.

Despite this advantage, this method has two drawbacks: one, it requires storing

the value function (either vπ or qπ) for each possible state, and the number of states

becomes prohibitively large for complex environments. The second issue is that computing

the Bellman set of nonlinear equations is computationally expensive. One workaround for

both of these issues is to store only a few of the possible input states and to approximate

qπ with a neural network, generalizing to unseen states a prediction for the value function

coming from known states. This reduces the possibilities to only a few, also making

the computation of each step faster. This can be done through several machine learning

methods, but it is particularly well-suit for neural networks, given that this problem is

about learning a function that fits known data and generalizes to unknown data, similarly

to supervised learning on networks.
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4.3 Deep Q-learning

So far, we have learned to find the optimal policy as an exact procedure that

requires one to store the value functions for all possible states. This, as mentioned, only

works for environments with only a few possible states. When this number of states grows,

we need to find alternatives to the so-called tabular methods, avoiding the computation

of all possible values and approximating them using a neural network.

4.4 Replay memory

In order to use a neural network in a supervised learning protocol, we need to

gather data to be used as the training set. As mentioned before, a big difference between

supervised and reinforcement learning is that the latter class of methods collects data

from the environment dynamically as the agent moves around, while the former uses a

static, a-priori training dataset. In the case of deep Q-networks (DQNs), this is done by

building what is called a replay memory. For each time step t, the agent explores the

environment, collecting data. The main variables collected are:

• The current state, st

• The action at taken while at state st

• The reward rt+1 at t+ 1 coming from that action

• The new state st+1 after the action

Those variables can be stored as a tuple called the experience at time t:

et = (st, at, rt+1, st+1) (29)

The collected experiences are then stored in a replay memory of the agent. To limit the

size of this memory, we can use a threshold for the maximum number of experiences N .

This memory is then shuffled to train the network, to avoid feeding it with training data

points that are too correlated with each other, biasing the algorithm.

This memory thus provides the inputs xi of the training set for the network.

However, we still need the target outputs y(xi) for each of those inputs. To create them,
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the algorithm processes the inputs using the network itself, as explained in the next

section. For this reason, the learning part cannot be considered to be purely supervised

[10], since both output and target are generated by the network.

4.4.1 Neural network architecture

The networks used to find the approximately optimal policy on a deep Q-

learning setting take as input each state, with some method of data encoding (refer to

section 2). It then processes this input state and outputs a few possibilities of the state-

action-value function, each corresponding to one possible action.

This network has a simple feed-forward topology, and, for us to solve the

Bellman equation approximately using it, we substitute each possible state-action-value

in the RHS of equation (28). This can then be compared to the LHS by using the difference

between the two as a loss function for the network: L = q∗(s, a)− q(s, a).

To compute the optimal state-action-value function q∗(s, a) using equation

(28), we need a term which is the maximum value of q∗(s′, a′), where s′ is the next state

the agent can go to, and a′ all possible actions to be taken, to find the best possible value.

There are a few ways to do this, one of which is simply by re-running the network on a

feed-forward basis, but now, instead of using state s as input, we use its successor, s′.

With q∗ we have the “prediction” for the optimal value function, which can be

compared to the network’s output. The difference defines a loss function (or variations

of it, such as the mean squared error loss discussed in section 2). We can then apply any

gradient-descent optimization method for minimizing the loss and approximately solve

the Bellman equation for state s. Note that the solution is restricted to that state, and its

computation is done online, while the agent explores the environment. After computing

the approximate q value for state s, the method proceeds to a new state at time t+1 and

starts again. To ensure that the same state is visited several times in order to iterate and

get closer to optimality, some algorithms split the training into episodes, which improves

the learning performance. This way, after a few episodes, the DQN method manages to

find good approximations for the optimal policy without the computational cost of the

tabular method.
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5 Quantum reinforcement learning

5.1 Introduction

Finally, after having introduced classical neural networks, and variational

quantum algorithms, understanding how to solve the binary classification for the bit

string parity problem, and studying reinforcement learning using classical DQNs, we have

gathered enough tools to tackle the core problem of this project: studying the adaptation

of DQNs to using parameterized variational quantum circuits instead of classical NNs,

and trying to replicate the application of this hybrid quantum-classical scheme to solve a

canonical problem of reinforcement learning - namely, the Cart Pole problem [3]:

Figure 6: Schematic of the Cart Pole environment [1].

5.2 Classical parts

By following the work done in [1], we use the same DQN RL setting explained

in the previous section, but replace the NN with a variational quantum circuit.

In this algorithm, to compute the expected optimal value function, we replace

the second forward pass in the network using the successor state in equation (28) by a

second DQN, which receives the inputs one step delayed, to prevent the creation of a

constructive feedback loop that could lead to oscillations - thus increasing the stability

of the system [18]. The algorithm also follows an ϵ-greedy strategy, alternating between

exploration and exploitation.
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The loss function chosen in the reference article is the mean squared error

(MSE). To build it, we first construct a vector whose entries are the Q-values for each

possible action on state s. This vector, q⃗, can then be compared to another Q-vector,

which is the output of the secondary DQN when passing the successor state s′, called q⃗δ

(δ is the number of episodes that the secondary DQN is behind the main network). This

comparison is done with an MSE sweeping over all possible actions and states in a batch

of shuffled experiences B, retrieved from the replay memory:

L(q, qδ) =
1

|B|
∑
b∈B

√√√√ |A|∑
i=1

(qbi − qδbi)
2 , (30)

where |B| and |A| denote the cardinality of the batch set of experiences, and that of all

possible actions, respectively. Note that both sets are assumed to be finite in our problem.

5.3 Quantum parts

5.3.1 Circuit topology

In order to replace classical neural networks, the article proposes the following

ansatz, which is inspired by the analysis of hardware-efficient ansätze [28]. This is a layer

that gets repeated several times. It was proven [29] that the expressivity of a quantum

circuit is limited by how many times the data gets re-uploaded at the beginning of the

circuit. Hence, it is often useful to repeat this pattern a few times.

Figure 7: Schematic of the circuit ansatz used for this problem [1].
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5.3.2 Encoding states

When one is dealing with a discrete state space, the encoding can be made in

simple ways, such as mapping states to bit strings, as in the binary classifier implemen-

tation. But when the state space is continuous, as is the case in the Cart Pole problem,

which has 4 continuous variables (position, speed, pole angle, and pole linear velocity at

its tip), we need other approaches. In the strategy chosen by the authors, each input x

gets re-scaled to x′ = arctan(x), and these transformed inputs are used as angles in the

X -rotations shown in figure 7. Another step used in the article to increase expressivity is

to introduce trainable weights wi in the argument of the arctan function, as:

x′i = arctan(xi · wi) (31)

5.3.3 Network output

The circuit takes each state as an input and outputs values of q for each possible

action as a measurement of the following form [3]:

qθ(s, a) = ⟨Oa⟩s,θ , (32)

where ⟨Oa⟩s,θ are the expected values of the observables Oa, one per possible action.

One important point to recall is that VQCs are different from neural networks

in the sense that they have fixed ranges of output, determined by the chosen observable

to be measured. Because of this, the choice of observable should vary depending on the

problem, to match the range of the Q-function.

5.4 Algorithmic implementation

The quantum DQN algorithm is implemented in the original paper [1], and

one of the problems being solved is the one in the Cart Pole v0 environment, in which an

agent needs to balance a pole on a cart that is free to move horizontally in one direction

on a frictionless track. As mentioned before, the state space is continuous, with four

variables, and both cart position and pole angle have maximum and minimum values out

of which the agent loses and the episode ends.
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In the beginning, all four variables are randomly initialized, and the ϵ parame-

ter is set to 1, so the agent moves freely through the environment, in a purely exploratory

fashion, collecting experience points, et, that will be randomly batched to train the net-

work for computing an approximation to the optimal value function.

After filling the replay memory up to its capacity with random moves, the al-

gorithm starts decreasing the value of ϵ, along with the probability of random exploratory

moves. In this phase, it starts computing approximations for the Q-value functions at

each state, moving to a more exploitative phase.

Each step the agent moves, it collects positive points, which are summed along

the training. Each episode ends when either the agent lets the pole fall or it reaches the

maximum number of steps of H = 200.

The training is then repeated for a new episode, iteratively, re-vising some of

the states it has visited previously. With each new episode, the value function at each

state gets closer to the optimality condition, meaning the agent can collect more rewards

than before. The environment is said to be solved when the average score of the last 100

episodes is at least 195.

Note that, since we have the H = 200 cap in the number of steps on a given

episode, the value function, which is the expected value of the returns, becomes a finite

sum, and we can estimate lower and upper bounds for it. With these bounds, we can

re-scale the output range, from the one defined by the quantum operator to be measured

to the range of values taken by the output q⃗.

This re-scaling can be carried out by two different methods: either multiplying

the output of the VQC by a constant factor, which depends on the problem or having

flexible output weights that can be trained in the process alongside the other parameters

of the circuit. In [1], the authors choose the second one, so the output of the circuit is

given by:

q(s, a) =
wOa

2

[
⟨0⊗4|Uθ⃗(s)

†OaUθ⃗(s) |0
⊗4⟩ + 1

]
(33)

Furthermore, the measured operator, Oa, is chosen to be different when the

actions are taken to the left (OL = Z1Z2) or to the right (OR = Z3Z4), both being Pauli-Z

product operators, one acting on the qubit pair (1,2) and the other one on (3,4).
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5.4.1 Results

By running the algorithm several times using the classical optimizer Adam [30],

which is an extension of the stochastic gradient descent algorithm [19], and by making

several specific hyperparameter adjustments [1], the authors reported the following charts:

Figure 8: Graphs of average score by episode for several VQC model adjustments (a), and
also compared to classical neural networks (b) [1].

As can be seen in the left-hand side chart, the configuration that achieved

higher average scores in the least amount of episodes was the one in which the VQC

had tunable parameters both in the input and output. Also, when there was no data

re-uploading, the quality of the training oscillated more, as shown in the blue curve.

From the second chart, we see that, for the same number of parameters, the

quantum version achieved better scores in fewer episodes than a classical neural network

with 3 dense layers (having 4, 5, and 2 units, respectively, in each layer), and that it

required almost three times fewer parameters to achieve the same result as the fully

classical algorithm. Therefore, at least in this simple environment, the quantum version is

competitive with the classical NN implementation, even showing some learning advantages

over its classical counterpart.
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By following the authors’ implementation [3, 27], we ran the algorithm for the

Cart Pole environment on a personal computer, a Linux Ubuntu 20.04 bash on a Windows

machine, with Intel i5 7th gen processor, and the obtained result was the following:

Figure 9: Collected rewards (10-episode moving average for 10 consecutive runs), with
the average and standard deviation of all runs.

To generate this chart, we ran the code reported by the authors 10 times (resetting the

training each time) and took the average and standard deviation of the runs, each of them

considering a 10-episode moving average of the collected rewards.

Our results are noisier than the authors’, most likely due to averaging over

fewer runs. Even so, one can see an improvement in the learning process, gathering more

rewards in the states as the algorithm proceeds. Note that, in the available code, the cutoff

is achieved by either reaching 500 in collected rewards once or by hitting 2000 episodes

- criteria that are slightly different from the one used in the original formulation of the

game [1]. Also note that, on chart 9, after around 1000 episodes, the sample size shrinks,

and only a few of the training runs had still not achieved the 500 points. Furthermore, as

can be seen from the plot of all individual runs on appendix C, after around 1500 episodes,

only two of the runs had still not finished, and the two curves intersect around episode

1600, explaining the sudden shrinkage on the standard deviation around that region.
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6 Conclusions and perspectives

In this final section, we summarize what was covered in this text, as well as

possible future paths this project could take.

Starting from minimal initial knowledge of machine learning techniques and

quantum computing, we first studied how classical neural networks learn functions that

fit data and can also extend the results from previously unseen data [8]. This was done

under the supervised learning paradigm.

After that, we covered the idea of a quantum circuit and how we can use pa-

rameterized circuits to emulate the workings of neural networks. To get a better intuition

in this topic, we focused on understanding and recreating the implementation of a quan-

tum binary classifier using VQAs [2, 26, 9], which was used to learn the parity of an input

bit string. This is one of the simplest use cases of VQAs for supervised learning, but it

carries most of the main aspects of this class of methods, being a valuable introduction

to the topic.

After that study, we deep-dived into classical reinforcement learning [10] - in

particular, the deep Q-learning method, which optimizes the value function for each state

and action to build an optimal policy. We have also seen that tabular approaches to

this problem are usually not scalable, and studied the application of a neural network to

reduce the number of calculations necessary [18], enabling the so-called Deep Q-Learning

method to solve problems for more complex environments.

Finally, we brought all the ingredients together and studied one particular

implementation of Deep Q-Learning replacing the classical neural network with a VQC

using a hardware-efficient ansatz, and studied the authors’ results [1] with a few variations

in the method, also comparing it to classical neural networks, showing that, for the same

number of parameters, the VQC-based model outperformed the classical one in terms of

how fast it was able to train the agent. By running their implementation of the method,

available at [3], we generated a curve that was noisier, likely due to fewer averages over

different runs, but that clearly showed the evolution in the training process over the

episodes.
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As for possible ramifications of this work, there are a few points that could

not be covered in depth, and which may be important knowledge to better understanding

quantum machine learning algorithms. A few of them we can quote are:

• Better understanding how ansätze and data encoding techniques affect the expres-

sivity and learning of quantum machine learning techniques based on VQAs [29].

• Studying a few articles on hyperparameter tuning, to understand how they affect

the quality of learning. This includes both classical and quantum machine learning

[31, 32].

• In the quantum DQN problem, better understanding the choice of operators being

made to match the output range to the problem at hand (for instance, in the Cart

Pole solution described, there were different operators for left and right movements

of the agent [1])

• Understanding other quantum reinforcement learning techniques for finding optimal

policies [33]

• Studying implementations of reinforcement learning methods in real-world applica-

tions in which, for example, the agent collects data from image sensors, and the

networks used are Convolutional Neural Networks (CNNs) [34]

These are only a few possible paths to take from this point onwards in this

rich and active field which is quantum machine learning (and, in particular, quantum

reinforcement learning), with promising applications in the near future in several fields of

science and engineering.
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Appendix A Reed-Muller expansion

Consider a Boolean function f : {0, 1}N −→ {0, 1}, which takes as input a bit

string x1x2 . . . xN . Since there are 2 options for each entry string, there are 2N input

possibilities. Furthermore, for each of those possibilities, there are 2 output options, 0 or

1. Thus there are 22
N such functions.

It is known [35] that all Boolean functions can be fully defined by writing down

explicitly their truth tables, which is the same as listing all the individual correspondences

between elements of domain and image. But there are ways to represent a Boolean

function that do not rely on the truth table, and one of the simplest ones is the Reed-

Muller expansion. To understand this expansion, first, let us define:

fxi
(x⃗) = f(x1, x2, . . . , xi−1, 1, xi+1, . . . , xn) (34)

fx̄i
(x⃗) = f(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn) (35)

which are called the Shannon cofactors of f with respect to xi. These are the only values

the function can take with respect to its i-th entry. Further, we define the Boolean

difference:

dfxi
=
∂f

∂xi
:= fxi

⊕ fx̄i
, (36)

which is equal to one if, by changing variable xi, the function changes its value, and it is

equal to zero otherwise.

With these definitions, we state the first-order Reed-Muller expansion for f:

f = fx̄i
⊕ xi

∂f

∂xi
(37)

This equation can be verified by splitting it into two possible cases:

• If f does not change when varying xi, then fxi
= fx̄i

, and the XOR operation in the

definition of the Boolean difference returns zero, so f = fxi

• Now, consider f flips its value when varying xi. Then the Boolean difference is equal

to 1, so that f = fx̄i
⊕xi, and then we have two possible cases: xi = 0 =⇒ fx̄i

= f
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or xi = 1 =⇒ fx̄i
= f̄ =⇒ f = fx̄i

⊕ 1

The Reed-Muller formula can be further expanded to the other variables xj,

until reaching an expansion with constant coefficients. In this expansion, f can be written

as the full form of the Reed-Muller expansion [35]:

f(x⃗) = a0 ⊕ (a1x1 ⊕ a2x2 ⊕ . . .⊕ aNxN)⊕ (a12x1x2 ⊕ a13x1x3 ⊕ . . .⊕ aNNxNxN−1)⊕

⊕ . . .⊕ a123...Nx1x2 . . . xN
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Appendix B Bellman equation

In this section we prove Bellman recursive equation following [36].

The definition of the state-value function under policy π is:

vπ(s) = E
π
[Gt|St = s] , (38)

which, by the definition of the return Gt given in equation (22), together with the linearity

of the expectation operator give:

vπ(s) = E
π
[Rt+1 + γGt+1|St = s] = E

π
[Rt+1|St = s] + γ E

π
[Gt+1|St = s] (39)

The first term of the right-hand side of the equation can be written as:

E
π
[Rt+1|St = s] =

∑
r∈R

rp(r|s) (40)

Here p(r|s) is the probability of receiving reward r given that the agent is at state s at

time t. This is equivalent to the union of all possible actions a being taken at time t, and

all possible states s′ at t+ 1 deriving from that action, that is:

p(r|s) =
∑
s′∈S

∑
a∈A(s′)

p(s′, a, r|s) , (41)

and, using the multiplication rule, considering the definition of policy π: π(a|s) = p(a|s),

we have:

p(r|s) =
∑
s′∈S

∑
a∈A(s′)

π(a|s)p(s′, r|a, s)

Therefore, by joining all pieces together, the first term at the RHS of equation (39)

becomes:

E
π
[Rt+1|St = s] =

∑
r∈R

∑
s′∈S

∑
a∈A(s′)

rπ(a|s)p(s′, r|a, s) (42)

Now, let us also expand the second term at the RHS of (39):

E
π
[Gt+1|St = s] =

∑
g∈G

gp(g|s) , (43)
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where it is assumed that the return Gt+1 is a random variable that can take on a finite

number of values g ∈ G.

Similarly to equation (41), the probability distribution p(g|s) sweeps over all

possible states s′ at time t+1, all possible actions a leading to those states, but now also

sweeping over the possible returns r:

p(g|s) =
∑
r∈R

∑
s′∈S

∑
a∈A(s′)

p(s′, r, a, g|s) , (44)

and, applying the multiplication (marginalization) rule twice, with the definition of the

policy π:
p(g|s) =

∑
r∈R

∑
s′∈S

∑
a∈A(s′)

p(g|s′, r, a, s)p(s′, r, a|s)

=
∑
r∈R

∑
s′∈S

∑
a∈A(s′)

p(g|s′, r, a, s)p(s′, r|a, s)π(a|s)
(45)

Now, let us assume that we are in a Markovian system, which means that only

the action at time t and state at t+ 1 can influence variables at t+ 1, so the conditional

probability term of equation (45) simplifies to:

p(g|s) =
∑
r∈R

∑
s′∈S

∑
a∈A(s′)

p(g|s′)p(s′, r|a, s)π(a|s) (46)

Joining the pieces together for the second term at the RHS of equation (39):

E
π
[Gt+1|St = s] =

∑
r∈R

∑
s′∈S

∑
a∈A(s′)

[∑
g∈G

gp(g|s′)

]
p(s′, r|a, s)π(a|s)

=
∑
r∈R

∑
s′∈S

∑
a∈A(s′)

E
π
[Gt+1|St+1 = s′] p(s′, r|a, s)π(a|s) ,

(47)

and, finally, using the definition of vπ, we get:

γ E
π
[Gt+1|St = s] = γ

∑
r∈R

∑
s′∈S

∑
a∈A(s′)

vπ(s
′)p(s′, r|a, s)π(a|s) (48)

Finally, joining both terms (eqs (42) and (48)) in the original equation ((39)),
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we complete the proof of Bellman equation:

vπ(s) = E
π
[Rt+1|St = s] =

∑
r∈R

∑
s′∈S

∑
a∈A(s′)

rπ(a|s)p(s′, r|a, s)

+ γ
∑
r∈R

∑
s′∈S

∑
a∈A(s′)

vπ(s
′)p(s′, r|a, s)π(a|s)

vπ(s) =
∑

a∈A(s′)

π(a|s)
∑
r∈R

∑
s′∈S

p(s′, r|a, s)[r + γvπ(s
′)] (49)
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Appendix C Implementation results and tables

In this section, we provide tables and additional charts of sections 3 and 5.

C.1 Section 3: VQC implementation of the parity classifier

Table 1: Cost function, accuracy and iterations of the VQA of section 3.
Iteration Cost Accuracy

1 3.4355534 50%
2 1.9717733 50%
3 1.8182812 50%
4 1.5042404 50%
5 1.1477739 50%
6 1.273499 62.5%
7 0.8290628 50%
8 0.3226183 100%
9 0.1436206 100%
10 0.298281 100%
11 0.3064355 100%
12 0.1682335 100%
13 0.0892512 100%
14 0.0381562 100%
15 0.0170359 100%
16 0.0109353 100%
17 0.0108388 100%
18 0.0139196 100%
19 0.012398 100%
20 0.0085416 100%
21 0.0053549 100%
22 0.0065759 100%
23 0.0024883 100%
24 0.0029102 100%
25 0.0023471 100%
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C.2 Section 5: Quantum DQN implementation

Next, we show the chart containing all individual runs whose collective be-

havior is displayed on image 9, a result that we generated by running 10 times the code

reported by the authors [3, 27]:

Figure 10: Collected rewards (10-episode moving average) for each of the 10 individual
runs.

The table containing the values associated with these curves can be found in the “data”

folder of the GitHub of this project [27].
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