Previsão de Casos de COVID19 Usando o Modelo SEIRD e Técnicas de Aprendizado de Máquina

Campinas
21/08/2020
Previsão de Casos de COVID19 Usando o Modelo SEIRD e Técnicas de Aprendizado de Máquina

Monografia apresentada ao Instituto de Matemática, Estatística e Computação Científica da Universidade Estadual de Campinas como parte dos requisitos para obtenção de créditos na disciplina Projeto Supervisionado, sob a orientação do(a) Prof. Marcos Eduardo Ribeiro do Valle Mesquita.
Resumo

Este trabalho apresenta uma introdução a modelos epidemiológicos com ênfase na modelagem da COVID 19. Especificamente, o modelo suscetível, infectantes e recuperados (SIR) é enriquecido com mais dois compartimentos: um contabilizando o período de incubação da doença e outro correspondendo as mortes. Diversos parâmetros são adicionados e obtidos por heurísticas. O número básico de reprodução é considerado como variante ao logo do tempo e ajustado usando o método dos mínimos quadrados. Também é posta uma abordagem para avaliação da efetividade de medidas de intervenção. Por fim, é feita a previsão do número de óbitos para a cidade de São Paulo, Brasil.
Abstract

This work presents an introduction to epidemiological models emphasizing modeling the COVID 19 disease. Precisely, the susceptible, infectious, or recovered (SIR) model is enriched by adding two compartments: one that accounts for the incubation period of the disease and another concerning the deaths. Parameters are also added and obtained through heuristics. The basic number of reproduction is considered to be variant along time and is fitted using the minimal squares method. It is also proposed an approach to evaluate the effectiveness of intervention measures. At last, the number of deaths was predicted for the city of São Paulo, Brazil.
Conteúdo

1 Introdução 6

2 Modelagem 6
   2.1 Modelo SIR ................................................................. 6
   2.2 Modelo SEIR ............................................................... 8
   2.3 Modelo SEIRD ............................................................. 10

3 Obtenção dos parâmetros 11

4 Comparação Entre os Modelos 12

5 Metodologia para Análise das Medidas Sanitárias 12
   5.1 O Plano São Paulo ....................................................... 14

6 Ajuste do Número de Reprodução 14

7 Discussão 19

8 Conclusão 19
1 Introdução


No dia 30 de janeiro de 2020 a Organização Mundial da Saúde (World Health Organization, 2020a) reconheceu estado de emergência internacional e em 11 de março de 2020 foi declarada a pandemia com mais de 125,000 casos confirmados.

Em 02 de abril de 2020, mais de um milhão de casos haviam sido reportados como positivos e mais de 50,000 pessoas haviam morrido da doença (News, 2020).

Governos do mundo todo tomaram diversas decisões para conter o avanço da pandemia, como por exemplo isolamento de cidades, imposição de quarentenas, fechamento de fronteiras, etc.

Este trabalho tem o objetivo estudar a progressão da doença em diversos cenários, os modelos necessários para tal e, por consequência, a efetividade das medidas de contenção tomadas ao redor do mundo.

2 Modelagem

2.1 Modelo SIR

Doenças infecciosas podem ser classificadas em duas categorias, as causadas por microparasitas (vírus e bactérias) e por macroparasitas (vermes). A COVID-19 é causada por um microparasita, o coronavírus. Doenças causadas por esse tipo de agente são transmitidas quando há contato entre um hospedeiro carregando o agente e um indivíduo suscetível.

De forma simples, poderíamos usar um modelo populacional de presa-predador, como o Lotka-Volterra, para descrevermos a infecção. Teríamos a população viral como predador e indivíduos suscetíveis como presa. Porém, a população viral não nos interessa, uma vez que a carga viral que um indivíduo infectado carrega não influencia em quantos outros irá infectar. Além disso, esse tipo de modelo supõe que o vírus circula livremente pelo ambiente, o que não é verdade, já que ele está atrelado ao hospedeiro⁴.

⁴ Após ser liberado pelo hospedeiro, o vírus pode permanecer em algumas superfícies por um certo tempo que
Figura 1: (a) Modelo SIR, transição de suscetíveis para infectantes e destes para removidos. (b) Modelo SIRS, os removidos podem transicionar para suscetíveis.

Podemos dividir a população hospedeira em três grupos: **Suscetíveis** (S), **Infectantes** (I) e **Recoverados** (ou **Removidos**) (R). Os infectantes são aqueles que possuem a doença e carregam consigo o vírus, os suscetíveis são aqueles que ainda estão saudáveis porém não possuem imunidade à doença e os recuperados são aqueles que já contraíram a doença ou por algum motivo possuem imunidade. Além disso, os recuperados podem também ser indivíduos postos em isolamento ou que morreram, por isso, são também referidos como removidos. Em doenças que há reinfeção, podemos acrescentar aos recuperados aqueles que possuem imunidade temporária.

Partindo dessa divisão, Kermack and McKendrick apresentaram o seguinte modelo compartimental, conhecido como modelo SIR (Edelstein-Keshet, 2006; Murray, 2002). A Figura 1(a) ilustra a transição entre os grupos. Por exemplo, indivíduos suscetíveis são convertidos para infectantes, ou seja, são contaminados com a doença de acordo com uma constante $\beta$, e transitam para o grupo de recuperados de acordo com uma constante $\nu$.

Já a Figura 1(b) ilustra o modelo SIRS, que considera reinfeções, causadas de acordo com uma constante $\gamma$.

Se assumirmos que a taxa de transmissão da doença é proporcional à quantidade de encontros entre suscetíveis e infectantes e que a efetividade da transmissão depende da constante depende do material e do vírus (Kampf et al., 2020).
Figura 2: Modelo SEIR

β, podemos escrever as equações do modelo SIRS como:

\[
\frac{dS}{dt} = -\beta IS + \gamma R, \\
\frac{dI}{dt} = \beta IS - \nu I, \\
\frac{dR}{dt} = \nu I - \gamma R.
\]

(1) \hspace{1cm} (2) \hspace{1cm} (3)

Note que o modelo SIR é um caso particular do SIRS, obtido considerando \( \gamma = 0 \), ou seja, sem taxa de reinfeccão.

A razão \( \beta/\nu \) tem uma interpretação interessante, \( \nu \) é a taxa de remoção da classe infectante, portanto é dada em unidade de \( 1/\text{tempo} \). Logo o tempo médio de infecção é dado por \( 1/\nu \) e \( \beta/\nu \) indica a fração da população que entra em contato com a doença.

Seja \( N = S + I + R \) a população total, podemos definir \( R_0 = N\beta/\nu \), o número de contato infeccioso. O valor \( R_0 \) representa a média de infecções secundárias causadas ao ser introduzido um indivíduo infeccioso em uma população com \( N \) suscetíveis. Portanto, se \( R_0 > 1 \) a doença será mantida na população, caso contrário, a doença tende a ser erradicada.

2.2 Modelo SEIR

A maioria das doenças infecciosas não afetam imediatamente o indivíduo exposto a elas, é necessário um tempo de ativação até que o infectado comece a ter sintomas ou a propagar a doença.

Fazendo uma extensão natural do modelo SIR, o SEIR adiciona uma compartimento referido como **Expostos** (E). Esse compartimento contém os indivíduos que foram infectados mas não apresentam sintomas ou não infectam outros indivíduos pois o vírus ainda está em seu período de incubação. No modelo SEIR, indivíduos **Suscetíveis** (S) são convertidos para **Expostos** (E) e estes após certo tempo são convertidos para **Infectados** (I).
O sistema de equações que descreve o modelo é o seguinte:

\[
\frac{dS}{dt} = (1 - S)\mu - \frac{\beta IS}{N},
\]

\[
\frac{dE}{dt} = \frac{\beta IS}{N} - (\sigma + \mu)E,
\]

\[
\frac{dI}{dt} = \sigma E - (\gamma + \mu)I,
\]

\[
\frac{dR}{dt} = \gamma I - \mu R,
\]

em que \( \mu \) indica taxa de nascimento da população. O \( \sigma \) está relacionado com o período de incubação do vírus. Já o \( \gamma \) está relacionado com o tempo em que um indivíduo permanece doente. O parâmetro \( \beta \) indica a taxa de conversão pela qual indivíduos suscetíveis tornam-se expostos. Em termos gerais, o parâmetro \( \beta \) é governado por outros dois parâmetros: \( p \) que indica a probabilidade um indivíduo infectar o outro caso haja contato entre os dois e \( n \), que é uma média de encontros dos indivíduos por dia. Portanto, tem-se

\[
\beta = pn.
\]

É interessante notar que a probabilidade de infecção pode ser afetada pelo uso de máscaras, higienização correta das mãos, etc. Já o número médio de contatos interpessoais pode ser impactado pelo distanciamento social, ou no caso prejudicial, por aglomerações.

Por fim, cabe destacar que neste modelo a taxa de nascimento é considerada igual a de mortalidade.

Assim como no modelo SIR, o SEIR também possui a medida \( R_0 \), que no caso é dada por:

\[
R_0 = \frac{\sigma}{\sigma + \mu} \frac{\beta}{\gamma + \mu}.
\]

Todos os parâmetros citados acima, menos os que compõem o \( \beta \), são fixos. Portanto, para que se tenha noção de diferentes cenários, é preciso explorar diversos valores de \( p \) e \( n \). E, para fazer previsões acuradas, queremos boas estimativas para eles.

Como queremos \( R_0 < 1 \) para que a doença seja erradicada, temos \( \mu \approx 0 \), então precisamos que \( \beta < \gamma \).
2.3 Modelo SEIRD

Quando uma doença provoca uma quantidade significativa de óbitos, é importante que estes também sejam avaliados e incorporados ao modelo.

Fizemos então uma extensão do SEIR, com algumas mudanças. Não consideramos as taxas de mortalidade geral e natatalidade. Adicionamos a variável $D$, que indica o número de mortos, e adicionamos outros três parâmetros: $\alpha$ que indica a taxa de internação dos infectados, $\lambda$ que indica o tempo de permanência médio de um indivíduo no hospital, e $\xi$ que indica a taxa de mortalidade de pacientes hospitalizados.

Dessa forma, temos as seguintes equações:

$$\frac{dS}{dt} = -\frac{\beta IS}{N},$$  \hspace{1cm} (10)
$$\frac{dE}{dt} = \frac{\beta IS}{N} - \sigma E,$$  \hspace{1cm} (11)
$$\frac{dI}{dt} = \sigma E - (1 - \alpha)\gamma I - \alpha \lambda I,$$  \hspace{1cm} (12)
$$\frac{dR}{dt} = (1 - \alpha)\gamma I + \alpha (1 - \xi)\lambda I,$$  \hspace{1cm} (13)
$$\frac{dD}{dt} = \alpha \xi \lambda I.$$  \hspace{1cm} (14)

Tal como nos modelos anteriores, tem-se

$$N = S + E + I + R,$$  \hspace{1cm} (15)

Somando (10)-(14), encontramos

$$\frac{dN}{dt} = 0$$  \hspace{1cm} (16)
A medida $R_0$ aqui é dada por:

$$R_0 = \frac{\beta}{\gamma}. \quad (17)$$

Logo, para que a doença seja erradicada, precisamos ainda que $\beta < \gamma$.

### 3 Obtenção dos parâmetros

Em fevereiro de 2020 a Organização Mundial da Saúde (OMS) enviou uma missão para Wuhan, até então epicentro da doença. Foi então publicado um relatório (World Health Organization, 2020b) com diversas informações sobre demografia, período de incubação, etc. Daí podemos extrair que a média do período de incubação (relacionado com $\sigma$) está entre 5-6 dias. Já de acordo com Li et al. (2020) essa média é de 5,2 dias.

Se assumirmos que o período de incubação pode ser aproximado por uma distribuição exponencial com média $\sigma$, isto é, $T_{inc} \approx Exp(\sigma)$, então $\sigma = \frac{1}{T_{inc}} \approx 0,192$

A taxa de hospitalização ($\alpha$) reportada pela OMS é de 20% (World Health Organization, 2020b). Consideramos que todos os casos severos e críticos devem ser hospitalizados. Já de acordo com Docherty et al. (2020) a taxa de mortalidade de pacientes hospitalizados ($\xi$) está por volta de 30%.

Segundo Rees et al. (2020) os pacientes internados ficam cerca de 5-8 dias nos hospitais. Para obter $\lambda$, assim como com o tempo de incubação, supomos que o período de permanência nos hospitais pode ser aproximado por uma distribuição exponencial, ou seja, $T_h \approx Exp(\lambda)$. Escolhemos $T_h = 7$, portanto $\lambda = \frac{1}{T_h} \approx 0,143$

Para $\gamma$ seguimos a metodologia proposta por Wu et al. (2020). Dessa forma obtivemos que um indivíduo permanece infectante por cerca de 3,2 dias. Portanto novamente assumimos que esse período pode ser aproximado por uma distribuição exponencial tal que $T_i = Exp(\gamma)$. Logo, $\gamma = \frac{1}{3,2} \approx 0,313$.

Já $\beta$ foi o parâmetro que variamos em nossas simulações e obtivemos seus diversos valores baseado em valores reportados de $R_0$. 

11
### Parâmetro | Valor
--- | ---
σ | 0,192
α | 0,2
ξ | 0,3
λ | 0,143
γ | 0,313

Tabela 1: Valores obtidos dos parâmetros.

## 4 Comparação Entre os Modelos

A principal diferença entre os modelos está no número de compartimentos. Nosso modelo possui dois compartimentos a mais do que o SIR, que é o modelo que tomamos como base. Com efeito, temos o compartimento $E$ referente ao grupo de indivíduos expostos e o compartimento $D$ referente ao grupo de indivíduos que faleceram devido a doença.

Ao adicionarmos o compartimento dos indivíduos expostos, estamos levando em conta que a doença possui um período de incubação, ou seja, existe uma fase de transição entre o estado suscetível (indivíduos saudáveis) e o estado infectado, que é o estado que consideramos que haja propagação efetiva da doença. Portanto, a propagação da doença nesse modelo é mais lenta do que no SIR, como ilustrado nas Figuras 4 e 5. Também é possível notar que, sob as mesmas condições, o pico da doença no modelo SIR ocorre com uma porcentagem maior da população infectada simultaneamente.

Já a categoria dos mortos nos dá uma noção quantitativa da severidade da doença. Neste compartimento utilizamos parâmetros relacionados a taxa de hospitalização e a mortalidade de pacientes hospitalizados. Também usamos essa categoria para regular o $R_0$ do modelo, uma vez que a subnoticação de óbitos é significativamente menor do que a de casos confirmados.

## 5 Metodologia para Análise das Medidas Sanitárias

As medidas sanitárias afetam diretamente o parâmetro $R_0$, ou seja, a capacidade de propagação da doença.

O uso de máscaras e o distanciamento social influenciam o $R_0$ através dos parâmetros

---

1Poderíamos considerar que indivíduos passando pelo período de incubação também propagam a doença, porém precisaríamos de um novo parâmetro que seria a constante de proporcionalidade referente a taxa de conversão entre indivíduos suscetíveis e expostos.

2Por simplicidade, não consideramos eventual colapso do sistema hospitalar.
Figura 4: Simulação do modelo SIR com \( p = 5\% \), \( n = 16 \), \( \nu = 0,313 \) e \( R_0 = 2,56 \).

Figura 5: Simulação do modelo SEIRD com \( p = 5\% \), \( n = 16 \) e \( R_0 = 2,56 \).

\( p \) e \( n \), ou seja, a probabilidade de infecção e a interação entre os indivíduos. De acordo com Aydin et al. (2020), a Covid-19 pode ser espalhada por meio de gotículas, partículas aéreas e aerossóis emitidos por pessoas tossindo, espirrando e até falando. Esse estudo e outros citados por Disease Control and USA (2020 (accessed August, 2020) comprovam a eficácia do uso de máscaras na redução da transmissibilidade da doença.

Segundo Feng et al. (2020), o distanciamento social é eficaz, porém a distância necessária varia conforme condições ambientais como intensidade e direção de ventos, umidade relativa do ar e também com o uso de máscaras.

Já o isolamento social impacta o \( R_0 \) por intermédio do parâmetro \( n \), ou seja, na média de contatos entre os indivíduos.

Portanto, iremos assumir \( \beta = \beta(t) = \rho(t)\eta(t) \), onde \( \rho(t) = \delta(t)p \) e \( \eta(t) = \tau(t)n \), sendo \( \delta(t) \) um parâmetro que indica a deformação do \( p \) ao longo do tempo e \( \tau(t) \) um que indica
a deforcação do $n$ ao longo do tempo.

A estimativa desses parâmetros separadamente é uma tarefa difícil, porém podemos estimar $\beta(t)$ direto e daí calcular $R_t$ dependente do tempo em vez de $R_0$. Com isso podemos avaliar as medidas sanitárias já adotadas e também prevermos os casos futuros.

Ainda, para avaliarmos a eficiência de uma política pública como medida sanitária, iremos considerar:

$$\beta = \beta_0 \prod_{i \in N} \beta_i^{p_i}, \quad p_i \in \{0, 1\}; \quad (18)$$

em que $\beta_0$ indica a taxa de infeção natural da doença e $\beta_i$ a contribuição da $i$-ésima política a ser avaliada. Com o valor da potência $p_i$ podemos escolher ativar ou não a contribuição de uma medida.

### 5.1 O Plano São Paulo


A classificação dos níveis de abertura depende de fatores como a taxa de ocupação de leitos de UTIs, números de novas internações, óbitos, etc. Essa classificação é feita semanalmente e uma região pode passar de uma escala mais relaxada para uma mais restritiva e vice-versa.

Da forma que definimos o parâmetro $\beta$, podemos ter a intuição do impacto de cada decisão. Por exemplo, uma fase que permita o funcionamento dos estabelecimentos com maior capacidade e em mais horas fará com que o $n$ aumente, bem como o $\beta$. Portanto, basta avaliar a intensidade em que o parâmetro $\beta$ é, ou foi, perturbado por cada medida.

### 6 Ajuste do Número de Reprodução

Todos os dias o Ministério da Saúde divulga os dados da pandemia e disponibiliza uma planilha contendo estes, tornando fácil o acesso a informações sobre a Covid-19 ([da Saúde].
Figura 6: Mapa da classificação das regiões do Estado de São Paulo conforme o plano São Paulo na semana do dia 07/08. Fonte: [https://www.saopaulo.sp.gov.br/planosp/](https://www.saopaulo.sp.gov.br/planosp/)

2020b). Nesta planilha é possível checar a situação de cada estado e de cada município.

Os dados são coletados pelas secretarias estaduais de saúde e curados pelo ministério. Essas secretarias trabalham em regime reduzido aos fins de semana, portanto estas datas sofrem com subnotificação que é compensada ao longo da semana. Este é o primeiro problema que deve ser contornado, esta variação afeta o valor diário do parâmetro $\beta$.

O segundo problema que é encontrado está relacionado com a quantidade de testes realizados. A maioria dos indivíduos testados apresentou algum sintoma e procurou assistência médica. Como discutido na Seção 4, a taxa de hospitalização é cerca de 20%. Portanto, muitos casos deixam de ser reportados. Porém todos os óbitos suspeitos são testados, logo é mais interessante regular o modelo de acordo com o número de óbitos, pois estes apresentam menor grau de sub-notificação.

O terceiro problema provém da velocidade com que os resultados dos testes são obtidos. As entradas no sistema do Ministério da Saúde correspondem ao dia em que o resultado do exame foi divulgado e não efetivamente ao dia que algum indivíduo supostamente começou a apresentar os sintomas da doença. Portanto há um fator de atraso entre as previsões do modelo e a realidade.

Para contornar esses problemas, foi decidido ajustar o modelo ao número de óbitos acumulados.$\S$

$\S$O código usado nesta seção pode ser acessado em [https://github.com/DarthFelpa/ms777/](https://github.com/DarthFelpa/ms777/)
Figura 7: Número de casos diários na cidade de São Paulo conforme divulgado pelo Ministério da Saúde. Em vermelho a média móvel a cada 7 dias.

Para fazer o ajuste consideramos $R_0 = R_0(t)$ como a função logística:

$$R_0(t) = \frac{R_{0s} - R_{0e}}{1 + e^{-k(−t+t_0)}} + R_{0e},$$

(19)

onde $R_{0s}$ indica o valor inicial do $R_0$, $R_{0e}$ seu valor final, $k$ e $t_0$ parâmetros a serem ajustados. O ajuste foi feito usando o método dos mínimos quadrados com as condições iniciais do modelo indicadas na Tabela 2. Os parâmetros obtidos encontram-se na Tabela 3.

Figura 8: Óbitos acumulados na cidade de São Paulo conforme divulgado pelo Ministério da Saúde.
<table>
<thead>
<tr>
<th>Compartimento</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N$</td>
<td>$12e6$</td>
</tr>
<tr>
<td>$S$</td>
<td>$N-1$</td>
</tr>
<tr>
<td>$E$</td>
<td>1</td>
</tr>
<tr>
<td>$I$</td>
<td>0</td>
</tr>
<tr>
<td>$R$</td>
<td>0</td>
</tr>
<tr>
<td>$D$</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabela 2: Condições iniciais do modelo, $N = 12e6$ indica a população do município de São Paulo.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Melhor Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{0s}$</td>
<td>6,0</td>
</tr>
<tr>
<td>$k$</td>
<td>5,0</td>
</tr>
<tr>
<td>$t_0$</td>
<td>29,7</td>
</tr>
<tr>
<td>$R_{0e}$</td>
<td>0,85</td>
</tr>
</tbody>
</table>

Tabela 3: Melhores valores obtidos para os parâmetros com as condições iniciais da Tabela 2.

<table>
<thead>
<tr>
<th>Data</th>
<th>Dado Real</th>
<th>Dado do Modelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/08/2020</td>
<td>10311</td>
<td>10295</td>
</tr>
<tr>
<td>13/08/2020</td>
<td>10453</td>
<td>10353</td>
</tr>
<tr>
<td>14/08/2020</td>
<td>10563</td>
<td>10412</td>
</tr>
<tr>
<td>15/08/2020</td>
<td>10592</td>
<td>10469</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>Data</th>
<th>Óbitos Previstos</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/08/2020</td>
<td>10583</td>
</tr>
<tr>
<td>18/08/2020</td>
<td>10640</td>
</tr>
<tr>
<td>19/08/2020</td>
<td>10695</td>
</tr>
<tr>
<td>20/08/2020</td>
<td>10750</td>
</tr>
<tr>
<td>21/08/2020</td>
<td>10805</td>
</tr>
</tbody>
</table>

Tabela 5: Número de óbitos acumulados, no município de São Paulo, previstos pelo modelo para cinco dias além dos dados de treino.
Figura 9: Modelo ajustado. Em vermelho o número de óbitos acumulados no município de São Paulo, em azul o número previsto pelo modelo.

Figura 10: Valor de $R_0(t)$ ao longo do tempo.
7 Discussão

Primeiramente, o valor do $R_0$ como observado na figura 10 começa muito alto e sofre uma queda brusca. Portanto, é notável que ele não reflete o valor real. É possível que ele tenha apresentado esse comportamento por causa das condições iniciais.

Por exemplo, foram considerados como suscetíveis todos os moradores do município de São Paulo, e fora introduzido apenas um indivíduo infectado. Na realidade não é assim, como a cidade é uma metrópole, pessoas de diversas cidades circulam por lá diariamente. Além disso, não houve controle da entrada de pessoas no país, portanto um único vôo provindo de algum epicentro pode ter trazido mais de um indivíduo infectado para a cidade. Logo, a divergência nos primeiros dias que pode ser observada na figura 9.

Por outro lado, o modelo se baseia em condições de teste perfeitas, i.e., com resultados instantâneos e todos os indivíduos infectados sendo identificados. Como mencionado na seção 6, isto não é possível. Portanto, vai haver de fato certo atraso por parte das predições do modelo.

Outro fator que pode afetar a capacidade de generalização do modelo está relacionado com as heurísticas que foram usadas para estimar os parâmetros que deixamos fixos. As distribuições usadas, os tempos médios escolhidos, etc. Por exemplo, conforme a doença vai progredindo diversos tratamentos são testados, estes afetam a letalidade da doença que mantivemos fixa.

Por fim, a COVID19 afeta diferentemente cada faixa etária e classe social. Indivíduos que dependem de transporte público e não podem trabalhar de casa estão mais vulneráveis ao vírus. E a taxa de letalidade em pessoas mais novas é menor. Um modelo mais complexo que leva em conta essas distinções pode ser capaz de generalizar melhor.

8 Conclusão

Embora o modelo faça muitas simplificações ainda é capaz de generalizar bem a progressão da doença, e com isso gerar diferentes cenários para que a efetividade das medidas de intervenção seja avaliada.

Para que a progressão da doença seja acompanhada é necessário testar a população
com frequência e reportar adequadamente os dados. Subnotificação é um dos maiores problemas dessa pandemia.

Uso de máscaras e isolamento se provam ações efetivas, porém não suficientes, para conter o avanço da doença.
Referências


