
UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE MATEMÁTICA, ESTAT́ISTICA E COMPUTAÇÃO CIENT́IFICA

DEPARTAMENTO DE MATEMÁTICA APLICADA

Igor Cardoso Rosica

Representation Learning: A starting point for probabilistic
models.

Campinas
21/08/2020

Igor Cardoso Rosica

Representation Learning: A starting point for probabilistic
models.∗

Monografia apresentada ao Instituto de Matemática,
Estat́ıstica e Computação Cient́ıfica da Universidade
Estadual de Campinas como parte dos requisitos para
obtenção de créditos na disciplina Projeto Supervi-
sionado, sob a orientação do(a) Prof. Ad́ın Raḿırez
Rivera.

∗Este trabalho foi financiado pelo Governo do Estado de São Paulo, Brasil.

Abstract

Looking forward to be an introductory text to probabilistic models in Repre-

sentation Learning, this work has two main related purposes. The first one is to contribute

with the undergraduate community of students that are looking for a first contact with

the theme, while the second is regarded to the intention of the author to approach this

universe. For that, we bring here an expository work, followed sometimes of informal

language, about topics that are, in many cases, strongly related with our main theme.

Between these topics are some of the main problematics within the machine learning

field, what are Boltzmann machines and how they relate with the representation learning

paradigm, the characterization of some standard probabilistic models, graphical models

and how to deal with intractable distributions. By the end of the work we present some

conclusion and motivations obtained during the process of writing.

3

Resumo

Em busca de ser um texto introdutório ao assunto de modelos probabiĺısticos

em Aprendizado de Representações este trabalho possui dois propósitos principais rela-

cionados. O primeiro é contrubuir com a comunidade de alunos de graduação que buscam

um primeiro contato com o assunto, enquanto o segundo é resumido pela intenção do autor

de se aproximar deste universo. Para isso, trazemos aqui um trabalho expositivo seguido

de explicações descontráıdas sobre tópicos que estão, em algumas vezes, fortemente rela-

cionados ao nosso tema principal. Entre estes tópicos abordados estão algumas das prin-

cipais problemáticas envolvidas no contexto de Machine Learning, o que são maquinas de

Boltzmann e como elas se relacionam com a história do campo de Representation Learn-

ing, a caracterização de alguns modelos probabiĺıscos convencionais e bayesianos, modelos

gráficos e como lidar com distribuições intratáveis utilizando inferência variacional. Ao fi-

nal apresentamos uma discussão sobre conclusões e motivações obtidas durante o processo

de escrita.

4

Contents

1 Introduction 6

1.1 But how this really works? . 6

1.2 The problems of dimensionality and number of variations 7

1.3 Distributed representations and multi-clustering 8

1.4 How do we approach the R.L. field? . 8

2 Single-Layer, Depth and the Underlying Structure of an Environment 9

2.1 Standard Feedforward Network and SGD 9

2.2 One step back . 12

2.2.1 Boltzmann Machines . 12

2.2.2 Belief Nets . 15

2.2.3 Greedy Layer-Wise Learning . 16

2.3 Depth . 17

3 Probabilistic Approach 18

3.1 What is a Bayesian Approach? . 18

3.2 Graphical Models . 20

3.2.1 Directed Graphical Models . 21

3.2.2 Undirected Graphical Models . 22

3.3 Dealing with Intractable Posteriors . 25

3.3.1 Variational Inference and the Mean Field Method 25

4 Conclusions and Motivations 27

5

1 Introduction

Machine learning techniques became a common tool between the data scien-

tists. Because of its large spectrum of applications on industry this theme has taken a lot

of space in the media. On the other side, we can see that the modern Artificial Intelligence

subject and its derivatives is a quite old fashioned content in the tech industry and also

in the academic environment, furthermore in this context both are strongly connected.

From this point of view we can see that: “The performance of machine learning methods

is heavily dependent on the choice of data representation (or features) on which they are

applied”, [Bengio et al., 2013]. In a simple manner, the Representation Learning field

is the study of how to learn representations that compress the information of a generic

data set, in a way of optimizing a given task. During the past decades the concepts

within Representation Learning (R.L.) field are strongly connected with the ascension of

Deep Architectures, as we will see in Section 2, and these ideas have been widely used to

successfully improve many areas of machine learning, including speech recognition, signal

processing, computer vision, natural language processing and also transfer learning, which

stands for “the ability of a learning algorithm to exploit commonalities between different

learning tasks in order to share statistical strength, and transfer knowledge across tasks”

[Bengio et al., 2013].

1.1 But how this really works?

To clarify a little our hitchhiker’s mind, including myself, let’s first understand

how a standard machine learning model works, to do so consider the following statement:

The simplest idea here is that machine learning models are concerned about automating

methods of data analysis, and this can be split primarily on two subsets. The first one

is called predictive or supervised learning , which the key goal is to obtain a mapping

function from inputs x to outputs y, using a given labeled training set ~D = {(xi, yi)}Ni=1,

where N is the number of training examples. We call our inputs x and this could be a

vector or whatever other relevant math element, such as a tensor. It is important to notice

that, our inputs are not the features of data itself, or real qualities of our observed object,

like height or weight, but a representation of it and this is one of the motivations of our

6

theme of study. It is quite known that data hides in itself a lot of uncovered information,

like for example unknown dimensions and manifolds, this hidden information is what we

are interested in our work. The output element, by its turn, y is called our response

variable and it could, in principle, be anything but we can also, by simplicity, split in

two types, the first one is called classification and occurs when yi is a categorical variable

from some finite set, yi ∈ {1, ..., C}, the second one is called regression and occurs when

yi is a real valued variable. The second one of the machine learning models that we are

talking is the unsupervised learning kind, this type of models are characterized by

having a training set D = {xi}Ni=1 composed by only inputs, where the main intent is

to find information related to not labeled data, like interesting patterns as clusters or

anomaly detection. Finally, to complete our initial exposure, there is another popular

kind of machine learning models, and it is named reinforcement learning , which stands

for how a given agent would take some action or behave when given occasional reward or

punishment.

For most methods exposed above and for many problems in this context exists

a well defined task or objective, like obtaining a successful classifier or predictor for

a given dataset. By the way, the theme we are are about to study is quite different,

mainly because: “One of the challenges of representation learning that distinguishes it

from other machine learning tasks such as classification is the difficulty in establishing

a clear objective, or target for training. In the case of classification, the objective is (at

least conceptually) obvious, we want to minimize the number of misclassifications on the

training dataset. In the case of representation learning, our objective is far-removed from

the ultimate objective, which is typically learning a classifier or some other predictor”

[Bengio et al., 2013].

1.2 The problems of dimensionality and number of variations

An old difficult fact of machine learning field is that as many as the number

of features, or dimensions, grows so the amount of data we need to generalize accurately

grows exponentially, or in a better way we can say that a local generalization depends

directly on representative examples for all relevant variations, this problem is known as

the curse of dimensionality. Many techniques, such as linear regression and standard

7

kernel machines, relies on a generalization based on some kind of interpolation between

neighbors from the data set, that is strongly related with the smoothness prior, i.e.,

assuming that our wanted target function is smooth enough as the statement x1 ≈ x2 =⇒

f(x1) ≈ f(x2). This is a good but insufficient prior, since real data generally stands on

a non conventional and highly curved manifold, where the number of variations may

grow exponentially with the number of factors which causes changes on the raw input

representation, so the search for methods that are not only concerned on the smoothness

prior are really valid in this context.

1.3 Distributed representations and multi-clustering

Simple clustering, nearest neighbors or even decision trees algorithms can be

simplified as breaking the input space in regions, so you have some kind of behavior on

each one of these regions and then looking for a manner to refine the mutually exclusive

clusters that you have constructed. The problem with these approaches is that the number

of distinguishable regions grows linearly with the number of parameters involved. By the

other side, there is another family of algorithms called multi-clustering, such as Neural

Nets, where the same clustering is applied on different parts of the input. “In a distributed

representation, an exponentially large number of possible subsets of features or hidden

units can be activated in response to a given input. In a single layer model, each feature

is typically associated with a preferred input direction, corresponding to a hyperplane in

input space, and the code or representation associated with that input is precisely the

pattern of activation” [Bengio et al., 2013]. The idea behind the importance of distributed

representations is that by using them it is possible to generalize non locally to never seen

regions, that is exploring the fact each feature has a global relevance in your model.

1.4 How do we approach the R.L. field?

There are many different approaches that are concerned about capturing pos-

terior beliefs from raw data, for most of these techniques the idea behind it is to find

manners to automate the extraction of features, in this work we will try to focus on a

little part of the probabilistic approaches. “Since the dataset is itself a random variable,

8

the learning process involves the application of a procedure to a target distribution from

which the examples are drawn and for which one would like to infer a good decision

function” [Bengio and Delalleau, 2011]. The formalism that we will focus here stands for

constructing posterior distributions using the joint of latent variables h and data x, and

then, by maximizing likelihood, possible obtaining a representation h of x.

2 Single-Layer, Depth and the Underlying Structure

of an Environment

Before we set what is our latent variables and how we will define our observa-

tion data, let’s first see one of the reasons that motivated all the representation learning

paradigm. As we mentioned in our first section, the artificial intelligence subject is a

really old fashioned content in the academy, so as the idea of backpropagation and Belief

Nets. In this section we expect to give a high overview of these simple ideas and how that

motivated the R.L. field, passing through the famous single-layer greedy learning modules

[Hinton et al., 2006].

2.1 Standard Feedforward Network and SGD

Consider a simple example of a supervised learning model such as linear re-

gression, as we mentioned before the objective of these methods is to obtain a mapping

function using labeled inputs, in a manner of automating a given task, which could be a

classification for example. To do so, we must decide how the target function that we are

looking to find looks like, and how to get as close as possible to it by adjusting parameters,

i.e., a construction of ideas concerned in resulting a solution for our task.

Suppose that our training examples are given by {(x(i), y(i))}Ni=1, where our

expected outputs are yi ∈ R, and our target function hθ(x) ∈ R is defined in terms of

the parameters θ. A standard approach, in this case, is to use a cost function. The cost

function here is a function that maps an event or values of one or more variables onto a

real number representing some cost associated with the event, many optimization models

are related with the minimization of it. Consider a case that our cost function is the least

9

Figure 1: Example of a fully connected neural network, extracted from Goodfellow et al.
[2016]

squared cost function defined for each example (x(i), y(i)) as

J (i)(θ) =
1

2
(hθ(x

(i))− y(i))2, (1)

and the mean-square cost function for the entire dataset is consequently defined as

J(θ) =
1

n

n∑
i=1

J (i)(θ). (2)

Now consider the simple example of a fully-connected neural network with

three layers, the input layer, the hidden layer and the output layer. The simplest idea to

construct here is that we can relate our inputs xi to our outputs hθ(x) with a composition

of functions using weights w, biases b and activations through hidden units a. Each edge

has a unique weight, and each node has a unique bias. The composition works as the

following way, a two-layer fully-connected neural network with m hidden units and a d

10

dimensional input x ∈ R is defined as

∀j ∈ [1, ...,m], zj = w
[1]T

j + b
[1]
j , where w

[1]
j ∈ Rd, b

[1]
j ∈ R (3)

aj = ReLU(zj) (4)

a = [a1, ..., am]T ∈ Rm (5)

hθ(x) = w[2]T a+ b[2], where w[2] ∈ Rm, b[2] ∈ R (6)

This treatment makes the relation between our input and output pretty clear

through the entire net. We can say that we know how everything is connected on each

node. In matrix notation we have that

z = W [1]x+ b[1] (7)

a = ReLU(z) (8)

hθ(x) = W [2]a+ b[2]. (9)

This approach can be easily extended to as many layers as you want, that is, as

many parameters and compositions as you want, think about how general this could be. If

you look to our cost function J (1)(θ) on the equation (2), you can see that it depends only

on hθ and the labels y. By the method we constructed the network, having on each node

a composition of the previous ones and using a ReLU activation, it is possible, in many

cases, to easily take the derivatives of our cost function with respect to every single weight

using the chain rule. This idea of backpropagation makes possible to compare our output

hθ(x) with the labeled expected values y, and so update our weights to approximate the

desirable function, but only after rolling out a bunch of examples from the training set.

One of these approaches that is fairly known is the stochastic gradient descent, the idea

behind it is pretty simple and can be resumed as the following.

Looking forward to optimize a parameter ~θ, for a given learning rate α, we do,

for each example of the training set (xi, yi), the update:

θj = θj − α∇θjJ
(i)(θj) (10)

11

2.2 One step back

What we want to expose here is that these ideas about neural nets are a really

old content, and has taken a lot of neurons from the scientists through the decades. Think

about it as if you were a geek living in the 80’s playing your video game. Atari looks

pretty better, right? Depending on your network it could take a lot of computational cost.

Although, often, you may need so much labeled data, such as a good initialization for

your weights. For these reasons and many others that’s when the probabilistic models have

started to gain more attention. At the same time that these ideas were taking neurons

from the geeks, there was an approximation between physics and networks in this context

going on, which later will result on a really important algorithm.

While neural nets were falling down in the 80’s, the scientists were looking for

manners to overcome the limitations of it. One of the ways that they have taken was the

generative models, i.e., forms to model the input data rather than predicting a label. In

this context, we want to clarify two important trends that were going on during the 80’s

and early 90’s, Boltzmann Machines and Belief Nets.

2.2.1 Boltzmann Machines

As we will see here, a Boltzmann machine is a really elegant manner for ob-

taining distributions that represents binary vectors, and has a learning algorithm so much

simple. To construct a Boltzmann machine take some fixed number of binary units linked

by symmetrical connections. The state of a unit i is given by si, while the state vector of

our entire network is defined as s. We can think this state vector as a collapse of a given

random variable S. The weights between two generic units i and j are given by wij = wji.

So the energy of the entire network, with biases bi is

E(s) = −
∑
i

sibi −
∑
j<i

sisjwij. (11)

The energy gap ∆Ei of a unit si represents the difference of a unit in the total energy of

our network

∆Ei = E(si = 0)− E(si = 1) = bi +
∑
j

sjwij. (12)

12

Figure 2: Example of Boltzmann Machine, Public Domain.

Our typical approach has hidden units hk and visible units vi. So, the joint

total energy becomes

E(v,h; θ) = −
∑
i

vibi −
∑
k

hkbk −
∑
i<j

vivjwij −
∑
i,k

vihkwik −
∑
k<l

hkhlwkl, (13)

where θ is our parameter object, which in this case are the biases and weights.

Now, we replace our binary threshold units by binary stochastic units, which

makes biased random decisions based on a Boltzmann distribution and our temperature

parameter T

p(si = 1) =
1

1 + e−∆Ei/T
. (14)

This step allows us to think in our units as “particles”. For simplicity, let’s take T = 1.

Then, after a given time, the joint probability distribution takes the form

p(v,h; θ) =
eE(v,h,θ)

Z
, (15)

where Z(θ) =
∑

h,v e
−E(v,h,θ) is the partition function, that is the sum over all possible

configurations. The marginal distributions of the units will be given by

p(v; θ) =
∑
h

p(v,h; θ) =
1

Z(θ)

∑
h

e−E(v,h;θ) (16)

13

p(h; θ) =
∑
v

p(v,h; θ) =
1

Z(θ)

∑
v

e−E(v,h;θ). (17)

Now consider the energy of the system with a visible vector v clamped, i.e.,

fixed

E(v) = −
∑
i

svi bi −
∑
i<j

svi s
v
jwij, (18)

where svi is the binary state assigned to unit i by the visible vector v. Then,

∂E(v)

∂wij
= −svi s

v
j . (19)

On the other hand, without clamping the system, with the stochastic choice

that we made in (14), after a given time, with the system in thermal equilibrium, the

probability of the state given by our visible vector v is

P (v) =
e−E(v)

Z
. (20)

So the beauty of the work made by David H. Ackley [1985] is that by taking the derivative

of the log of this equation, and using the result (19), would lead us to the following:

∑
v∈data

∂ logP (v)

∂wij
= < sisj >data − < sisj >model, (21)

where < sisj >data is the expected value of sisj with v clamped and < sisj >model is

the expected value when the Boltzmann machine is sampling back state vectors without

clamping the system. This result is one of the alternatives to backpropagation

that the scientists were looking for during the 80’s. With this derivative is possible

to create a gradient ascent relation for training.

The training procedure is regarded to obtain the parameters θ that makes the

marginal probability over the visible units p(v, θ) as close as possible to the unknown

probability pdata(v). This can be reached, using an identically independent sampled

training set ~D of visible vectors, by maximizing the log likelihood of the parameters

L(θ| ~D) =
∑N

i=1 log p(v(i); θ), and this is equivalent to minimize the Kullback-Leibler di-

14

vergence or the relative entropy of p(v; θ) from the unknown q(v)

DKL(q||p) =
∑
v

q(v) log
q(v)

p(v; θ)
. (22)

There is an interesting idea here. It is possible to model the underlying struc-

ture of an environment, by making configurations with our visible units! But the question

is: How do we get the statistics for p(v; θ)? The first barrier to do this is to obtain Z(θ),

and the second is to marginalize p(v,h; θ). If our network has too many hidden units

this will lead us to intractable distribution. One of the alternatives, that also was used in

those times, is sampling.

2.2.2 Belief Nets

During the the same period that the physicists were helping the DOS guys,

there was another kind of “miraculous” nets hyping through the labs. As you can imagine,

the Boltzmann machines (B.M.’s) also were not the solution for all the problems in the

world. One of the bad things is that, besides the slowness, they needed a negative phase

for learning, yes a negative phase on the clamping thing! Between the means to avoid

this variety of problems it was the other main side of the generative models, the Belief

Networks, which were based in causal relations rather than an energy approach. As men-

tioned in [Neal, 1992], these networks were early related with the purpose of representing

knowledge obtained from human experts. To better represent this knowledge, the nets

with this purpose were directed, i.e., flows in a direction with no symmetric weights, and

had also stochastic hidden units, so as the the connection between the nodes represented

the causes, such as probabilities that was fairly known by an expert.

An important property of this family of nets is that the causal relations has

as its consequence the explaining away effect. The inference paradigm can be understood

as how to infer the state of the hidden units, while the learning procedure is regarded to

adjust the interactions between the variables to make the network more likely to generate

the training data.

As a causal model we can say that for a belief net, on the contrary of B.M.’s,

it is easy to get unbiased data, i.e., data which the model believes without training. By

15

Figure 3: Example of Belief Net.

the way, the effect of explaining away makes harder to infer the posterior distribution

over the hidden units, since they are, in some cases, strongly entangled by its previous

causes. The searching for solving this problem leads up to a really important algorithm

within the representation learning paradigm.

2.2.3 Greedy Layer-Wise Learning

The greedy layer-wise learning algorithm is proposed by Hinton et al. [2006],

and has a crucial impact through the deep learning field evolution, “enabling researchers

for the first time to train a deep supervised network without requiring architectural spe-

cializations like convolution or recurrence” [Goodfellow et al., 2016]. This algorithm can

be characterized as a hibrid model, that relates both of the past two that we have just

seen. This model uses a special case of B.M. on a certain way to find a good initialization

for a joint successful learning procedure trough a deep belief net. We can characterize this

idea as an unsupervised pre training canonical approach, such as a good point of start for

the R.L. field study.

The model has “two top hidden layers that form a undirected assoative memory

and the remaining hidden layers form an directed acyclic graph that converts the repre-

sentations in the associative memory into observable variables” [Hinton et al., 2006], see

section 3 for better understanding of these concepts. Between the atractives of the model

are the easyness to interpret distributed representations, i.e., explaining away effects in

the deep layers and also the fact that the learning algorithm is local.

16

To deal with the explaining away effect [Hinton et al., 2006] uses the elegant

approach of a complementary prior for sigmoid belief nets, which are common belief nets

with a stochastic property defined as

p(si = 1) =
1

1 + exp(−bi −
∑

j sjwij)
. (23)

The argue continue as assuming that a belief net composed by just a unique hidden layer is

factorial, because every cause comes directly from a unique unit, so the non-independence

in the posterior distribution, i.e., the explaining away effects, is created by the likelihood

term coming from the data. Then, using extra hidden layers to create a complementary

prior that has exactly the opposite correlations to those in the likelihood term would

eliminate the explaining away. So, multiplicating the likelihood to the prior would lead

to the so desirable factorial posterior.

The most elegant part of the work made by Hinton et al. [2006] is demonstrat-

ing the fact that an infinite directed net can be equivalent to a Restricted Boltzmann

Machine, which is a B.M. with just two layers and no relations between the units at the

same layer. This overwhelming discovery resulted in a possible way to train deep belief

nets, and also a manner to learn layers of features, which resulted in a big ascension on

the deep learning field of study.

2.3 Depth

Alright, so the search for optimizing standard machine learning algorithms

gave raise to a whole new branch of ideas, which many of them can be resumed as a

several composition of functions connecting input layer and hidden layers. An interesting

question is: Where are the representations we are talking about since we have started this

text? And here it is what we call semantics, that is a quite complex theme which is not

in focus here.

A good idea here is stated by Bengio and Delalleau [2011] “Deep Learning, i.e.,

learning multiple levels of representation. The intent is to discover more abstract features

in the higher levels of the representation, which hopefully make it easier to separate from

each other the various explanatory factors extent in the data”, but this separation helps

17

mostly on supervision tasks. Two good advantages inside this kind of architectures are

“deep architectures promote the re-use of features, and deep architectures can potentially

lead to progressively more abstract features at higher layers of representations” [Bengio

et al. [2013]]. Another interesting fact is that “More abstract concepts are generally

invariant to most local changes of the input. That makes the representations that capture

these concepts generally highly non-linear functions of the raw input” [Bengio et al. [2013]].

It is important to highlight the two main branches of models inside deep ar-

chitectures. The first one are the probabilistic models, and the second one is rooted

in neural networks. The main difference between these models is about how we treat the

layered architecture we mentioned above. While the probabilistic models use, in many

cases, a graphical probabilistic approach, the neural nets treat the layered nodes as com-

putational graphs. This can be resumed as the following question: “are hidden units

considered latent variables or as computational nodes?” [Bengio et al., 2013]. Besides

they are different approaches, it is interesting how they can be connected in some way, for

example when we treat our hidden units as latent variables, i.e., a probabilistic model, the

exact inference is typically intractable and, in some cases, unrolling variational inference

to solve this results in a recurrent graph structure.

3 Probabilistic Approach

3.1 What is a Bayesian Approach?

Consider a typical case of trying to obtain a function f(x), the classic prob-

abilistic approach can be obtained starting from the statement y(x) = f(x, ~θ) + ε(x),

where ~θ is our vector of parameters and ε(x) is a noise function. The whole idea here

is to construct a likelihood and looking for a manner to maximize it. Suppose that the

noise function we choose is a standard normal N (0, σ2). In this case we have the following

conditional probability model for observation:

p(y(x)|x, ~θ, σ2) = N (y(x); f(x, ~θ), σ2). (24)

18

And the likelihood, for its turn, will be factorized as:

p(~y|x, ~θ, σ2) =
n∏
i=1

N (y(xi); f(xi, ~θ), σ
2). (25)

Maximizing the likelihood with respect to σ2 and ~θ will lead us to:

log p(~y|X, θ, σ2) ∝ − 1

2σ2

n∑
i=1

[f(xi, θ)− y(xi)]
2. (26)

This expression looks like the squared error function on the equation (1), and

it is a kind generalization of it, based on our prior choice for the noise function. This

approach gives us a deterministic interpretation of the error measure and also gives us a

sense of noise level σ2. Since these methods are susceptible to over-fitting, which stands

for a big accuracy on the training set and a high error on the test set, a manner to

avoid it is using what we call regularization, by adding some kind of complexity penalty

as we want, but how do we characterize this penalty? Looking for a way to obtain some

interpretability on it we can think about maximizing the posterior using a gaussian prior

p(~θ) we have

log p(~θ|~y,X) = log p(~y|~θ,X) + log p(~θ) + c. (27)

So the log prior could be interpreted as a regularizer. But this is not Bayesian!

On the other side, a Bayesian proposal is regarded to attain a predictive

distribution which is not dependent on the parameters ~θ. Using the sum rule and the

product rule for probabilities, a way to obtain this expression we are looking for is using

a marginalization over the parameters, so the distribution takes the following form:

p(y|x∗, ~y,X) =

∫
p(y|x∗, ~θ)p(~θ|~y,X)d~θ

This kind of proposal has attributes of generalization. If we think on each set-

ting of θ as a model, this approach gives us a Bayesian model average of infinitely many

models weighted by their posterior probabilities, this represents what we call epistemic un-

certainty over which the function f(x, θ) fits the data. This approach gives us robustness

against over-fitting, since there are many different functions corresponding to different

19

settings of the parameters and we are not sure given a finite sample which is the right de-

scription of the data. Besides that, if we set an approximate as q(~θ|~y,X) = δ(θ = θMAP)

we generalize classical training either.

3.2 Graphical Models

Instead of searching for mapping functions or automating classification tasks,

the approaches we are about to expose here are concerned to obtain distributions from

what we called on the past section as hidden units, by the way it is important to notice that

the distributions we are looking for are always related to a given task. So, we interpret

these hidden units as latent random variables h, using the observed data x. “We can

express as p(x, h) a probabilistic model over the joint space of the latent variables, h,

and observed data x or visible variables. Feature values are conceived as the result of an

inference process to determine the probability distribution of the latent variables given

the data, i.e., p(h|x), often referred to as the posterior probability” [Bengio et al.,

2013].

One of the possible ways to reach these ideas is using graphical models, which

“provide a formal framework for modeling only direct interactions between random vari-

ables. This allows the models to have significantly fewer parameters and therefore be

estimated reliably from less data.” Goodfellow et al. [2016]. The usage of only direct

interactions between our hidden units has several motivations, as for example requiring

a smaller computational cost and also using the hypothesis that, in many cases, there is

no need for using every interaction, since the influence of hidden units which are not di-

rectly connected can be inherited through the path that connects them. A good example

to clarify here, exposed in Goodfellow et al. [2016], is the problem of modeling finishing

times of a team with three people in a relay race, for these kind of problems, for example,

it is clear that the influence of time expended between the first runner on the third one

is inherited though the second one, so modeling using just directly interactions would be

really valid here.

Graphical models, or G.M., are one of the manners for describing probabilistic

distributions, using graph structures. An important highlight here is that the assumptions

about how the random variables interact with each other can be represented in these type

20

of models, an this is one of the reasons that makes them good choices in some cases.

For this work a graph G = (V , E) consists of a set of nodes, V = {1, ..., V }, and a set

of edges, E = {(s, t) ∈ V}. We write G(s, t) = 1 to denote (s, t) ∈ E , that is, if s → t

is an edge in the graph. We also use the notation for parents of a generic node s as

paG(s) , {t : G(t, s) = 1}, and children of a generic node s as chG(s) , {G(s, t) = 1}.

Another definition we need here is neighbors of a node, which stands for the set of all

immediately connected node, nbr(s) , {t : G(s, t) = 1∧G(t, s) = 1}. So the idea is that,

with graphical models, it is possible to represent random variables as nodes and the the

interactions between them as edges, where each edge represents a direct interaction of

two random variables. There are two main branches of graphical models in this context

that we will expose here, direct graphical models and indirect graphical models.

3.2.1 Directed Graphical Models

Directed graphical models are characterized as models that are constructed

over a directed acyclic graph, or DAG, structure. Saying that a graph is acyclic means

that this graph has no cycles, i.e., a series of nodes such that we can get back to where

we started by following edges. From the other side, a directed graph is a graph whose

edges are directed, i.e., they point from one node to another. An important attribute

of these models is that conditional independence assumptions can be represented within

his structure, such as other interesting assumptions. For example, the directed edges can

represent causal relations. A property of DAG’s is that nodes can be ordered such that

parents come before children, i.e., a topological ordering can be constructed in any DAG.

Conditional independence assumptions are strongly related with the factoriza-

tion of conditional marginal distributions, i.e., X ⊥ Y |Z ⇐⇒ p(X, Y |Z) = p(X|Z)p(Y |Z).

Then, the manner we construct our graph allows us to define local conditional proba-

bility distributions p(hi|paG(hi)), so the probability distribution over h is given by

p(h) =
∏
i

p(hi|paG(hi))

The idea behind this formalism in the context of the R.L. field is, in many cases,

to separately parametrize the conditional likelihood p(x|h) and the prior p(h) to construct

21

Figure 4: Example of Directed Acyclic Graph, extracted from Murphy [2013]

the joint distribution p(x, h) = p(x|h)p(h). An important consequence of these approaches

is that the property of representing the indirect influences of random variables using only

parent nodes has a strong attribute of explaining away, i.e., “a priori independent causes

of an event can become non-independent given the observation of the event. Latent factor

models can be generally be interpreted as latent cause models, where the h activations

cause the observed x” [Bengio et al., 2013], and we know that distributed representations

are good for our purpose. Although, while this expression of dependence looks great, life is

not so easy because the recover of the posterior p(h|x) can potentially become intractable.

Furthermore, we need to consider that it could exist several assumptions which it wouldn’t

be capable to be expressed by the way we dispose our graph, in a simple way we can

say that the graph structure, in this case, is regarded only to conditional independence

assumptions.

3.2.2 Undirected Graphical Models

The undirected models is another approach for describing probabilistic models.

But in this case we will consider that the edges are not directed, this simple assumption

changes everything and gives support to many interesting interpretations. An undirected

graphical model stands for a probabilistic model defined on a undirected graph.

In this case it is possible to make assumptions related to conditional in-

dependence using the manner that the variables, or set of variables, separates each

22

Figure 5: Example of Undirected Graph, extracted from Murphy [2013]

Figure 6: Example of Undirected Graph, in this case the red node X8 is independent of
the other black nodes given its neighbors (blue nodes). Extracted from Murphy [2013]

.

other in the graph. For example, for sets of nodes A, B and C in a graph G, we say

hAGhB|hC ⇐⇒ C separates A from B in the graph G With these kind of ideas it is

possible to construct statements called Markov properties, which by them we derive the

conditional independence properties of the graph. A manner to divide our undirected

graph is dividing it by cliques. For an undirected graph a clique is a set of nodes that are

all neighbors of each other, and this is our starting point. For each clique C in the graph,

a non-negative clique potential φ(C) is regarded to how the random variables within that

clique relates with each other in a joint state. The set of cliques within these graphs

23

defines the unnormalized probability distribution

p̃(h) =
∏
C∈G

φ(C). (28)

Here is important to notice that, until now, the clique potentials does not necessarily

carry a probability distribution meaning. We need to normalize the potentials setting a

partition function Z defined, in a continuous case, by

Z =

∫
p̃(h)dh. (29)

Notice that this integral depends directly on our choice for the potentials and also it is

over all the possible assignments for h. This fact can potentially lead us to a intractable

partition function.

By making a good choice for the potentials and random variables, or even

dealing with intractability, the idea of these approaches within the R.L. field is that, in

many cases, it is possible to parametrize the joint distribution p(x, h) through a product

of non-negative clique potentials.

p(x, h) =
1

Zθ

∏
i

φi(x)
∏
j

ηj(h)
∏
k

νk(x, k), (30)

where φi(x), ηj(h) and νk(x, k) are the clique potentials describing the interactions be-

tween the visible elements, between the hidden variables, and those interaction between

the visible and hidden variables respectively. Perceive that the partition function is de-

fined in terms of the parameters θ. The particular choice we wish to expose here in this

work is the following one

p(x, h) =
1

Zθ
exp−Eθ(x, h). (31)

The models with this proposal are known as energy based models, where

Eθ(x, h) is called the energy function, which stands for the manner that the clique po-

tentials describe the interactions between the random variables, using the parameters θ.

Notice that this choice makes that the product of clique potentials potentially become

sums, and this is an interesting property. But be careful, the tractability of the partition

24

function still depends on the choice for potentials so as the random variables that we are

dealing with, for example the difference between dealing with a continuous or discrete

random variables would lead us to totally different models.

3.3 Dealing with Intractable Posteriors

In many cases, feature extraction tasks using latent variable models can be

constructed by maximizing likelihood assumptions, which is characterized as inference

approaches. As mentioned before, the construction of either directed and undirected

graphical approaches are, in many cases, subjected to lead us to intractable distributions.

The eventually difficult for dealing with these kind of proposal motivates us to expose

here an alternative for dealing with intractable distributions, variational inference based

on Murphy [2013].

3.3.1 Variational Inference and the Mean Field Method

The basic idea behind variational inference, for dealing with an intractable

distribution, is to pick an approximation q(x) to the distribution from some tractable

family, and then try to make this approximation as close as possible to the true posterior

given data, p∗(x| ~D). This approach relates inference and optimization, and allows us

to trade accuracy for speed by relaxing constraints. Suppose that p∗(x) is our true but

intractable distribution and q(x) the tractable approximation with some free parameters.

A good idea is to minimize the KL divergence

KL(p∗||q) =
∑
x

p∗(x) log
p∗(x)

q(x)
, (32)

because we know that p∗ is intractable it sounds better to use the reverse KL divergence,

so as we could compute expectations with respect to q

KL(q||p∗) =
∑
x

q(x) log
q(x)

p∗(x)
. (33)

The approximation of the true posterior p∗(x) = p(x| ~D) depends on the normalization

Z = p(~D). However, an interesting idea is that, usually, the unnormalized distribution

25

p̃(x) , p(x, ~D) = p∗(x)Z is tractable to compute. So we set our new objective function

as

J(q) , KL(q||p̃) (34)

J(q) =
∑
x

q(x) log
q(x)

p̃(x)
(35)

J(q) =
∑
x

q(x) log
q(x)

Zp∗(x)
(36)

J(q) =
∑
x

q(x) log
q(x)

p∗(x)
− logZ (37)

J(q) = KL(q||p∗)− logZ. (38)

So the minimizing of J(q) will lead us to approximating q to p∗. Since the KL divergence

is always non-negative, we see that J(q) is an upper bound on the negative log likelihood:

J(q) = KL(q||p̂∗)− logZ ≥ − logZ = log p(~D), (39)

notice that variational inference is closely related to expectation maximization.

Another interesting idea is to assume that the posterior is a fully factorized

approximation of the following form

q(x) =
∏
i

qi(xi), (40)

so the minimization turns to

minKL(qi||p) (41)

over the parameters of each marginal distribution qi. At each step we make the following

update:

log qj(xj) = E−qj [log p̃(x)] = const, (42)

where p̃(x) = p(x| ~D) is unnormalized posterior and the notation E−qj [f(x)] means to take

the expectation over f(x) with respect to all variables except for xj.

26

4 Conclusions and Motivations

Considering the purposes of our work, the main conclusions are regarded to

how the exposed content behaves as one entire piece and how it relates with the reader

and writer. By the method that we present the probabilistic models it is possible to

construct a clear timeline, restricted to some of the big events of the machine learning

field as a whole, and also to the themes that are, in many cases, strongly connected with

the representation learning area. It is clear that the two main generative models exposed

in section 2 converge to the work made by Hinton et al. [2006], and this is the most

impressive fact exposed in our work: How these approaches, which are related by one side

to physics and by the other side to statistics, helped to lead the deep learning paradigm

in which we live today.

The models presented in section 3 have a strong relation with the broken

paradigms exposed in section 2. Also, with the tone that the math is constructed, it is

possible to use this work to initiate a research in some real or theoretical problem, and

this is one of the motivations that we had. Besides that, we have the wish to continue the

study on the R.L. theme, but with a more focused approach on one of the main areas on

machine learning, such as NLP or Computer Vision. The main idea is to use this work,

like the title suggests, as a starting point.

27

References

Y. Bengio and Olivier Delalleau. On the expressive power of deep architectures. page 1,

10 2011. doi: 10.1007/978-3-642-24412-43.

Yoshua Bengio, Aaron C. Courville, and P. Vincent. Representation learning: A review and

new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35:

1798–1828, 2013.

Terrence J. Sejnowski David H. Ackley, Geoffrey E. Hinton. A learning algorithm for boltz-

mann machines. Cognitive Science, 9:147–169, 1985.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for

deep belief nets. Neural Comput., 18(7):1527–1554, July 2006. ISSN 0899-7667. doi:

10.1162/neco.2006.18.7.1527. URL https://doi.org/10.1162/neco.2006.18.7.1527.

Kevin P. Murphy. Machine learning : a probabilistic perspective. MIT Press, Cambridge,

Mass. [u.a.], 2013. ISBN 9780262018029 0262018020.

Radford M. Neal. Connectionist learning of belief networks. Artificial Intelligence, 56(1):

71–113, 1992. doi: 10.1016/0004-3702(92)90065-6.

28

