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Abstract

Numerous neural networks have been proposed in the literature for the task of image recognition.
Among them, the convolutional neural networks trained by backpropagation are the most usually
recommended for this task, as they frequently obtain excellent accuracy in a few iterations. However,
during the last years, morphological neural networks have also been proposed as an alternative to the
classical networks. Nevertheless, the non-differentiability of the convolution operator makes necessary
the search for other training algorithms. In this context, evolutionary algorithms have arisen as a
suitable strategy for training these types of networks. This project implements a morphological
network to address the task of classifying manuscript numbers between 0 and 9 and compares the
classification accuracy with that of a usual convolutional neural network. The accuracy obtained
by the morphological network, using the MNIST benchmark database, reveals that convolutional
neural networks still are the most appropriate solution for image classification. On the other hand,
morphological neural networks are more flexible, allowing for example infinite possibilities for the
definition of the convolution operator.

1 Introduction

The advent of high performance hardware, especially graphic cards (GPUs), allowed the application
of convolutional neural networks (CNNs) in numerous scientific and industrial areas, making possible,
for example, notorious advances in the task of localization, classification and segmentation of objects
in images in the literature. These advancements also made possible to archieve important results in
applications such as autonomous cars [1], games like chess and go [9], medical diagnostics [3], and
many others. On the other hand, morphological neural networks have an interesting and differentiated
approach to perform an image classification. That means that morphological networks trained with
any evolutionary algorithm can do the same work as a CNN and, consequently, can substitute this
kind of net.
To illustrate the idea that morphological neural networks can replace CNN s, two networks were
implemented and tested in this project: one net was a morphological network trained by using the
Gravitational Search Algorithm(GSA) (evolutionary) and the other one was a convolutional neural
network trained by the classical backpropagation algorithm. These two networks were trained to
classify hand written numbers between 0 and 9.
Based on these tests, this project investigated the performance of a model of morphological neu-
ral networks trained by GSA and compared the accuracy of this model with that of convolutional
networks in the task of image classification.
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2 Neural Networks

Neural networks are mathematical models used to predict and classify a given data (input), this input
can be numbers, words, image, csv files with multiple tables, among other examples. The operations
of this network are very simple and composed by neurons that receive and process an input data
x1, x2, ..., xn. In the most basic version, usually called perceptron, the essential processing consists
of a linear combination of the inputs, followed by the application of a non-linear activation function
ξ, which at the end provides a scalar number Z as the final result (output). To be more didactic on
this work, it will be adopted ξ as f(v). The image bellow represents this idea.

Figure 1: Generic representation of a basic neural network (perceptron)

and

v = f(
n∑
i=1

xiwi + θ), (1)

where wi is the weight associated with each neural connection and θ is an arbitrary constant. The
structure above is composed by one neuron (image 1) and is called a perceptron in the literature. θ
is a parameter called bias.
Such bias is a measure of how easy is for each perceptron to “activate”. For example, a binary
perceptron that outputs only 1 or 0 (step function) and has large bias has higher probability of
producing an output 1.
The image bellow represents a step function :

f(x) =

{
0 if Eq(1) ≤ 1

1 otherwise

2.0.1 Softmax Neurons

By stacking groups of perceptrons into layers, it is possible to create a network of perceptrons. This
network can be used to solve a determined problem by automatically “learning” weights and biases
to produce a correctly output or very close to the answer predicted by the data used for training. A
good principle for the learning process is that making a small change in some weight or bias should
cause only a small corresponding change in the output of the network.
It is possible to use this principle to modify the weights and biases of neural networks. This method
of changing the weights and biases repeatedly in a limited number of interactions to produce better
and better output is what is called learning.
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Figure 2: Generic representation of a multi-layer neural network.

However, networks that have only binary perceptrons are not sufficiently robust and may have their
output easily modified. For example, an output 0 might be changed to 1. This flip can cause the
behaviour of the rest of a network to change dramatically in a very complicated way, preventing
the network from performing correct classification. Besides, this process makes difficult to see how
the weights and biases are gradually being modified along the training and if the network is really
getting closer to the desired behaviour.
Based on this context, softmax neurons can be used as they are more consistent with changes of
weights and biases, resulting in more concise and precise classification. Softmax neurons have similar
behavior to binary perceptrons, i.e., the neurons also receive an n-dimensional input x1, x2, ..., xn.
Nevertheless, the output can be any real value between 0 and 1, instead of exactly 0 or 1.
The softmax activation function is also of great importance in these neural models, as their outputs
behave like probabilities for the potential outcomes. The equation below represents this idea.

y = [y1, y2, ..., yi, ..., yn] = S(yi) =
exp yi∑n
j=1 exp yj

= Vp = [p1, p2, ..., pi, ..., pn]

n∑
k=1

pk = 1

where yi refers to each element in the output vector y and Vp is the vector of probabilities.
The bias expression is :

b =
1

1 + e(−v)
(2)

where v comes from from Eq. (1).
The smoothness of S(yi) implies that a small change in the weights δwi and biases δb will produce
small change δout in the neuron output. The equation below represents this idea :

δout ≈
∑
i

∂out

∂wi
δwi +

∂out

∂b
δb (3)

where the sum includes all wi weights. ∂out
∂wi

and ∂out
∂b

are partial derivatives of the output with respect
to δwi and δb, respectively. Lastly, δout is a linear function of the changes of weights ( δwi ) and
biases ( δb ).
These neurons play important role in the mechanism of fully connected networks [8].
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3 Training Neural Networks using the Gravitational Search

Algorithm(GSA)

The most popular algorithm to update the weights and biases over the training step is the backpropa-
gation [5]. However, a fundamental requirement of backpropagation is that all the functions involved
in the network processing should be differentiable. This is not possible in some situations and in-
vestigating algorithms that could be applied in mode general situations, including non-differentiable
functions, is an important matter.
Based on this, here study the replacement of the usual algorithm of backpropagation by the Gravita-
tional Search Algorithm (GSA). Most optimization algorithms in machine learning are created to find
the best “answer” to a problem by minimizing some type of “cost function”. In more practical terms,
such “best answer” correspond to the weights that minimizes the classification error and maximizes
the network accuracy or. It is important to emphasize that situations of local minimum may affect
negatively the precision and, consequently, this network can make a prediction or a classification with
a poor accuracy. GSA is part of family of optimization methods, called evolutionary algorithms, that
use heuristics to achieve the minimization. Other examples of algorithms in this family are Particle
Swarm Optimization (PSO) [7], Ant Colony Optimization (ACO) [2], and many others.
Based on this problem that have a set of solutions, the Gravitational Search Algorithm proposes a
method to find the global minimum by making each solution having n components and interacting
with each others using a function. This approach and the work [4] model this sets of solutions as
masses with n variables that interact with each others using the gravitational force. The set of masses
is defined by:

Xi = (x1i , x
2
i , ..., x

d
i , ..., x

n
i ),

where i ∈ [1, N ], N is the number of solutions, n is the index of the variables (as defined before) and
xdi is the position of the solution i in the dimension d.
The gravitational force of interaction is defined by:

F d
ij(t) = G(t)

Mpi(t) ∗Maj(t)

Rij(t) + ε
x(xj(t)− xi(t)), (4)

where Maj(t) is the “mass” of the solution j, Mpi(t) is the “mass” of solution i, G(t) is the function
that calculates the gravitational constant and Rij(t) is the function that calculates the Euclidean
distance between the solutions i and j.
The expression of G(t) and R(t) are defined as follows:

G(t) = G0 ∗ e−α∗θ(t) (5)

and θ(t) is : θ(t) = t
T

Rij(t) = 〈Xi(t), Xj(t)〉, (6)

where 〈·, ·〉 is the usual scalar product that maps two RN vectors to R by doing the operation :
〈Xi(t), Xj(t)〉 =

∑N
k=0

∑N
l=0Xik(t) ∗Xjl(t)

The α term in Equation (6) is the coefficient, G0 is the gravitational constant (the same used in the
gravitational force on physics), t is the current iteration and T is the maximum number of iterations.
In this method, the gravitational forces applied between one solution and the others are calculated
as in Eq.(7)
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F d
i (t) =

N∑
j=1,j 6=i

randj ∗ F d
ij(t), (7)

where randj is a real number in the interval [0, 1]. After this, this algorithm will calculate, in this
order, the acceleration and velocity applying the formulas:

adi (t) =
F d
i (t)

Mii(t)
, (8)

where d is the number of variables in the problem , t is the current iteration and Mii(t) is the
inertial mass of the agent i.

vdi (t+ 1) = randi ∗ vdi (t) + adi (t) (9)

Finally, the position of every solution is updated by using the expression in Eq (10):

xdi (t+ 1) = xdi (t) + vdi (t) (10)

It is important to notice that each one of the solution is the fitness value computed by the fitness
function [6]. Thereby, every solution tend to become proportional to the value of the fitness function.
It is possible to easily attenuate this issue, caused by the direct relation between mass and the fitness
function, by adopting a normalization of these terms. The normalization method is defined as follows:

Mi(t) =
mi(t)∑N
j=1mj(t)

, (11)

where mi(t) is the expression :

mi(t) =
fiti(t)− worst(t
best(t)− worst(t)

,

where fiti(t) is the fitness value of the solution i in the interaction t, best(t) is the best solution
in the interaction t and worst(t) is the worst solution in the interaction t. In the first iteration of
GSA, all the variables are initialized with random real values and the GSA stops when it meets the
stopping criterion.
Furthermore, this method has a slow convergence speed to find the best result and stays susceptible
to be trapping in a local minima. These issues are due to the effect of the fitness function when
calculating any mass (solution). Besides, the search agents get more heavier on each interaction.
Thus, causing a decrease of the speed search. This complication prevents the search agents from
discovering other minimum locals, which could be candidates to be global minimum. With that, a
chaotic method is proposed to tackle this scenario.

3.0.1 Chaos Theory and Chaotic maps

Chaos Theory refers to the study of chaotic dynamical systems, which are nonlinear dynamical
systems highly sensitive to their initial conditions. In other words, when the system has a small
change in the initial conditions, it may result in high variation in the output of the system. The
apparently random behavior of chaotic systems is an interesting feature. It is important to emphasize
that a system does not necessarily need to be random to present chaotic behavior. This means that
deterministic systems can also present chaotic behaviors.
This work will use the same chaotic maps utilized on [4].
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3.1 Normalization and updating the weights

In this stage of the studied algorithm, we define the expression I(t) = MAX − t
T
∗ (MAX −MIN)

to calculate the normalization of Ci(t) that goes from [a, b] to [0, I(t)]. The formula of each new
Ci(t) after normalization is:

Cnorm
i (t) =

(Ci(t)− a) ∗ (I(t) - 0)

(b− a)
, (12)

where i is the index of the chaotic map, t is the current iteration, T is the maximum number of
iterations, [MAX, MIN] is the adaptive interval and [a, b] is the range of the chaotic map.
At the end, the final value of the gravitational constant is updated as follows :

G(t) = G0 ∗ e−α∗θ(t) + Cnorm
i (t), (13)

with θ(t) = t
T

where α is the descending coefficient, G0 is the initial gravitational constant, t is the current iteration,
T is the maximum number of iterations and i is the index of the chosen chaotic map.
This pseudo code of GSA using chaotic maps is a summary of this method :

Algorithm 1 GSA with Chaotic Maps

procedure Initial Iteration
Generate initial population.
Compute the fitness for all search agents.

loop:
if (the end criterion is satisfied) then

return the best search agent.

Update G(t) using Eq.(3.1).
Update M, forces, and accelerations.
Update the velocities and positions.
continue the loop.
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4 Morphological Neural Networks (MNN)

In the general theory of neural networks, Morphological Neural Networks (MNN) have a peculiar
behavior compared with usual convolutional nets. Instead of using the Eq. (2) to calculate the
output on each node, these nets use the following expression for the node output:

vj = fj(∨Ni=0xi + wi). (14)

In this model, the algebra space where the operations are applied is the extended real numbers,
defined by IR± = IR∪ (−∞,∞). The operator ∨ is replaces the usual sum. The value of −∞ and∞
have the same function as 0 and 1, respectively, in the classical algebra of sums and products and fj
is the activation function in the j-node.

4.1 Morphological Operators

To better understand the behavior of morphonets, this topic will describe some operands and oper-
ations defined in image algebra that are useful for this type of neural network.

4.1.1 Mathematical definition of morphological operators

In more mathematical terms, an image is described as a function mapping a subset X of IRN onto a
set of discrete values, denoted by IF. Thus a generic element a ∈ IFX and we use the notation [(x,
a(x)) : x ∈ X, a(x) ∈ IF]. It is also possible to describe any image using a finite subset X with q
elements that will have the following structure : [(i, a(i)) : i=1, 2, . . . , q, where a(i) ∈ IF]. A template
is an element of (IFX)Y, where X ∈ IRN and Y ∈ IRM. Another alternative formulation to describe
the template consists in defining t as a function t: T → IFX and having the form [(y, [x, ty(x)]) : y
∈ Y, [x, ty(x)] ∈ IFX].
For notation convenience, we use the expression ty instead of t(y). It is important to notice that t is
a function that associates every point y of the domain to some image element ty ∈ IFX.

4.1.2 Definition of operations between images and templates

It is also possible to combine the image and template in an operation. In this case, the computation
only needs to take place over the support of the template. Formally, the infinite-support S−∞(ty))
for a template t ∈ (IRN

±∞)M is the set of pixels in X where ty(x) 6= −∞ and S−∞(ty) = {x ∈ X :
ty(x) 6= −∞}.
Two typical supports used are the von Neumann or 4-neighborhood (that are the closest pixels from
up, down, left and right) of the pixel y and the Moore or 8-neighborhood (the eight closest pixels to
the pixel y).
Thus three basic operations are defined between two images a, b ∈ IRX

±∞ that produce a new image
c ∈ IRX

±∞.

a+ b = c = {(x, c(x)) : c(x) = a(x) + b(x) , x ∈ X}

a ∗ b = c = {(x, c(x)) : c(x) = a(x) ∗ b(x) , x ∈ X}

a ∨ b = c = {(x, c(x)) : c(x) = a(x) ∨ b(x) , x ∈ X}
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It is also possible to define operations between templates s and t ∈ (IRX
±∞)Y.

s+ t = r, ry(x) = sy(x) + ty

s ∗ t = r, ry(x) = sy(x) ∗ ty

s ∨ t = r, ry(x) = sy(x) ∨ ty

4.1.3 The step function and weight definition in morphological networks

Inspired by the behavior of the step function, we can define one function that produces 0 or −∞
instead of 0 or 1 as output values :

f−∞>0 (a) = b, b(x) =

{
0 if a(x) > 0

−∞ otherwise

In a similar manner, this function can be applied to a template. The comparison > can also be
replaced with any other, such as =, ≤, and others.
Finally, the weights are described by relating the number of nodes and the number of exemplar
patterns. Let N be the number of nodes in the net, P be the number of exemplar patterns and X =
{1, 2, . . . , N }. The weights are determined by setting :

wji = tj(i) =

{∑P
k=1 x

k
j ∗ xki if i 6= j

0 otherwise,

where xkj is the j-th element of the exemplar pattern from class k.

4.1.4 The definition of dilatation operator

There exist two types of morphological operators that are frequently adopted on image processing,
especially to analyze object shapes on images. They are essential to realize the math operations on
each node. The first one is named dilatation. This operator is defined as follows :

a ∨ t = b = [(y, b(y)) : b(y) = ∨ni=0a(xi) + ty(xi),with y ∈ Y ] (15)

This operation uses IF = IR±∞ and is important to describe the operation on each node in a morpho-
logical neural network. The input image a is composed by a finite set of discrete values (consequently
they do not assume values −∞ or ∞). To maintain the consistency of this model, it is necessary
to define the addition operation between all the elements of IR±∞. This can be trivially solved by
setting the operations using the usual operator of addition + :

a + (−∞) = (−∞) + a = −∞
a + ∞ = ∞ + a = −∞

(−∞) + ∞ = ∞ + (−∞) = (−∞),
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where a ∈ IR−∞ = IR ∪ [−∞]. However, here we assume that all the input images a ∈ IRX
±∞ are

composed by a set of finite and discrete values, which means that image a ∈ IRX. If a is a binary
image, a has only the numbers 0 and 1. If t is a binary template, t assumes only the values 0 and
(−∞).
As mentioned earlier, the main characteristic that differentiates morphological neural networks from
classical neural networks is the inclusion of the values∞ and −∞. Furthermore, morphological nets
use values ∈ IR±∞. In image processing, all the template values outside that support are ignored.
Consequently, to make valid this idea, those values must be set to −∞. With this elements, it
is possible to construct a simple morphology neural net that uses the step function as activation
function, the image a as input, the template t and the Eq. (4) in every node.
In general, the basic calculation in a morphological neural network can be expressed as :

f(a ∨ b) = (f1(a ∨ b), f2(a ∨ b), . . . , fN(a ∨ b))

For example, for a neural net that has 9 nodes in total, the seventh node value at the upper layer of
the network can be found by calculating the follow expression :

b7 = ∨n=9
i=1 ai + w7i = ∨n=9

i=1 {a1 + w71, . . . , a1 + w79}

= ∨n=9
i=1 {9 + (−∞), . . . , 4 + (−∞), 3 + 1, 2 + 2, 1 + (−∞)}

= ∨n=9
i=1 {(−∞), . . . , (−∞), 4, 4, (−∞)} = 4

5 Experimental Result

To evaluate the performance of morphological neural networks trained with GSA, the dataset of
MNIST (manuscript digits between 0 and 9) was chosen to assess the classification performance. In
addition, a classical CNN was trained with the same dataset. These two networks were implement
using Python, but only the API of Keras (package of Python to create general neural networks) was
used to create the second network. The training stage was accomplished in 35 epochs, where each
epoch had a set of 1000 images. The weights were updated by using 500 images in the training set.
Compared with CNN, morphological networks had poor accuracy in the classification of each digit.
In the first training epoch, the error was around at 75 % and was increasing on each update iteration.
At the end of the training, the error was around 90%, and consequently, the model accuracy was
around 10%. The average computational time for each epoch was around 40 minutes.
On the other hand, the CNN shows a better accuracy in a few epochs and, experimentally, proved
to be faster than the morphological neural networks in each training epoch. Below, it is possible to
see, respectively, the error plot in each epoch of the morphological network and the accuracy curve
in each epoch of the CNN.

10



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Num of Epochs

0.80

0.82

0.84

0.86

0.88

0.90

Er
ro

r

Accuracy of the model

Figure 3: Plot of the error of the morphological network in each epoch.
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Figure 4: Plot of the accuracy of the CNN in each epoch.

6 Conclusions

The results of the experimental tests demonstrate that morphological neural networks are not as
efficient as CNN s. The final accuracy of the morphological neural network was around 10% while the
final accuracy of the CNN was around 90%. Besides that, each epoch of training was computationally
more expensive, consequently, took more time to train each epoch. Based on this, we suggest that
CNN can be a preferred over morphological neural network to perform image classification. We
intend to investigate other alternatives that make the use of MNNs viable, as they still have the
advantage of being considerably more flexible and generalist than CNNs.
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