
University of Campinas

Institute of Mathematics, Statistics and Scientific
Computing

(IMECC - Unicamp)

Project Title :

Semantic segmentation using region fully connected
networks: application to medical images

Advisor: Prof Dr João Batista Florindo
Student: Gabriel Borin Macedo

June 2019

1

Abstract

The manual location of cellular nuclei in an image of human epithelial tissue is
an exhausting and slow process, making this work highly susceptible to failures.
This project investigates the use of a specific neural network entitled Region
Mask Convolutional Neural Network (Mask-RCNN) to perform the localiza-
tion, segmentation and classification of different types of cells in this type of
microscopy images. The accuracy obtained by Mask-RCNN, using the Kaggle
2018 Data Science Bowl database, was approximately 62.00%, which is a satis-
factory result. This model shows a high potential to automatically localize the
human epithelial cells in an image, making the overall localization process faster
and less susceptible to errors.

2

1 Introduction

The easier access to high performance hardware, especially graphics cards (GPUs),
allowed the application of more convolutional neural networks to a variety of
areas in science and industry, allowing, for example, significant advances in the
task of locating and placing objects in images in the literature. These advances
also made possible for important results to be achieved in applications such as
autonomous cars [2], games like chess and go [9], medical diagnostics [5], and
many others.

Particularly in the area of medical imaging, an example of application us-
ing this model is addressed in [5] to the automatic and accurate recognition
of cervical nuclei using a neural network. More precisely, a neural network
called “convolutional network per region with mask” (Mask-RCNN) is used in
association with semantic segmentation techniques for recognition of objects of
interest, which in this case are the nuclei of cells.

This dense neural network model extends the Faster R-CNN [7], which adds
a branch to predict the segmentation masks on each Region of Interest (RoI),
simultaneously with the existing branch for classification and bounding box
regressor. This mask branch is an aplication of a Fully Connected Network
(FCN) [8] on each RoI, with the aim of predicting a pixel-wise segmentation
mask. In addition, a so-called RoiAlign quantization layer is added to fix the
misalignment through preservation accurate precise spatial locations. It is worth
pointing out that Mask-RCNN, unlike Faster R-CNN, was designed to make a
pixel-based alignment between the network inputs and outputs.

Besides that, the architecture of Mask RCNN makes implementation and
training more simple than in Faster R-CNN, which facilitates a wide range of
applications of such neural network structure for object classification. Further-
more, the mask has a comparatively smaller computational overhead, which
accelerates the computational time, both for training as well as for the valida-
tion of new data.

Based on these results previously reported in the literature, this project aims
at describing the method Mask-RCNN, its performance and accuracy in the task
of classifying cell nuclei in medical images. (falta colocar depois : conclusao)

2 Theoretical background

This section presents some topics that will be of extreme importance to under-
stand the operation of neural networks of the Mask-RCNN type.

2.1 Neural networks

Neural networks are mathematical models used to predict or classify a given
data (input) and its operation is very simple. The neural network is composed
by neurons that work by receiving and processing an input data x1, x2, ..., xn.
The processing basically consists in a linear combination of the inputs, followed

3

by the application of a non-linear activation function f(v). The image bellow
represents this idea.

Figure 1: Generic representation of a perceptron

and

v =

n∑
i=1

xiwi + θ (1)

where wi is the weight associated with each neural connection and θ is a
constant. This structure composed by one neuron (image x) is called perceptron
in the literature. θ is a parameter called bias.

Bias is a measure of how easy it is for the perceptron to “activate”. A
perceptron with large bias has higher probability of producing an output 1.

The image bellow represents a step function :

f(x) =

{
0 if Eq(1) ≤ 1

1 otherwise

2.1.1 Softmax Neurons

A network of perceptrons can be used to solve a problem by making them learn-
ing weights and biases so that the output from the network correctly classifies,
for example, an object. A good principle for the learning process is that making
a small change in some weight or bias should cause only a small corresponding
change in the output of the network.

This principle is the inspiration to modify the weights and biases of neu-
ral networks. This strategy of changing the weights and biases repeatedly to
produce better and better output is what is called learning.

However, networks that contain only perceptrons can have severe changes,
for instance flips from 0 to 1. This flip may cause the behaviour of the rest

4

Figure 2: Generic representation of a Multi Layer neural network

of a network to change dramatically in a very complicated way, preventing the
network from being able to perform correct classification. This process makes
difficult to see how to gradually modify the weights and biases so that the
network gets closer to the desired behaviour.

In this context, softmax neurons are used, since they are more consistent with
changes of weights and bias, making a more concise and precise classification.
Softmax neurons have a behavior similar to perceptrons, where such neurons
recive as input x1, x2, ..., xn. But instead of outputting only 0 or 1, these inputs
can also output any real value between 0 and 1.

Softmax activation function that are also of great importance in these neural
models, as their outputs behave like probabilities for the potential outcomes.
The equation bellow represents this idea.

y = [y1, y2, ..., yi, ..., yn] = S(yi) =
exp yi∑n
j=1 exp yj

= Vp = [p1, p2, ..., pi, ..., pn]

n∑
k=1

pk = 1

where yi refers to each element in the output vector y and Vp is the vector
of probabilities.

and the bias expression is :

1

1 + exp (−v)
(2)

5

where v comes from from Eq. 1.
The smoothness S(yi) implies that small changes in the weights δwi and bias

δb produce small change δout in the neuron output:

δout ≈
∑
i

∂out

∂wi
δwi +

∂out

∂b
δb (3)

where the sum covers every weights wi and ∂out
∂wi

and ∂out
∂b are partial deriva-

tives of the output with respect, respectively, to δwi and δb, as δout is a linear
function of the changes of weights (δwi) and bias (δb).

These neurons will be important to understand the behavior of fully con-
nected networks.

2.1.2 Sigmoid neurons

This kind of neurons have the same principe of the softmax neurons described
in the last section. However, the most important difference is its activation
function, described as:

σ(v) =
1

1 + exp−v

where v is the same as in Eq (1). The bias and δout expression is, respec-
tively, the same as (2) and (3)

An intriguing aspect of such function is its perceptron like behavior. While
in the perceptron, the ouput is a binary value (exactly 0 or 1), for a sigmoid,
the value is between 0 and 1. Such ouput can be interpreted as the probability
of the input to belong to a particular class. Besides, when v− > ∞, then
exp−v− > 0 and consequently σ(v) ≈ 1. Moreover, in the case of v− > −∞,
then exp−v− >∞ and σ(v) ≈ 0. The graphic bellow represents the behaviour
of a sigmoid function

Another interpretation of the data provided by a sigmoid function is that
output values represent the average intensity of the pixels in an image input
to a neural network. However, there are many situations where this type of
output requires more complex data analysis. An example is the output of a
network that indicates wether “the input number is 3” or “the input image is
not 3”. Obviously, it would be easier to do this if the output was 0 or 1, as in a
perceptron. Because of that, there are particular conventions to deal with this,
for example, by deciding to interpret any output of at least 0.5 as indicating a
“3”, and any output less than 0.5 as indicating “not a 3”.

6

Figure 3: Sigmoid Function

2.1.3 The architecture of a neural network

The neural network is separated into three parts. The first is called the input.
The second part comprises the so-called hidden layers. The neurons in hidden
layers are neither inputs nor outputs of the neural network. Finally, the last
layer contains the output neurons.

The processing accomplished in all the inputs and ouputs of this network is
straightforward. An example of this is a handwritten grey-scale image exhibiting
the number 3 suposed to have dimension n x n. Therefore we will have n2 = nxn
input neurons with the grey intensities appropriately scaled between 0 and 1.
The output layer will contain only a single neuron, with output values of less
than, for example, 0.5, suggesting that the image is not the number 3 or with
values greater than or equal to 0.5, indicating that the image is a number 3.

The straightforwardness in input and output layers of a neural network is
associated with a design heuristics for the hidden layers, which allows the user to
obtain the intended behaviour of the network. An example of this is to determine
how to trade off the number of hidden layers against the time required to train
the network.

It is important to note that feedfoward neural networks are those that do
not present looping alongside the network. Consequently, all the information is
fed forward and never fed back.

7

3 Convolution Neural Networks

The great problem with using previous neural networks with fully connected
layers is that they do not analyze the spatial structure of the images, such that
those networks treat input pixels that are far apart and close together on exactly
the same footing. Consequently, not taking into account this characteristic, may
negatively affect the classification process of the object.

Convolutional Neural Networks (CNN) resolve this problem. They take into
account the spatial structure of images by making convolutional operations to
carry out the classification. CNNs can be separated into three stages: local
receptive fields, shared weights, and pooling.

3.0.1 Local receptive fields

The fully connected layers can be represented by a vertical line of neurons.
Besides that, the input will be n x n neurons that represent the pixel intensities.

Usually, the input pixels will be connected to a layer of hidden neurons and
will make connections in small, localized regions of the input image, instead of
connecting every input pixel to every hidden neuron. Therefore every neuron in
the first hidden layer will be connected to a small region of the input neurons k
x k times per region that correspond to n x n pixels.

This region in the input image is called local receptive field for the hidden
neuron and has size k x k. In the literature these small windows are usually
called kernels. All the connections learn weights, and the hidden neuron learns
an overall bias.

Each channel of a CNN can detect only a single kind of localized feature
and for image recognition, more than one feature map is necessary. A robust
convolutional neural network consists of several different feature maps

Furthermore, an extra operation involving the kernel is defined by sliding a
local receptive field across the entire input image.

Then the local receptive field slides by one pixel to the right to connect to a
second hidden neuron.

It is also possible to define the step of the convolution (striding) with values
greater than 1 to obtain better results.

3.0.2 Sharing the weights and biases

Hidden neurons have a bias and k x k weights connected to their local receptive
field. It is important to emphasize the use of the same weights and bias for each
of the n x n hidden neurons. That is, for the jth element and the rth hidden
neuron, the output will be obtained from the following convolutional operation
:

σ(b+

k∑
l=0

k∑
m=0

wl,maj+l,r+m), (4)

8

where σ is the neural activation function. For CNNs, it is common practice
to use the RelU activation function. This is defined as y(x) = max(0, x), where

x is the result of the following operation : b+
∑k
l=0

∑k
m=0 wl,maj+l,r+m. Besides

that, b is the shared value for the bias, wl,m is a k x k array of shared weights
and aj+l,r+m denotes the input activation at position (x,y).

Thus all the neurons in the first hidden layer detect exactly the same feature
at different locations in the input image. In other words, the weights and bias
are such that the hidden neuron can identify, for example, a vertical edge in
a particular local receptive field. This methodology also can be applied to
the same feature detector everywhere in the image. Therefore convolutional
networks are well adapted to the translation invariance of images. Because of
that, the maps from the input layer to the hidden layer are named feature maps.
The weights and bias defining the feature map are the same shared weights and
bias. These are often said to define a kernel or filter.

In the example below, there are 3 feature maps. Each one is defined by a set
of 55 shared weights, and a single shared bias. The result is that the network
can detect 3 different kinds of features, with each feature being detectable across
the entire image. But in practice, CNN uses more feature maps. As an example,
we have f features maps in the figure below:

The f images correspond to f different feature maps, filters or kernels. Ev-
ery map is represented by k x k components. The f images correspond to f
different feature maps, filters or kernels. Every map is represented as k x k
block images, which correspond to the same k x k weights on the local receptive
field. Moreover, the whiter blocks usually have the most negative weights and
are associated with lower intensity response to the corresponding input pixels.
In contrast, the black pixels correspond to larger weights and consequently the
feature maps have higher responses to the corresponding input pixels.

The features maps composition of sub-regions with light and dark pixels
make the network really learning things related to the spatial structure. How-

9

ever, it is difficult to visually see what these feature detectors are learning. Still,
a great advantage of sharing weights and biases is the significant reduction in
the number of parameters involved in a convolutional network. An example
where this is visible is assuming that each feature maps has 25 = 5 x 5 shared
weights, plus a single shared bias. So each feature map requires 26 parameters
and having, for example, 20 feature maps, a total of 20 26 = 520 parameters
defines the convolutional layer. On the other hand, a fully connected first layer,
with 784 = 28 28 input neurons and a relatively small 30 hidden neurons, will
have a total of 784 30 = 23,520 weights, plus an extra 30 biases, having 23,550
parameters in total.

Besides using fewer parameters, we also preserve translation invariance prop-
erty on the convolutional layers. This reduces the number of parameters neces-
sary to provide the same performance as the fully-connected model, yielding a
faster training for the convolutional model.

One interesting point is that Equation (4) is the convolution and may be
written in the following equivalent form:

a1 = σ(b+ w ∗ a0),

where a1 denotes the set of output activations from one feature map, a0 is the
set of input activations, and iscalledaconvolutionoperation.

3.0.3 The Pooling layers

The convolutional layers contain pooling layers. These pooling layers are used
after convolutional layers, in order to facilitate the flow of information in the
output from the convolutional layer.

In other words, the pooling layer takes every feature map output from the
convolutional layer and prepares a condensed feature map. Usually, a frequent
procedure for pooling is known as max-pooling. In this approach, a unit simply
outputs the maximum activation in a k

′
xk
′

input region.
Notice that having 24 x 24 neurons output from the convolutional layer

implies that after pooling we will have 12 x 12 neurons.
The convolutional layer usually involves more than a single feature map and

max-pooling is applied to each feature map separately.
The great advantage of using max-pooling is the reduction of the parame-

ters needed in later layers. This operation is a way for the CNN to find any
given feature in a region of the image and then throw away the exact positional
information. Therefore, when a particular feature is detected, its location is not
important as this rough location relative to other features.

3.0.4 The general working of a CNN

CNNs have an architecture similar to the neural network previously discussed.
But they have the addition of a layer having the same number of neurons as the
number of h classes.

10

Convolutional neural networks behave similarly to the networks addressed
in the previous topic. The objective remains the same, that is, to use training
data to train the network weights and biases so that the network does a better
classification of the input data.

The training of the network is accomplished by using the stochastic gradient
descent and backpropagation. The backpropagation algorithm will be studied
here in other neural networks.

3.1 Stochastic gradient descent

The stochastic gradient descent is a way to minimize an objective function ψ(θ)
parameterized with a model’s parameters θ ∈ IRd by updating the parameters in
the opposite direction of the gradient of theobjective function ∇θψ(θ). Besides
that, is defined a variable ν, representing the learning rate, whitch determines
the size of the necessary steps to reach the minimum local. that is, this method
creates a function that downhill until reach a valley.

The Stochastic gradient descent (SGD) performs a parameter update every
training example xi and yi :

θ = θ − ν.∇ψ(θ;xi; yi) (5)

The batch gradient descent performs redundant computations for large datasets,
as it recomputes gradients for similar examples before each parameter update.
With this, SGD redundancy the error of the neural network by performing one
update at a time, making the training more faster. Besides that, the SGD per-
forms frequent updates with a high variance that cause the objective function
tofluctuate heavily.

While batch gradient descent converges to the minimum of the basin the
parameters are placed in. On the one hand, the SGD fluctuation allows to
jump to new and potentially better local minima. However, this methodoly
complicates convergence to the exact minimum, because the SGD will keep
searching the minimal local. A way to prevent this from happening is slowly
decrease the learning rate, making the SGD converge to to a local or the global
minimum for non-convex and convex optimization respectively.

3.1.1 Momentum in SGDs

In surface curves, is commun to have steeply areas in one dimension than in an-
other and this areas is common to stay around a local optima. In this situation,
the SGD oscillates across the slopes of the ravine while only making hesitant
progress along the bottomtowards the local optimum. To resolve this kind of
situacion, has created the momentum method that helps accelerate SGD in the
relevant direction and dampens oscillations. This procedure uses a γ variable ,
where γ is a fraction of the update vector of thepast time step to the current
update vector. The equation bellow represent this ideia :

11

vt = γvt−1 + ν∇ψ(θ)

θ = θ − vt

And the default value of γ is 0.9
Essentially, the behavior of a momentum is the same as that of pushing

a ball down a hill. In this ball case, it’s accumulates momentum as it rolls
downhill, becoming faster and faster on the way, until it reaches its terminal
velocity, if there a air resistance, in this case having γ < 1, this situation is
similar on the SGDs updates parameters : The momentumterm increases for
dimensions whose gradients point in the same directions and reduces updates
for dimensions whose gradients change directions. With that, the convergence
is more faster and oscilation is reduced.

3.1.2 Adam Optimizer

The Adaptive Moment Estimation (Adam) is a optimizer often used in Deep
Learning. This optimizer that computes adaptive learning rates for each param-
eter and storing an exponentially decaying average of past squared gradients vt.
Besides that, Adam also keeps an exponentially decaying average of past gradi-
ents mt similar to momentum :

mt = β1mt− 1 + (1− β1)gt

vt = β2vt− 1 + (1− β2)g2t

Where mt and vt are estimates of the first moment , that is the mean, is
the second moment (the uncentered variance) of the gradients respectively, and
gt is the current gradient. The variables mt and vt are initialized asvectors of
zeros. This value was chosen because in practice, the bias has arround zero,
especially during the initial time steps and especially when the decay rates are
smal, like when β1 and β2 is close to value 1.

To revert this effect of bias, is compututed a bias-corrected first and second
moment estimates in form :

m
′

t =
mt

1− βt1

12

v
′

t =
vt

1− βt2
And this parameters are used to o update the parameters, following the rule

:

θt+1 = θt −
ν√
v
′
t + ε

m
′

t

Where β1 = 0.9, β2 = 0.999 and ε = 10−8.

3.2 Residual Neural Network (Resnet)

Deep Residual Learning or Residual neural network are neural networks that
learn some residual intest of features at the end of its layers, like a convolutional
neural network. Where this Residual can be simply understood as subtraction
of feature learned from input of that layer. One of its advantages is to avoid
the vanishing gradients that the most’s neural networks are susceptible.

3.2.1 Residual learning

Be the H(x) an underlying mapping to befit by a few stacked layers, where x
denotates the inputs to the first of these layers. Hypothesis, suppose that this
network have multiples nonlinear layers with asymptotically and complicated
functions. Then, is valid to supose that this functions can asymptotically ap-
proximate the residual functions in form H(x) - x, assuming that the input and
ouput have the same dimension. With that, is viable to approximate a residual
function in form F(x) = H(x) - x => F(x) + x = H(x). This 2 forms is
also able to asymptotically approximate the desired functions, hypothesing this
situacion ,the ease of learning might be different.

This reformulation is motivated by the counter intuitive phenomena about
the degradation problem, as previously stated. Is possible to add new layers
make to cosntructed a identity mapping with a deeper model to training error
to stay no greater than its shallower counter part. The degradation problem
suggests that the solvers can have difficulties to approximates a identity map
by the multiple nonlinear layers. Using the residual learning re-formulation, the
solvers can be simply drive the weights in multiples nonlinear layers toward zero
to approach identity mappings.

In Pratical, it is unlikely that identity mappings are optimal. This refor-
mulation help to precondition this problem. When the optimal is closer to an
identity mapping than to a zero mapping, is might easy to the solvers find the
perturbations with reference to an identity mapping, than to learn the func-
tion as a new one. Experimentally, this learned residual functions in general
have small responses and intuitively indicates that identity map-pings provide
reasonable preconditioning.

13

3.3 Identificate Mapping using shortcuts

The residual learning is adoted and used on every stacked layers. Besides that,
the building block is defined as :

y = F (x,Wi) + x (6)

Where, x and y are respectively the input and output vectors of the layers
considered, F (x,Wi) represents the residual mapping to be learned. For this
work, is used a residual network with two layers. Therefore, F is defined as : F =
W2σ(W1x), where σ is the RelU function (the same activation function used
on the convolution layers in CNN) and the biases are omitted for simplifying
no- tations. Futher more, the F + x operation is computed using shortcuts
connection and element-wise addition. Finally, is adopt the second non-linearity
after the addition.

This shortcut connections in Eq (6) does not need any extra parameters
and and does not increases the computation complexity. In practice, residual
networks with the same number of parameters, depth, width, and computational
cost has a better performance compared to a conventional convolutional neural
network.

To this method, is necessary that x and F dimensions must be the same as Eq
(6). When this not happens, hanging the input or output channels as example,
is possible to make a linear projectionWs using the shortcut connections to equal
the dimensions. In other worlds, is used the following expression to that :

y = F (x,Wi) +Wsx (7)

Is possible to use a square matrix Ws in Eq (6). However in practice,
the identity mapping is sufficient for addressing the degradation problem and
is more economical compared to using a square matrix Ws in Eq (6). Plus to
this, Ws is only used to match the dimensions.

The structure of the residual function F is easily modified, making it a
flexible function to represents multiple convolutional layers. It is import to note
that the element-wise addition is performed on two feature maps, channel by
channel.

3.3.1 Residual network structure and implementation

A generic residual network uses a generic CNN with shortcut connections added
to it, turning the network into his counterpart residual version. This shortcuts,
besides being described as Eq (6), is possible to use when the input and
output are of the same dimensions. In the case of increasing the dimension, is
possible to make to approaches. The first one make the shortcut keep performing
dentity mapping with a extra zero entries padded for increasing dimensions. The

14

advantage of using this method is that it does not use extra parameters. The
second method uses the projection shortcut describes in Eq (7) to equalize
the dimensions using a 1 x 1 convolutions. The both options, in the case of
shortcuts go across feature maps of two sizes, are performed with a stride of 2.

As for the structe, is use a resized image with its shorter side randomly
sampled in 256 x 480. The crop is randomly sampled as 224 x 224 for the image
or its horizontal flip, with the per-pixel mean subtracted. The standard RGB
and batch normalization right after each convolution and before activation is
used. The weight used is the Imagenet and the network as trained with all from
scratch. A SGD is used with a mini-batch size of 256. For the learning rate, the
network starts with 0.1 and divide by 10 when the error plateaus. This mode
is rained for up to 60 x 104 iterations. Finally, is use a weight decay of 0.0001
and a momentum of 0.9.

3.4 Fully convolutional neural networks

Fully convolutional neural networks are convolutional neural networks with ev-
ery layer of data in a convnet is a three dimensional narray of size h x w x
d.

Where h and w are patial dimensions and d is the feature or channel dimen-
sion. The first layer recive a image of size h x w with d channels. The locations
in higher layers correspond to the locations in the path of the connected image.
This locations is callend on leature as receptive fields.

A property of convolutional neural network is the invariance translation.
In another words, convolution, pooling, and activation functions in this neural
networks operate on local input regions and only depends on relative spatial
coordinates. Is possible to write a data vector xij at location (i,j) in a particular
layer and a yij for the following layer. The value of yij is computed by the
expression :

yij = fks(Xsi+δi,sj+δj)

that respects the relation :

0 ≤ δi, δj ≤ k.

Where k is the kernel size, s is the stride or subsampling factor and fks
determines the layer type. These layers can be a matrix of multiplication for
convolution or average pooling, a spatial max for max pooling or an elementwise
non-linearity for an activation function and so on for other types of layers.

Besides that, This functional form is maintained under composition with a
kernel size and stride obeying the following transformation rule :

15

fks ◦ gk′s′ = (f ◦ g)k′+(k−1)s′ ,ss
′

Most of general neural networks calculates general nonlinear function, this
Fully convolutional neural network (FCN) uses one single layers to computes
a nonlinear filter. This FCN are also referred to as deep filter. The FCNs
operates on an input of any size and produces an output of corresponding,
usually resampling the image, spatial dimensions.

A real valued loss function composed with an FCN defines a task. In the
case of the loss function is a sum over the spatial dimensions of the final layer,
the loss functios will be describe as :

l(x; θ) =
∑
ij

l
′
(xij ; θ)

The gradient parameter will be a sum over the parameter gradients of every
spatial components in the same. Therefore, the stochastic gradient descent on
l computed on whole images will be the same as stochastic gradient descent
computed on l

′
, taking every final layer receptive fields as a minibatch.

When these receptive fields overlap significantly, both feedforward compu-
tation and backpropagation are very more efficient in the case when computed
layer-by-layer in a whole image instead of independently calculated on patch-
by-patch.

3.5 Classifiers for Dense Prediction

fully connected layers of Fully convolutional neural networks have fixed dimen-
sions and throw away the spatial coordinates. However, this fully connected
layers can be also viewed as convolutions with kernels that cover their entire
input regions by converting CNNs to fully convolutional neural networks to take
input of any size and make spatial output maps.

Besides that, the resulting maps are equivalent to the CNNs evaluation in
a particular input patches. The calculation used is highly amortized over over-
lapping regions in those patches. This spatial output maps of these convolu-
tionalized models make them a natural choice for dense problems like semantic
segmentation, that is to localizate which pixels of the object of interest, with a
ground truth available at every output cell. The forward and backward passes
are straightforward and both of them take advantage of the inherent computa-
tional efficiency and of convolution.

Moreover, neural convolutional neural networks uses fully convolutional yields
output maps for inputs of any size. Thereby, output dimensions are typically
reduced by subsampling. The CNNs classification method uses subsample to
keep filters small and a reasonable computational requirements. This coarsens
the output of a fully convolutional version of these nets, reducing it from the
size of the input by a factor equal to the pixel stride of the receptive fields of
the output units.

16

3.5.1 Shift-and-Stitch operations in Filter Dilation

Predictions in neural network can be obtained from coarse outputs by stitching
together outputs from shifted versions of the input. In the case of the ouput
downsampled by a f factor, the input x is shifted to the right and y pixels
down. This operation is realized once for each (x, y) that respect the interval
0 ≤ x, y < f . Every f2 input are processed and intertwined the output to make
the predictions correspond the pixels at the centers of their receptive fields.

A convolution or pooling layer with a input stride s and a subsequent con-
volution layer with a fij filter weights. The earlier layer input stride is setted
earlier to produce one upsamples out put by s factor. But, intercalating the
original filter with a upsampled output does not produce the same result as
shift-and-stitch, due to the original filter that just looks a reduced portion of
the input, which are upsampled at this point. Thus, to produce the same result,
the filter is dilated using the expression :

f
′

ij =

{
fi/s,j/s if s divides i and j

0 otherwise

Where i and j are zero-based. The equation bellow is use to representate
a full neural network output of shift-and-stitch can be done by repeating this
filter enlargement. This method uses a processed subsampled versions of the
upsampled input.

Decreasing subsampling within a neural network filters see finer information,
but in change have smaller receptive fields and take longer to compute. Besides
that, the output is denser without decreasing the receptive field sizes of the
filters, however all fillters can not acess information at a finer scale than their
original design.

In pratice, the Shift-and-Stitch operations does not perform better than
upsampling along with the skip layer fusion. Because of that, most of FCN use
the combination of upsampling and skip layer. Those methods will be explained
in the following sections.

3.5.2 Upsampling Operation

Upsampling is another method to connect coarse outputs to dense pixels is
interpolation using a Binary Interpolation Function to computes a yij output
from the nearest four inputs by a linear map. Which depends only the relative
positions of a input and output cells. Mathematically, this relation is described
as follows

yij =

1∑
α,β=0

|1− α− (i/f)||1− β − (i/f)|xbi/fc+αbj/fc+β

17

Where f is the the upsampling factor and (.) is the fractional part.
Is important to note that upsampling using a factor f convolution with the
fractional input stride of 1/f. This only happens when f assumes a integer
value. The upsampling is implement by reversing forward and backward passes
of more typical input-strided convolution. Thus, upsampling is performed in
all neural network for end-to-end learning using a backpropagation from the
pixelwise loss.

The upsampling often used in deconvolution networks, which are CNNs with
deconvolution. Where this deconvolution is the inverse operator of convolution.
Besides that, the convolution filter in this kind of layer have no necessity to
be fixed using a bilinear upsampling. However, this can be learned. Stacks of
deconvolution layers and activation functions is also learned using a nonlinear
upsampling.

3.5.3 Loss Sampling and Patchwise

For the stochastic optimization, the gradient calculation is driven on the the
training distribution. Besides that, patchwise training and FCN training can
be used to make distribution of the all inputs. But the computational efficiency
depends only the overlap and minibatch size. As for the training of FCN using
whole images is practically the same to patchwise training, where every batch
consists of all the receptive fields of the output units for an single or collection
of images. This approach is more efficient compared to uniform sampling of
patches, due to the fact that reduces the number of possible batches. However,
the random sampling of patches method within an image, usually, is more easily
recovered. This restrict the loss to a randomly sampled subset of its spatial
terms that excludes patches from the gradient.

In the case of patches still having significant overlap, the fully convolutional
computation will still speed up training. But, if gradients accumulated over
multiple backward passes, the batches can include patches from several images.
Another intresting case is when the inputs are shifted by values up to the output
stride. Besides that, is possible to choose a random of all possible patches even
even though the output units lie on a fixed strided grid.

The Sampling in patchwise training corrects the class imbalance problem.
Class imbalance is a machine learning problem that occurs when the total num-
ber of a class of positive data is more less than the total number of the negative
data. Also, sampling can make the spatial correlation of dense patches. During
FCN training, the balance of class is achieved by weighting the loss and loss
sampling is used to address spatial correlation.

3.5.4 The Momentum and Batch Size

Using gt as the step taken by minibatch SGD with momentum at time t. Is
possible to define and describe gt in the expression :

18

gt = −µ
k−1∑
i=0

∇l(xkt+i; θt−1) + pgt−1

Where l(x; θ) is the loss for the parameters x and θ, p ¡ 1 because of its
definition, k is the batch size and µ is the learning rate. Making a expansion
recurrence as an infinite sum with geometric coefficients, the expression above
can be write as :

gt = −µ
∞∑
s=0

k−1∑
i=0

ps∇θl(xk(t−s)+i; θt−s)

This examples includes in the sum the pbj/kc coefficient. Where the index j
orders the examples from most to least recently considered. This Approximating
for the expressions using the floor operation, makes the learning with momentum
p and batch size of k have a similar behavior to learning with momentum p

′
and

and batch size k
′

when equality p(1/k) ≈ p(1/k
′
) happens. Is important to note

that smaller batch size in a frequent weight updates and have a chance to this
neural network learning more for the same number of gradient computations.

The FCN used on this work, have momentum p = 0.9 and a batch size of k
= 20 images. Besides that, the approximately equivalent training regime with
momentum 0.9(1)/20 ≈ 0.99 and a batch size of one.

3.5.5 The segmentation structure

Firstly, the segmentation in FCN is training using by fine-tuning. Afther that,
is performed jumps between the layers to merge coarse, semantic and local,
appearance information. Besides that, This skip architecture is learned end-to-
end to refine the semantics and spatial precision of the output. Plus to this,
FCN are trained using a per-pixel softmax loss and validate with the standard
metric of mean pixel intersection over union. With the mean taken over all
classes, including the background. A particularity of this network is that the
same ignores pixels that are masked out, which are ambiguous or difficult, in
the ground truth.

Before proceeding with the paper, it is important to emphasize some common
operations in the area of semantic segmentation to quantize the pixel accuracy
and region intersection over union (UI), such as:

pixel accuracy:

pacu =

∑
i nii∑
i ti

mean accuracy :

19

macu =
1

ncl

∑
i nii
ti

mean UI :

mUI =
1

ncl

∑
i nii

ti +
∑
j nij − nii

frequency weighted IU :

freqWIU = (
1∑
k tk

)

∑
i tinii

ti +
∑
j nij − nii

Where nij is the number of pixels of the i class predicted that supposedly
belongs to class j, ncl is the total of all the different classes and ti =

∑
j nij is

the total number of pixels of class i.

3.5.6 Behavior of the structures

In FCN, the loss function is not normalized. Consequently, all pixels will have
the same weight regardless of the batch and image dimensions. With this, is
possible a small learning rate since the loss is summed spatially over all pixels.

Besides that, is defined two regimes for batch size. In the first regime, the
gradients are accumulated over 20 images. Thus, this acummulation will reduce
the memory required and respect the different dimensions of every input by
reshaping the network. The batch size will be chosen randomly

All the fully convolutional classifier are fine-tuned to semantic segmentation
for recognition and location by adding skips to fuse layers fuse layer outputs and
include shallower layers with finer strides in prediction. With that, the edges
skip ahead from shallower to deeper layers, making more local predictions from
shallower layers since their receptive fields are smaller and see fewer pixels.

After this skip implementacion is done, the network will make and fuse pre-
dictions from several streams learned jointly and end-to-end. The fine layers and
coarse layers combined allows a flexible neural network with local predictions
that respect global structure.

The Layer fusion is a key element in this operation. Still, the correspon-
dence of elements across layers is complicated by resampling and padding. with
that, the layers that will be fused must be aligned by scaling and cropping. To
resolve this situation, is created two layers into scale agreement by upsampling
the lower-resolution layer. This procediment is done by using the Upsampling
Operation describe in section (3.5.2). The Cropping removes every portion of
the upsampled layer that extends beyond the other layer due to padding. All

20

this layers results have equal dimensions in exact alignment. As the cropped
region offset, this depends on the resampling and padding parameters of all
intermediate layers. This determining the crop that results in exact correspon-
dence can be intricate. However, crops follows automatically from the network
definition.

Besides that, is defined fusion operations for treatment of the layers that
are not patially aligned. This operations fuse features by concatenation and
immediately follow with classification by a “score layer” consisting of a 1 x
1 convolution. Moreover, the concatenation and subsequent classification are
communicated to each other, insted of storing concatenated features in memory.
It is important to emphasize that both operation is linear.

In another words, the skips are implemented by first scoring each layer to be
fused in a 1 x 1 convolution that carrying out any necessary interpolation and
alignment and then summing the scores. The max fusion is also considered in
this analyze. However, the network learning might to be difficult due to gradient
switching.

All score layer parameters are initialized with zeros when a skip is added,
in order to not interfere with the existing predictions of other streams. Finally,
when every layers have been fused, the final prediction is upsampled back to
image resolution.

3.6 Binary Interpolation Function

3.6.1 Localisation network

Firstly, a feature map FM ∈ IRHxWxC, where W is the width, H is the height
and C is the number of channels, and outupts a α parameter associated with the
transformation Tα to be aplie on the feature map α = fconv(FM), where fconv()
is a network function of locating the shape of a convolutional neural network
with a final regression layer to produce the parameters α and this function is a
6-dimensional affine transformation. Besides that, W = 512, H = 512 and C
= 3.

3.6.2 Parameterizing the sampling grid

To make the a warping of the input feature map, is necessary to each output
pixel is computed by a operation kernel centered in a particular location on this
input feature map. Therefore, the output pixels are in a regular grid G = Gi
of pixels Gi = (xti, y

t
i) that form an output feature map of the form of V ∈

IRH
′
xW ′xC , where H

′
and W

′
are respectively height and width of the grid and

C is the number of channels colors. In this work, W
′

= 3, H
′

= 3 and C = 3. In
other words, this transformation can be describe in a matrix function as follows
:

21

xsi
ysi

 = Tα(Gi) =

α11 α12 α13

α21 α22 α23

 ∗

xti

yti

1



where (xti, y
t
i) are the target coordenates of the regular grid in the output

feature feature map, (xsi , y
s
i) are the sorce coordenates of the feature map with

define the samples points and Aα is the affine transformation matrix of the form
:

Aα =

α11 α12 α13

α21 α22 α23



The width and height are normalized coordenades as follows : −1 ≤ (xsi , y
s
i) ≤

1 when this coordenades are inside of the spatial bounds of the ouput and
−1 ≤ (xti, y

t
i) ≤ 1 when this coordenades are inside of the spatial bounds of the

input.
To realize a spatial transformation on the input feature map, it is necessary

to take a set of sampling points Tα(G) of a sample, alongside with the input
feature maps FM and produce the output sampled feature map V. For each
(xsi , y

s
i) coordinate associade with Tα(G) defines one spatial location to get the

ouput Vi, where Vi is the input that a sampling kernel is apllied to obtain a
value at a especific pixel. that is, Vi can be describe as :

V ci =

H=511∑
n=0

W=511∑
m=0

FM c
nmk(xsi−m;λx)k(ysi −n;λy) ∀ i ∈ [1 . . . H

′
W
′
] ∀c ∈ [1, 3]

where λx and λy are parameters of a generic sampling kernel k() whitch
defines a bilinear image interpolation, FM c

nm is the value in the location (n,m)
on the respective channel color c of the input and V ci is the ouput value of
the pixel i at the coordenate (xti, y

t
i) at the respective channel of color c. For

this work, as choosen to use the integer sample using a bilinear sample kernel
expression. With that, the expression V ci as lower in :

22

Vc
i =

∑H=511
n=0

∑W=511
m=0 FM c

nmmax(0, 1− |xti −m|)max(0, 1− |yti − n|)(8)

From Eq3.6.2 is define the gradient referring to FM c
nm, xsi and ysi for calcu-

lation of backpropagation and of the loss hrough the sampling mechanism. The
parcial derivades of the bilinear sampling are defined as :

∂V ci
∂FM c

nm

=

H=511∑
n=0

W=511∑
m=0

max(0, 1− |xti −m|)max(0, 1− |yti − n|) (9)

∂V ci
∂xsi

=

H=511∑
n=0

W=511∑
m=0

FM c
nmmax(0, 1− |yti − n|) =

{1 if |m− xsi | ≥ 1
0 if m ≥ xsi
-1 otherwise

(10)

∂V ci
∂ysi

=

H=511∑
n=0

W=511∑
m=0

FM c
nmmax(0, 1− |xti −m|) =

{
1 if |m− ysi | ≥ 1
0 if m ≥ ysi
-1 otherwise

(11)

For the continuous case in the sampling fuctions, , this sub-derivades al-
lows to calculate the loss gradient and propagate from the end to begining not
only on the feature map (9) but also in the sample grid coordenates (10) and
(11)and consequently back for the transformation parameters α and localisation

network since
∂xt

i

∂α ,
∂xs

i

∂α ,
∂yti
∂α and

∂ysi
∂α can be trivially derived. The discontinuous

case for sampling fuctions, the sub-gradient will be used on this case. This sam-
pling mechanism is implemented efficiently on GPU, looking only to the kernel
support region for each ouput pixel and ignore the sum over all of the input
locations

3.6.3 Spatial Transformer Network

Combining the localisation network, grid generator and the sample form a spa-
tial transformer. Besides that, this is a independent module which can drop in
any point in the Mask-RCNN architecture, in this case is in RoIAlign layer, and
in any amount. This module, in computational aspect is very fast and does not
delay the speed of training consequently causes little time overhead even using
in an exaggerated way.

The spatial transformers within a Mask-RCNN allows the Mask-RCNN learns
how to transform the features maps actively to minimize the overall cost function
of this network during training. Besides, the knowledge to make the transforma-
tion for each training is compressed and stored in cache memory in the weights
of the localisation network during the Mask-RCNN training . this can also be
done with the the weights of previus layers to a spatial transformer.

Is import to ressalt that can be possible to have multiple spatial transformers
in a Mask-RCNN. The addition of several patial transformers along in the depths
layers of the Mask-RCNN network enable transformations that increases the

23

generalization capacity and gives to the localisation networks more informative
representations to serve as a basis to predict the parameters. With the use of
multiple spatial transformers in parallel, in order to facilitate multiple objects,
whether they are of the same class or not, or interested parts in a feature map
should be focussed on individually.

3.7 Fast-RCNN Structure

Fast-RCNN are neural networks that takes a whole image and a set of object
proposals as input. Firstly, this network realizes convolution operations and
uses max pooling to produces a convolutional feature map. After this, for each
object proposals, an Region of Interest (RoI) and pooling layers extracts a
fixed-length feature vector from this feature map . Afther that, each feature
vector is feeded in a sequence of fully connected layers which are combined with
two sibling output layers. One of them estimates the probability of being a
certain object class over K classes and a catch-all background class by using
a softmax function. In this work, K = 1, because is only needed to classify if
there a nucleus on a image.Already, the second layer outputs four real-valued
numbers for each the K = 1 object classes and every set of 4 values encodes
refined bounding-box positions for one of the K = 1 classes. In another words,
for the nucleus class.

3.7.1 RoI pooling Layer

The Roi pooling is a layer that uses max pooling to convert features maps
that are inside in any valid RoI into a small feature map with a fixed spatial
extent of H = 512 x W = 512. Where H and W are layer hyper-parameters
independent of any particular RoI. The RoI are defined as rectangular window
into a convolutional feature map and uses a four-tuple (r, c, h, w), where (r,
c) specifies its top-left corner and (h, w) the height and width, respectively.

Initially the RoI max pooling layer divide the h x w RoI window into a H =
512 x W = 512 of sub-windows of approximate size (h/H) x (w/W) and afther
that uses max pooling on the values for each sub-window to the corresponding
output grid cell. Finally, the pooling is applied independently in each feature
map channel, like in the max pool.

3.7.2 Inicializatin Fast-RCNN

This network starts using the ImageNet pre-treined network and have five max
pooling layers and around 30 to 35 convolution layers and undergoes with three
changes of Fast-RCNN structure.

Firstly, the last max pooling layer is replaced by a RoI pooling layer con-
figured with H and W to be compatible with the network first fully connected
layer.

Secondly, the last fully connected layer and softmax function, which were
trained with a 1000-way ImageNet classification, are switch to two sibling layers

24

described earlier. That is, a fully connected layer and a softmax over K + 1,
where K = 1, categories and category-specific bounding-box regressors.

Lastly, the network is modified to take two data inputs. One is a list of
images and the other is a list of RoIs in those images.

The following image shows a schematics how fast-RCNN works.

3.7.3 Fine-tuning for Fast-RCNN

For Fast-RCNN, the stochastic gradient descent (SGD) minibatches are hierar-
chies by sampling N images and by sampling R/N RoIs for every image. Thus,
the RoI on the same images e share computation and memory in the forward
and backward passes doing N small decreases mini-batch computation.

An important addendum on strategy is that a delay in convergence can occur
during the training, due to correlated RoIs from the same image.

Besisdes that, Fast-RCNN uses as treamlined training process with one fine-
tuning stage to optimazes the softmax classifier and bouding-box regressor in
three different stages.

3.8 Multi-Task loss

Fast-RCNN have to kinds of outputs layers. The first layer outputs a per RoI
discrete probability distribution in the form p = (p0, p1, . . . , pk) over the K + 1
categories. The value of p is computed using softmax over the K + 1 outputs of a
fully connected layer. The second ouput layer ouputs a bounding-box regressor
offsets with tk = (tkx, t

k
y , t

k
w, t

k
h) for every K object classes indexed by k. The

parametrization tk is the same as Eq.3.9.4 describe on the topic of RPN. tk

is used to specifie a scale-invariant translation and log-space height or width
shift relative to an object proposal. In the training each RoI labeled with a
ground-truth class u and a ground-truth bounding-box regression target v. In
addition to this se a multi-task loss L is used each labele RoI jointly train for
the classification and bounding-box regression which is of the form :

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(t
u, v) (12)

where Lcls(p, u) = - log(pu) is the log loss for true class u, Lloc is defined over
a tuple of true bounding box regression target for class u, v = (vx, vy, vw, vh)
and a predicted tuple tu = (tux, t

u
y , t

u
w, t

u
h) for class u. The Iverson bracket indica-

tor function ([u ≥ 1]) is equal to 1 when u ≥ 1 and 0 otherwise. By convention
the catch-all background class is labele as u = 0. The background RoIs does not
take into account the bouding box ground truth, consequently Lloc is ignored.

The bouding box loss function is in the form :

Lloc(t
u, v) =

∑
i∈(x,y,h,w)

soomthL1(tui − vi) (13)

25

and

soomthL1
(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise

Where L1 is the loss. The hyper-parameter λ in Eq.12 is defined as λ = 1
and used to balance this two task loss. Moreover, the vi ground-truth regression
targets is normalized to have zero mean and a unit variance.

3.8.1 The Mini Batch Sampling

In the fase of fine tuning, every SGD mini batch is defined from N = 2 images
which were chosen at random and uniformemente. The mini batches are defined
of size R = 128 with a sampling of 64 RoI per image. In this samples, is taken
25% of RoI from the object proposals that have intersection over union IoU
overlap with a ground truth bouding box with values greater than or equal to
0.5. This RoI includes labeled examples with a foreground object class.

The other 75% of RoI are samples from the object proposals with a maximum
IoU ground truth between [0.1, 0.5). In this case, this samples are the back-
ground examples and consequently are labeled with u = 0. The lower threshold
of 0.1 act as a heuristic for hard example mining. Besides that, during the
training, all images have 0.5 probability of being horizontally flippep and no
other data augmentation is used.

3.8.2 Using Back-Propagation along the RoI pooling layers

Back-Propagation performs derivatives operations along the RoI pooling layer.
It is important to remember that is assumed a only one per mini-batch, that
means N = 1. For the other extensions N > 1 is straightforwar, because the
forward only pass treats of all images independently.

The xi ∈ IR is the i-th activation input into the RoI pooling layer and yrj is
the j-th ouput from the r-th RoI. The RoI pooling layer calculates yrj = xi∗(r,j) ,
where i∗(r,j) = argmaxi′∈B(r,j)xi, B(r, j) is a set of inputs index on the sub-
window over, where are the output unit yrj max pools. Besides that, one xi
variable can be assigned to several distinct yrj outputs.

The backwards RoI pooling layers function calculates parcial derivative of
the loss function in relation to each input variable xi by following the argmax
switches :

∂L

∂xi
=

∑
r

∑
j

[i = i∗(r, j)]
∂L

∂yrj
(14)

26

In other words, each mini batch RoI r and pooling ouput unit yrj is accumu-
lated by the parcial derivative ∂L

∂yrj
when i the argmax selected by yrj using max

pooling. During the Back-Propagation, the partial derivatives ∂L
∂yrj

are already

been computeted by using Eq. 14 on top of the RoI pooling layer.

3.8.3 The SGD hyper-parameters

All the Fully connected layers used for the softmax classification function and
bouding-box regressor are inicialized by a zero-mean Gaussian distributions with
standard deviations to 0.01 and 0.001, respectively, and the Biases are initialized
to 0. Every layer use a per-layer learning rate of 1 for weights and 2 for biases,
a global learning rate of 0.001 and a standard momentum of 0.9.

3.8.4 The Scale invariance Property

Fast-RCNN use a brute force methods to obtain the scale invariant object detec-
tion. On the brute force method, every image is processed in a fixed pre-defined
pixel size during both training and testing. With that, the network learning
directly the scale-invariant object detection from the training data.

3.8.5 Fast-RCNN detection method

After the fine-tunning of Fast-RCNN, detection turns a little more than run-
ning a forward pass, since the objects proposals are pre-computed. Firstly, the
network take a image or a image pyramid encoded as a list of images as input
and a list of R object proposals to score. In test time, R is arround 2000. For
the pyramid images, each RoI is assigned in a scale such that the scaled RoI is
around to 2242 pixels in the area.

Every tested RoI r the next pass a output of posterior probability distribution
p and a set of predicted bounding-box offsets relative to r, where each the K (
in this work, K = 1) classes gets his unique refined bouding-box prediction. In
this way, it is assumed a detection confidence to r for every object class c using
the estimated probability pr(class = c|r) =δ= pk

3.8.6 Faster detection using SVD Truncate

The SVD truncate method is used on Fast-RCNN to acelerate the classification
and detection on fully connected layers.

In this technique, a layer is parameterized by u x v and a weight matrix W
is approximately factorized as :

W ≈ UΣtV
T (15)

In this SVD fatoration, U is u x t matrix comprising the first t left singular
vectors of W, Σt is a t x t matrix that contains the top t top singular values of

27

W and V is a v x t matrix comprising the first t right singular vectors of W.
This method reduces the parameter count from uv to t(u + v) parameters.
This can be a significant gain when t is smaller than min (u, v). The network
is compress by replacing the single fully connected layer corresponding to W by
two fully connected layers without a non-linearity between them. thereby, the
first of this layers uses a weighted matrix ΣtV

T without biases and the second
layers uses the U matrix , in which it is associated with matrix W. This simple
compression method gives good speedups when the number of RoIs is large.

3.9 Region Neural Networks (RPNs)

RPNs are fully-convolutional which simultaneously forecast object bounds and
make the object score classification at each position. Region Proposal Networks
(RPN) uses RGB m x l images as input datas and output a set of regular of
object proposals, each with an objectness score delimited by a retangular area.

Firstly, is its applied convolutional layers on the images and is aplly another
network on the feature map outuputed by the last of the convolutional layer
which will serve as input to this other neural network. This process in the end
generates the region proposals of the objects.

This another network receive as input n x n spatial window of the last
convolutional feature map and every sling is mapped to a binay feature. In
the algoritmh [1] is defined to use on this layer a 512-d with a ReLu [6] as the
activate function

Figure 4: Relu Function

After that, two fully-connected layers will be aplly on this features, one to
make the bounding box and the other to make the object classificaction .

It is important to note that this type of network is implemented with a n x
n convolutional layer and two 1 x 1 convolutional layers in the end, respectively,
one to make the bounding-box regression and the classification.

3.9.1 Anchors boxes on classification

Anchors boxes is the final bounding box along with reliability rate of the classi-
fication.

28

For each sliding-window location, happens in paralel a multiple predict of
region proposals. Based on the article [8], the maximum possible of proposals
for each location is denoted as k. Thus, the bouding-box regressor layer have 4 k
ouputs for the coordinates of k boxes and the classification layer ouputs a 2 k
scores that estimate the probability if is a object or not on each proposal. Note
that this k proposals are parameterized in relative way to k refences boxes. The
result of this process is if refered in leature as Anchors.

This Anchor is centered in the sliding window and is associate with a scale
and 5 aspect ratios, (8 x 8, 16 x 16, 32 x 32, 64 x 64 and 128 x 128).

Besides that, is used k = 64 on each sliding position. Therefore, a convolu-
tional feature map of size W x H will have, W x H x k anchors in total.

3.9.2 Anchors by invariant-Translation

One important property is that the anchors terms and functions with compute
relative proposals they are not influenced by any translation. If there is a object
translation in a image, the proposal is capable translate the object in his original
location on image and the same function is able to to predict the proposal in
either location. In this case, for FCNs, the network is a translation invariant up
to the network’s total stride.

3.9.3 Multi-Scale Anchors

this structuring of anchors created a differentiated method to address multi-
ple scales. With this new model, is possible classify and make the regression
bouding-boxes by reference of anchor boxes of multiple scales and aspect ra-
tios.In another words, this method depends only on imagens of a single scale
and features maps and filters , that sliding windows on the features maps, of a
single size.

Because of this structure, it is possible to use convolutional features com-
puted on a single-scale, the same way that Fast-RCNN detector does. This
desing of multi-scale anchors is the main differential for sharing features with-
out extra cost for addressing scales.

3.9.4 Loss Function to RPNs

During the training phase of RPNs, a binary classification is carried out, defining
whether there is an object or not in each anchor. Furthermore, a positive
label is assigned to the two kinds of anchors. One of them is the anchor (or
anchors) with the highest Intersection-over-Union (IoU) superimposed with a
ground-truth box. The second is an anchor that has IoU overlap higher than
0.7 with any ground-truth box. It is important to notice that a ground-truth
can associate several positive labels with several anchors.

Commonly, only the second case, which is the case of the second type of
anchor, covers most cases determining positive samples. However, there are
certain cases where only the second anchor does not find positive samples. To

29

solve this, we choose the anchor (or anchors) with the highest IoU superimposed
with a ground-truth box. Besides that, a negative label is assigned to non-
positive anchors when the IoU ratio is lower than 0.3 for every ground-truth
boxes.

Once these characteristics are defined, the objective function following the
multi-task loss in Fast-RCNN will be minimized. For the image, the following
loss function is defined:

L(pi, ti) = 1
Ncls

∑
i Lcls(pi, p

∗
i) + λ

Nreg

∑
i p
∗
iLreg(ti, t

∗
i) (16),

where i is an index of each anchor in the mini-batch, pi is the probabillity of
prediction of a i anchor to be an object, p∗i is the ground-truth label and has
value 1 if the anchor is positive and 0for a negative anchor, ti is a vector that
represents the 4 coordinates of the ground-truth box referring to a given anchor.
For the classification function Lcls, a log loss over two classes is used, one of
them is the Object and another one for what is not an object, in the form
Lcls = R(ti − t∗i) where R is the same robust smooth function L1 defined in
the Fast-RCNN. It is important to notice that the term p∗iLreg activates the
regression loss only for positive anchors (that is, for p∗i = 1) and turns it off
when p∗i = 0. Besides that, the classification and regression bouding-box are
associated, respectively, with pi and ti.

Both terms Ncls and Nreg are balanced by a parameter λ. For the imple-
mentation, the mini-batch size Ncls = 256 is chosen, the regression is chosen by
the number of anchor locations, which revolves around Nreg ≈ 2400 and λ = 10.

For the bouding box regression, the following parameterization was adopted,
being the same used on Fully-Convolucinal-Neural-Network :

tx = (x−xa)
wa

ty = (y−ya)
ha

tw = log w
wa

th = log h
ha

t∗x = (x∗−xa)
wa

ty = (y−ya)
ha

t∗w = log w∗

wa
t∗h = log h∗

ha

(17)

,

where x and y are the box center coordinates, w is the width and h is the
height. The variables x, xa and x∗ are, respectively, used for the predicted
box, anchor box and truth box and the representation is similar to y, w and h.

30

This is a heavy task for a bouding-box regression to an anchor box for a nearby
ground-truth box.

The bouding-box is performed on features pooled from arbitrarily sized RoIs
and the regression weights are shared by all region sizes. Beyond that, the
features used on regression have the same spatial size, which are (3 x 3), on the
features maps. To accounting for the various sizes, the RPNs learn a set of k
bouding-box regressors. Thereby, because of the design of the anchors, it is still
possible to make prediction of various box sizes, even though the features are
in a fixed size or scale.

3.9.5 RPNs Training

RPNs are trained end-to-end by backpropagation and using stochastic gradient
descent (SGD) for optimization. Also for training, each mini-batch comes from
a single image, which contains many positive and negative examplar anchors.
It is possible optimize the loss functions for all anchors, consequently, the bias
will be guided towards negative values, that is, it will have a high chance of
overheating in negative images. To prevent this from happening, 256 anchor
samples were randomized on an image to compute the loss function of a mini-
batch. Besides that, these anchors have a ratio of up to 1:1 for sampled positives
and negatives. In case of having fewer than 128 positive samples in the image,
the mini-batches are shuffled with negative samples.

Before starting the training, all the weights of the layers are randomly ini-
tialized from a zero-mean Gaussian distribution with standard deviation 0.01
and the shared convolutional layers are initialized by the ImageNet weights.
Besides that, a learning rate of 0.001 and a momentum of 0.9 are used.

3.10 Structure of a Faster-RCNN

Faster-RCNN uses end-to-end trained RPNs to generate high quality region pro-
posals that Fast-RCNN will use to dection and with a alternating optimization
is possible to RPNs and Fast-RCNN share convolutional features, making the
classification and the bouding-box regressor more easly and fast.

3.10.1 Sharing convolutional features

As described in the training topic of Region Neural Networks, we train neural
networks to generate region proposals without considering object based detec-
tion of a CNN. This procedure allows shared convolutional layers between RPNs
and Fast-RCNN.

Both RPNs and Fast-RCNN are independently trained in parallel and modify
the convolutional layers in different ways. The strategy can be divided into four
steps. In the first one, the RPNs are trained like in the RPN training and are
initialized with ImageNet pre-treined weights and fine-tuned end-to-end for the
region proposal task. In the second, a detection network of type Fast-RCNN
is trained separately by using the proposals generated by RPN in the previous

31

step and this detection network is also initialized by the ImageNet pre-trained
model. It is important to notice that until this second step, both networks do
not share the convolutional layers.

In the third step, the detection network is used to initialize the RPN training.
Consequently, the convolutional and fine-tuning layers of RPN are ajusted and
shared. In the last step, the fully-convolutional layers of Fast-RCNN are fine-
tuned. Finally, both networks now share the same convolutional layers and form
a unified network.

4 Mathematical-Computational Methodology

4.1 Neural networks of the type Mask-RCNN

Mask R-CNN have the same two-stages behavior of Faster R-CNN. The first
stage is based on using a Region Proposal Network (RPN) [7] that uses as input
the original images and as output a set of rectangular object proposals, each
one with an objectness score. The second stage is where the prediction of the
class and bouding box occur in parallel with the first stage.

Besides that, Mask-RCNN also outputs a binary mask for each RoI. That
is, in a nutshell, Mask-RCNN have the same principles of Faster-RCNN, that
simultaneously applies regression and bounding-box to the image.

Finally, we aplly a fully-connected network with 2 branchs in the output
of the Region Neural Network. One of the branches perform the object clas-
sification using a sigmoid as the activation function. The other one applies a
bounding-box regressor to carry out the semantic segmentation of the interested
object in the image. In the literature, it is common to use an FFC to make the
semantic segmentation of the interested object and obtain good results.

4.1.1 Mask-RCNN training

Mask-RCNN is defined as a multiple task loss on every RoI as L = Lclass +
Lbox+Lmask, where Lclass is the classification loss, Lbox is the bouding-box loss
and Lmask is the mask loss. Those parameters are defined as the same as in [7].

The mask branch has C n2 dimensional output for every RoI, which will
generate C binary masks with a resolution of n x n, one for each one of the C
classes. Here, C = 1 as our segmentation goal are only nuclei in images.

Thus we apply a sigmoid function per pixel and define the average binary
cross-entropy loss Lmask, with a RoI and a ground-truth class k . The Lmask is
only determined in the k -true mask. This implies that other mask outputs do
not contribue to the Lmask loss.

The definition of Lmask enables the Mask-RCNN to generate masks for the
nucleus class. Besides that, we used a especial classification branch to predict
the nucleus label and select the output mask, which leads to a decoupled mask
and class prediction. For the Mask-RCNN, masks compete over the classes by
a per-pixel sigmoid and a binary loss.

32

4.1.2 Binary masks on the features maps

The masks represent the object spatial layout. On the other hand, the class label
or box offset that are converted into short output vectors by fully-connected (fc)
layers by Mask-RCNN can extract the spatial structure of masks by a pixel-wise
approach by convolutional operations with accurate results.

Thus an n x n mask can be predicted from each RoI using an FCN [8]. This
prediction allows for each layer in the mask to maintain an n x n spatial layout
of the object explicitly and without propagating errors in the space dimension.

This pixel-wise process requires the RoI features, which correspond to small
features maps that need to be precisely aligned to preserve the explict per-pixel
spatial correspondence. Therefore to maintain it precisely aligned, a layer called
RoIAlign layer is created.

4.1.3 Function of RoIPool

The RoIPool is an operation that extracts a small feature map for each RoI.
First, the floating-point values of the RoI are quantized to a discrete granularity
of the feature maps. Second, a max-pooling operation is applied over the feature
maps.

In the following, the quantized histogram of the pixel values is computed.
This previous computation introduces misalignments between the RoI and

the extracted features. It is important to emphasize that the misaligments
may not impact in the classification, which is supposed to be tolerant to small
translations, but it negatively affects the large scale prediction of the pixel-wise
masks.

4.1.4 Function of RoiAlign

RoiAlign is a branch layer that aligns properly the extracted features with the
inputs, instead of making a massive harsh quantization of RoIPool

To avoid any quantization of RoI boundaries or bins, the bilinear interpola-
tion[4] is employed to compute the exact values of the input features, which are
delimited by four regularly sampled locations for each RoI bin and put together
the result by using a maximum value.

It is worth to highlight that the results are not sensitive neither to the
sample location nor to the number of sampled points, provided that there is no
quantification operation.

4.2 Algorithmic structure of a Mask-RCNN

The Mask-RCCN implementation can be divided into two stages. In the first
one, we define the convolucional backbone that will be used to make the feature
extraction on the whole image. In the second stage, the network head is defined
to make the bouding-box recognition, that is, for classification, regression, and
mask prediction, which is applied separately to each RoI.

33

The backbone used here is a ResNet [3] network with a depth of 50 layers
and a Faster-RCNN that extracts features from the final convolutional layer of
the 4th stage. The network head is the same presented in [3], but includes the
5th stage of ResNet named as res5.

(7 x 7 x 1024)

RoI

(7 x 7 x 2048)
Res5

2048

Class

Box

(14 x 14 x 256) (14 x 14 x 30)

Mask

Figure 5: Representation of a mask-RCNN with resnet50 and fast-RCNN.

4.3 Medical image application

Biological images (such as those representing medical or plant structures) have
been one of the most prominent areas to provide complex and large-scale ap-
propriate data to be analyzed in deep learning. In this case, deep learning
techniques are propitious to detect and discriminate hidden patterns that are
not identifiable by classic image descriptors, much less by the human eye .

A very interesting aspect of deep learning in this scenery is that the attributes
are presented in a hierarchical order: the frist layers detect lower level and more
universal features while the last layers capture nuances of the presented object.

Curiously, this hierarchical paradigm is related with a multiscale analysis
and with the diferent perspectives that professionals, such as pathologists, have
used for years.

5 Dataset Description

The train, test and Validation datasets are composed of RGB images that con-
tain cell nuclei, which will be used as input for the algorithm. Here we use the

34

nuclei segmentation dataset from Kaggle 2018 Data Science Bowl.
In addition, there are also binary images that contains only the image of

a segmented nucleus. These binary masks will be used to compare the Mask-
RCNN binary mask outputs and the original nucleus binary masks, in order to
improve the accuracy of the classification.

The training dataset, as the name suggests, will be used to calibrate the
weights of the neural network to locate the cell nucleus, i.e., to perform the
segmentation of the cellular nuclei and provide the reliability rate of the object
classification, which in this case is the cell nucleus.

Once the traing is over, the test dataset will be used as a mechanism to verify
if the training was successful. In other worlds, we will verify if the algorithm
generalization capacity of the algorithm is adequate to perform the classification
of other images containing cell nuclei with a low associated error rate.

This type of approach is very common in the machine learning literature
and is named supervised learning.

These datasets have samples that contain nucleus and the respective binary
mask delimited by Mask-RCNN. The image below represents an example of
some samples of the dataset.

(a) Mask-RCNN input
image train

(b) nucleus binary mask(c) nucleus binary mask(d) nucleus binary mask(e) nucleus binary mask

Figure 6: Image and its respective binary masks for each nucleus.

6 Results

Based on the results presented by the Kaggle 2018 Data Science Bowl partici-
pants, the best models using the architecture described here achieves accuracy
between 60.93% and 63.16% using “stage2-test-final” as the validation dataset.
Besides, as for the best model presented in this competition, the average mask
Intersection over Union (IoU) was between 66.98% and 95.00% for the threshold

35

precision. The presented results show the potential of Mask-RCNN to produce a
high quality automatic segmentation of nuclei within varied microscopy images.
It is also possible to apply this kind of neural network in promising models of
prediction and segmentation of medical images that contain tumors in cellular
tissues. Below, it is possible to see some images of the results of the automatic
segmentation generated by the Mask-RCNN

Figure 7: An outuput example of the network segmentation prediction, Where
the green bounding box is the original nucleus and in red box we have the
predicted bounding box.

7 Conclusions

The results presented demonstrate the potential of Mask-RCNN in the task
of automatic classification of nuclei. Even with a reasonable performance of,
on average, 62% accuracy, it is possible to improve this model by using more
images to train the network or changing its architecture. Thus, with a better
trained Mask-RCNN, it is becomes feasible deploy this model for professionals
who perform the manually nuclei segmentation in images, making the analysis
more faster and precisely using this Neural Network.

36

Figure 8: An outuput example of Mask-RCNN, with the class label score and
the bounding box.

37

References

[1] Waleed Abdulla. Mask r-cnn for object detection and instance segmentation
on keras and tensorflow. https://github.com/matterport/Mask_RCNN,
2017.

[2] B. Chen, C. Gong, and J. Yang. Importance-aware semantic segmentation
for autonomous vehicles. IEEE Transactions on Intelligent Transportation
Systems, 20(1):137–148, 2019.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385, 2015.

[4] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray
Kavukcuoglu. Spatial transformer networks. pages 2017–2025, 2015.

[5] Yiming Liu, Pengcheng Zhang, Qingche Song, Andi Li, Peng Zhang, and
Zhiguo Gui. Automatic segmentation of cervical nuclei based on deep learn-
ing and a conditional random field. IEEE Access, PP:1–1, 2018.

[6] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted
boltzmann machines. pages 807–814, 2010.

[7] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. pages
91–99, 2015.

[8] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach.
Intell., 39(4):640–651, April 2017.

[9] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis
Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

38

https://github.com/matterport/Mask_RCNN

	Introduction
	Theoretical background
	Neural networks
	Softmax Neurons
	Sigmoid neurons
	The architecture of a neural network

	Convolution Neural Networks
	Local receptive fields
	Sharing the weights and biases
	The Pooling layers
	The general working of a CNN

	Stochastic gradient descent
	Momentum in SGDs
	Adam Optimizer

	Residual Neural Network (Resnet)
	Residual learning

	Identificate Mapping using shortcuts
	Residual network structure and implementation

	Fully convolutional neural networks
	Classifiers for Dense Prediction
	Shift-and-Stitch operations in Filter Dilation
	Upsampling Operation
	Loss Sampling and Patchwise
	 The Momentum and Batch Size
	The segmentation structure
	Behavior of the structures

	Binary Interpolation Function
	 Localisation network
	Parameterizing the sampling grid
	Spatial Transformer Network

	 Fast-RCNN Structure
	RoI pooling Layer
	 Inicializatin Fast-RCNN
	 Fine-tuning for Fast-RCNN

	 Multi-Task loss
	The Mini Batch Sampling
	 Using Back-Propagation along the RoI pooling layers
	 The SGD hyper-parameters
	 The Scale invariance Property
	 Fast-RCNN detection method
	 Faster detection using SVD Truncate

	 Region Neural Networks (RPNs)
	 Anchors boxes on classification
	 Anchors by invariant-Translation
	 Multi-Scale Anchors
	Loss Function to RPNs
	RPNs Training

	 Structure of a Faster-RCNN
	Sharing convolutional features

	Mathematical-Computational Methodology
	Neural networks of the type Mask-RCNN
	 Mask-RCNN training
	Binary masks on the features maps
	 Function of RoIPool
	Function of RoiAlign

	Algorithmic structure of a Mask-RCNN
	Medical image application

	 Dataset Description
	Results
	Conclusions

