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Abstract

In this work we make a review of the main ideas of Markov chains theory, giving some examples as motiva-
tion.We then proceed in examining some statements related to Markov chains in quenched and annealed fields.
After that, we present computer simulations and compare these results with the ones proved theoretically.
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1 Introduction

“Predictions can be very difficult — especially about the future.”
Niels Bohr

In everyday life, we deal with probabilistic phenomena: even those among us without formal mathematical
training are acquainted with some features of the theory of probability. People in general develop an intuitive
sense of chance and randomness while dealing with such things as tossing coins, lottery games and weather fore-
casting. The last one is a good example of this intuitive sense: while most of us are not aware of all the mechanisms
involved in weather forecasting, we accept that a 95% accurate prediction of a sunny day is a good reason not to
wear a raincoat (bear in mind here the difference between accuracy and precision: while accuracy refers to how
close the measured value is to the true or accepted value, precision refers to how close together a group of mea-
surement actually are to each other. Precision is usually expressed trough significant digits. In the case of weather
forecasting, an accurate forecasting is usually preferable over a precise one: if we are told that the temperature
tomorrow may vary from 20°C to 25 °C, and it turns out that we measure it as 23°C, that is just ok. On the other
hand, a very precise forecasting may predict a temperature of 23.43°C for tomorrow, and if it turns out to be 32°C,
that was a very precise but highly inaccurate — not to mention useless — prediction). More than that: we also carry
with us the intuitive notion that, regardless of geographical location or time of the year, we can make a good guess
that the weather tomorrow is somehow related to the weather today (of course location and time of the year matter,
but we do make statements about the weather tomorrow based on the weather today). In theory, one could say that
the current weather is a result of all the climate processes that have taken place on Earth since its origin billions of
years ag(ﬂ but even if we had access to this enormous amount of information, that would not make quite a very
useful model. Instead, let’s try to think of a model where the predictability of the weather today is influenced by
the weather observed yesterday, and so on.

With that in mind, we could define some possible weather states (such as “rainy”, “sunny”, “cloudy”) and make

up some probabilities. The way we defined our model, the probabilities should be of the kind
“As today is sunny, P is the probability that the weather tomorrow is going to be rainy”.

After computing all the probabilities that describe a transition from one weather state to the other, we could
predict, for any two given weather states ¢ and j, the probability of the weather — today in state ¢ — being tomorrow
in state 5. We could also repeat the same calculations and try to predict the weather some days ahead with the
information we have today; we could go further and, carrying on this result, have an idea of the long term prediction
(which is just a prediction for the weather a big lot of days ahead!).

Strange as it may seem, the apparent simplicity of the model we have just outlined is in fact its great advantage:
different phenomena can be modeled in such a way, as this model doesn’t carry many assumptions on the nature of
the problem, provided only that we can define some states, and the outcome of one experiment is influenced solely
by the previous one. This is the heart of the definition of a Markov chain, named after the Russian mathematician

Andrey Markov. We shall discuss some of the main ideas and definitions of Markov chains in the next section.

IThis is usually referred to as determinism. Laplace is often misquoted as having said“give me the positions and velocities of all the atoms
in the universe, and the forces acting upon them, one can predict the future course of the universe.” But what he truly said is somehow deeper
than that, as it can be seen on this from one of his works: “Thus, we must consider the present state of the universe as the effect of its
previous state and as the cause of those states to follow. An intelligent being which, for a given point in time, knows all the forces acting upon
the universe and the positions of the objects of which it is composed, supplied with facilities large enough to submit these data to numerical
analysis, would include in the same formula the movements of the largest bodies of the universe and those of the lightest atom. Nothing would
be uncertain for it, and the past and future would be known to it. (...) All the efforts of human intellect to search for the truth tend to bring it
steadily closer to the intelligent being described above, but this being will remain always infinitely distant.”



2 Markov Chains

2.1 Basic ideas and definitions

In this chapter, we define Markov chains and discuss some of its properties. The fundamentals of this theory have
been widely discussed on many good books; most of the definitions given here are adpated from “The Theory of
Probability”, written by B. V.

A Markov chain is a collection of random variables {X;} (where the index ¢ runs through 0, 1, ...) having the
property that, given the present, the future is conditionally independent of the past. Frequently, Markov chains
are defined in terms of a given physical system S, which at each instant of time can be in one of the states
Aq, Ag, ..., Ay and alters its state only at times ¢y, to, ..., t,, .... For Markov chains, the probability of passing to
some state A;(i = 1,2,...,k) at a time 7(¢; < T < t;11) depends only on the state the system was in at time
t(ts—1 < t < ts) and does not change if we learn what its states were at earlier times. This is the same as saying
that Markov chains are memoryless (“future” is independent of “past” given “present”).

In the following examples we illustrate this definition:

Example 1. Gambler’s ruin — Let two players each have a finite number of cents (say, n4 for player A and np
for player B). Now, flip one of the cents (from either player), with each player having 50% probability
of winning, and transfer a cent from the loser to the winner. Repeat the process until one player has all the
cents. In this example, we may define a collection of random variables A;, in which we store the information
of the amount of cents with player A at time ¢, where the index ¢ represents the successive tossing of the
coins, ¢ = 1,2,.... Similarly, define B; the amount of cents with player B at time t. Then, the possible
states for this system are represented by the ordered pairs (A, B;), which we may call X; = (A, By).
Observe that the game stops when one of the players has all the cents, there is, the game stops when X; =

(na+mnp,0)or X; = (0,n4 +nB).E]

This is an example of a random walk, which is a mathematical formalisation of a trajectory that consists of
taking successive random steps. Random walks are usually assumed to be Markov chains. Other examples
include the path traced by a molecule as it travels in liquid or gas, the search path of a foraging animal
(assuming that the animal takes random steps and does not retrieve information from the past), the price of

a fluctuating stock.

Example 2. Hydrogen atom — In Bohr’s model of the hydrogen atom, the electron can be in one of the allowed
orbits. Denote by A; the event that the electron lies on the ith orbit. Further, assume that changes in the state
of the atom can only occur at times t1, to, ... (actually, these times are random quantities). The probability
of transition from the ith orbit to the jth at time ¢, depends only on ¢ and j (the difference 7 — ¢ depends on
the amount of energy by which the charge of the atom changed at time ) and does not depend on the orbits

the electron occupied in the past.

Example 3. Branching process Suppose that a population evolves in generations, and let Z,, be the number of
members of the nth generation. Each member of the nth generation giver birth to a family, possibly empty,
of members of the (n + 1) th generation; the size of this family is a random variable. We make the following

assumptions about these family sizes:

(a) the family sizes of the individuals of the branching process form a collection of independent random

variables;

>The probability that one of the players will eventually lose all his money approaches 100% as time increases. It can be shown that the
chances P4 and Pp that the players A and B, respectively, will end with no cents are: P4 = ng/(na +ng),Ps = na/(na +ng).
Thus, the player starting with the smallest number of cents has the greater chance of going bankrupt. The longer you gamble, the longer the
chance that the player who started with more cents will win the game. That’s why casinos always come out ahead in the long run, as they start
with more money than the players.



(b) all family sizes have the same probability mass function f and generating function G.

AN

Figure 1: The family tree of a branching process.

We are interested in the random sequence Zg, Z, ... of generation sizes Let G,,(s) = E(s?") be the gen-
eratinf function of Z,,. It can be shown that G,,,1,,(s) = G (Gn(s)) = Gn(Gn(s)) and thus G, (s) =
G(G(...(G(s))...)) is the n-fold iterate of G (see[Grimmet{ for a detailed demonstration). So, the branching
process random variables Z,, form a Markov chain — since conditional on the number of the generation size
at the nth generation, the future values do not depend on the previous values. The Z,, may take values in

S =(0,1,2,...) and the transition probabilities p;; are given by the coefficients of S7in G(s)’.

We say a Markov chain is homogeneous when the conditional probability of the occurrence of an eventj
in the (n+1)st trial, provided that in the nth trial the event j occurred, does not depend on the number of
the trial. We call this probability the transition probability and denote it by p;;: in this notation, the first
subscript always denotes the result of the previous trial, and the second indicates the state into which the

system passes in the subsequent instant of time. Mathematically, a Markov chain is homogeneous if:

P(Xni1 = jlX, = 1) = P(X1 = j|Xo =1)
That is, the probability p;; = P(X,41 = j|X, = i) does not depend on n for an homogeneous Markov
chain.

The total probabilistic picture of possible change that occur during a transition from one trial to the immedi-

ately following is given by the matrix:

P11 P12 Pik

P21 P22 D2k
T =

Pk1  Dk2 Pkk

This matrix is called transition matrix (matrix of transition probabilities). Being probabilities, all elements

of this matrix must be non-negative numbers, i.e., for all ¢ and j,

0<py <1

This matrix contains useful information about the system: if all the elements in the main diagonal are null,
that means the systems never stops at one state, that is to say, once the system reaches state ¢, it must go to
another state in the next step. That is the case in example 1; if at a given time ¢ players A and B each have
a given amount of cents, they will both have different amounts at time ¢ + 1, for at every play one of the

players win and the other loses a coin. It should also be noted that the sum of the elements of each row is



equal to unity. This comes from the fact that from state A; at time ¢, the system must go to one and only one

of the states Aj. This fact can be written as:

k
> pij=1(i=1,2,...k)
j=1

Sometimes it’s useful to analyze these transition probabilities with a diagram. In the diagram below the
circles indicate states of the system and the arrows indicate the direction of the transition from one state to

another. When p;; = 0 the corresponding arrow is omitted.

Db22

P13 P31 P24 P42

Figure 2: Diagram with transition probabilities for a discrete Markov chain

Let’s analyze other interesting aspects of the transition matrix in the following examples.

Example 3. Bernoulli process — Take a sequence of independent random variables X7, Xo, ..., X, such that for
each 7, the value of X is either o or 1, and for all values of 7, the probability that X; = 1 is the same number
p. One of the many examples of this process is the tossing of a fair coin, if we define p as the probability of
coming up “TAILS”, and define “TAILS” as 1 and “HEADS” as 0. Then we have, for all ¢, the probabilities
P(X;=1)=pand P(X; =0) =1 — p = q. The way we defined the Bernoulli process, we have:

P(Xn+1 = j/X17X2a -~-,Xn) = P(Xn+1 :]) = P(Xn—i-l :J/Xn)

Thus, the Bernoulli process is a Markov chain, since the future of the process is independent of the past
(incidentally, it is also independent of the present). The transition matrix for this process is given by:

(1)

Any process in which all variables are independent is a Markov chain (that’s a special case, since the vari-
ables are even independent of the current state). A Bernoulli scheme — a generalization of the Bernoulli
process to more than two possible outcomes — is also a special case of Markov chains, just like the Bernoulli
process. An interesting property for Bernoulli schemes is that their transition matrices have identical rows.
This comes directly from the fact that the next state is not only independent of the past, but, as we mentioned

before, it is also independent of the current state.

Example 4. Suppose we have a system .S with possible states A1, As, A3 whose probability transitions are de-

scribed by the transition matrix below.



P11 P12 P13
™= P21 P22 P23

P31 P32 P33

Suppose also that the Markov chain is homogeneous, that is, the transition probabilities have no relation with
the number of the trial. We are interested in knowing the probability that the system will be at state A3 two
steps ahead if it starts at state A;. We shall denote this probability as p%). A quick look shows us that state
Aj can be reached through states A; and As, and the probability we look for can be found considering the

possible ways we may get from state 1 to 3 passing through the other states. Then, the probability pg? is:

p%) = p11p13 + P12P23 + P13P33

In general, for a system with k states, we have:

p7] Zp’b’l‘p’l”j

It can be shown that if a Markov chain has a transition matrix 7, the ijth element p( ™)

of the matrix 7" gives
the probability that the Markov chain will be in state 7, starting from state ¢, after n steps. An outline of the
demonstration is given: Suppose we have a systems which has states A;, As, ..., Ax.Let’s denote as AES) the
event that the system is in state ¢ at time s. We want to find the probability that the system will be at state
J after n steps, that is, we want to find the probability of the event A;H”). This probability was denoted

(n)

above as p;;”. We now examine some intermediate trial with the number (s +m). One of the possible events

A(Hm , com (1 < 7 < k) will occur in this trial, with probability p(m) The probability of transition from

state ACH™ to state A( ) s p(n ™), By the formula of total probability,

p” pr pw 2.1

This is the Kolmogorov-Chapman equation.

We denote by 7, the transition matrix after n trials:

oY ety
(n) (n) (n)
S Pa1” P2’ - Doy
n) n) n)
pl(cl pl(c2 pl(ck:

According to the formula of the total probability given above, the following relation holds between the

matrices 7, with different subscripts:

T = T * Tnem (0 < m < n)

In particular, for n = 2, we find:

Mg = T *T1 = Tq

For n=3:



71'3:771'71'2:71'1'71'%:71'%

And generally, for any n:

Tp = T

We note a special case of formula (1) for m = 1:
k
n m n—1
) =" pipl Y 2.2)
r=1
2.2 Classification of states

A state A; of a Markov chain is called absorbing if it is impossible to leave it (i.e., p;; = 1land p;; =
0 fori # j). A Markov chain is absorbing if it has at least one absorbing state, and if from every state it
is possible to go to an absorbing state (not necessarily in one step). In Example 1 (the gambler’s ruin), we
have two absorbing states, one corresponding to the situation when player A gets all the cents and wins the
game, and the other is the situation when player B wins. Note that this is an example of an absorbing Markov
chain: at any moment of the game, we can say that, with some probability, one of the players will get all the
cents at a time (t,,), thus winning the game and reaching an absorbing state. We may not all argue that this
will eventually happen — otherwise, there wouldn’t be so many ruined gamblers! — but it is clear that it is
possible, at any given moment, that one of the players will win the game after a numbers of plays. In fact, it
can be proven that for an absorbing Markov chain, the probability that the process will be absorbed is 1.

P31

P21
P32
ba3

Figure 3: State A; is an absorbing state.

We say a state A; is accessible from a state A; (A; <— A;) if a system started in state A; has a non-zero

probability of transitioning into state A; at some point; that is, for some n > 0:

pg»l) >0
A state A; has period d if any return to state A; must occur in multiples of d time steps. If d = 1, then the

state is said to be aperiodic: returns to state A; can occur at irregular times.

A state A; is called unessential (or transient) if there exist A; and n such that pij) (") > 0, but PJji) (m) — g
for all m. Thus, an unessential state possesses the property that it is possible, with positive probability, to
pass from it to another state, but it is no longer possible to return from that state to the original (unessential)
State.



Db22
(a)——()
P13 D24 D42
D43

D34

Figure 4: State A; is a transient (unessential) state. All other states are recurrent.

All states not transient are called recurrent or persistent. From the definition it follows that if the states
A; and A; are recurrent, then for all j such that (4; <— A;), it is also true that (4; <— A;). Another way
of saying this is that a state is recurrent if there exist positive m and n such that along with the inequality

pgn) > (, the inequality p;-?) > 0 also holds. Recurrent states have finite hitting time with probability 1.

If A; and A; are such that for both of them these inequalities hold, given certain m and n, then they are
called communicating (they are said to communicate). Every state communicates with itself, that is, for all
(0)

i we have p;;” = 1. It is clear that if A; communicates with A; and A; communicates with Ay, then A;
also communicates with A;. Thus, all essential states can be partitioned into classes such that all states
belonging to a single class communicate and those belonging to different classes do not communicate. All

states of one and the same class have one and the same period.

2.3 Long term behavior

Usually, we are interested in the long term behavior of a system. In this section we are going to state some

results using the previous definitions. We want to find the probability that the state is going to be in a certain
(n)

ij
If this probability is independent of the initial state, it converges to a stationary probability p; > 0. For a

state j after n steps — for a very large n — starting from a initial state ¢, that is, we want to find lim p
T—r00

Markov chain with k states and transition matrix m, all states are recurrent if and only if there is a solution

for:

k

=1
k
> pj=1
j=1

If the system above has a solution, it is unique, and p; > 0Vj. We can also interpret p; as the relative

frequency of occurrence of state j in the long-term behavior of the system.

Example 5. A strange climate — In the Land of Oz, there are never two nice days in a row. A nice day may
be followed by a rainy or a snowy day with equal probabilities; a snowy day has an even chance of being
followed by another snowy day (and the same happens for rainy days). If there is change from snow or
rain, only half of the time this a change to a nice day. Dorothy is thinking about moving from Kansas to

the Land of Oz, and as she was raised in Western Kansas — which exhibits a semiarid climate — she is very



curious about the strange climate of the Land of Oz, so she asked the wonderful wizard of Oz to do some
calculations for her — because matrix multiplication is one of the wonderful things he does. What is the long

term behavior of the climate in the Land of Oz?

The states for this system are the kinds of weather: rainy (R), nice (N) and snowy (S). The transition matrix
may be written as:

R N S

R [1/2 1/4 1/4
r=N|1/2 0 1/2
S \1/4 1/4 1/2

We showed in the previous section that the probabilities of reaching states from a initial state in n steps can

be computed by calculating the nth power of the transition matrix. Thus, for the Land of Oz we have:

R N S
R (04375 0.1875 0.3750
m = N | 0.3750 0.2500 0.3750
S \0.3750 0.1875 0.4375

R (0.4063 0.2031 0.3906
m3 = N | 0.4063 0.1875 0.4063
S \0.3906 0.2031 0.4063

0.4023 0.1992 0.3984
0.3984 0.2031 0.3984
0.3984 0.1992 0.4023

Ty =

©n Z2x

R N S

R (0.4004 0.2002 0.3994
ms = N | 0.4004 0.1992 0.4004
S \0.3994 0.2002 0.4004

At this point, Dorothy started to become cheerful, as it seemed the matrices were converging to a certain

matrix, so she asked the wizard to run some more calculations:

R N S

R (0.4001 0.2000 0.3999
e = N | 0.3999 0.2002 0.3999
S \0.3999 0.2000 0.4001

10



R N S
0.4000 0.2000 0.4000
0.4000 0.2000 0.4000
0.4000 0.2000 0.4000

7 =

»n Z2 %

R N S
R (0.4000 0.2000 0.4000
ma3 = N | 0.4000 0.2000 0.4000
S\ 0.4000 0.2000 0.4000

At this point, she was convinced that she had found the long-term behavior of the climate of the Land of Oz.
The probabilities for states R, N, and S, are pr = 0.4, pny = 0.2, and pg = 0.4 after n days for a large n.

These probabilities are independent of the initial state.

The same results could have been found in a more elegant way — and sparing the wizard from a lot of
calculation — by solving:

1/2 1/4 1/4
(pr ps pN)=(Pr ps pnN)| 1/2 0 1/2
1/4 1/4 1/2

Pr+ps+py =1

3 Markov chains in a field of traps

3.1 Introduction

In 1998, Robin Pemantle and Stanilav Volkov wrote an article entitled “Markov chains in a field of traps.”
Some articles had been written before on the subject of random walks in a random field of traps, but their
article encompass results obtained by others and provide some useful generalizations on the subject. Most
of the definitions and theorems in this section have been taken directly from this source. We also use the
same notation they used, calling the attention of the reader to the occasions when this notation might be a

little different from the one we used earlier.

Having established the fundamentals of Markov chains in the previous section, we now make a quick review
of their article, focusing on its principal theorems and results. The reader wishing to see all the demonstra-
tions in details may refer to their article. Following this section we present some computer simulations with
the purpose to observe the long-term behavior of Markov chains and reproduce the results formally proved
by Pemantle and Volkov.

A site is defined as being a trap with probability p. A trap — as the name indicates — is an absorbing state.
In the classical problem of the drunkard’s walk, we could imagine a manhole as being the trap: once the

drunkard falls down the manhole, he stops his walk (a less dangerous example could be the bar or his house,

11



provided that once he reaches any of these places, he stays there indefinitely). Let’s now define our variables

and notation:

Let S be a countable space and let p : S? — [01] be a set of transition probabilities on S, i.e.,z p(z,y) =1
y

for all x € S. Let P, denote any probability measure such that the random sequence X, X1, Xo,... is a

Markov chain with transition probabilities {p(x, y)} starting from Xy = x. Take a function ¢ : S — [0, 1),
representing a set of trapping probabilities.

When dealing with traps, two kinds of problems can be formulated as Markov chains:

* Quenched problem — “Site x is a trap with probability ¢(z) forever”. Let T C S be the random set
of traps, i.e., Py({x1,...,2,} C T) = II}_,q(x;) for all finite subsets of .S, and T is independent of

Xo, X1, ... We are interested in the quantities

7w(x) = Py(X, €T for somen > 0) 3.1)

We say that the quenched field is trapping or non-trapping, according to whether 7(z) = 1 for all z, or
whether 7(z) < 1 for some z.

In our analogy of the drunkard’s walk, let’s imagine the city as being a square grid (because S is a
countable space). The quenched problem represent the situation of the drunkard wandering through
the streets of this city with a fixed amount of open manholes.

* Annealed problem — Site x is a trap with probability ¢(z) , but each unit of time, this probability
is updated. This gives us an IID EI sequence {T,,,n > 0} of trap sets, each distributed as T in the
quenched problem. Returning to our drunkard’s walk, he is now walking through a city where each
manhole may be either open or closed with some probability which is updated each unit of time. The

same way we defined for the quenched problem, we are interested in the quantity:

7(x) = Py(X,, € T, for some n > 0) (3.2)

We say that the quenched field is trapping or non-trapping, according to whether 77 (x) = 1 for all «, or

whether 7(z) < 1 for some x.

It is worth noticing that here 7(x) and 7 (z) indicate trapping probabilities, while in the previous section we
used the letter 7 to indicate the transition matrix for a Markov chain. The first result obtained by them is the

equivalence of the two problems:
Define g(z,y) = Z P,(X,, = y) (Greens function). Then we have:
n=0

Theorem 1 — Assume there is a constant K such that

g(z,z) < K forallx € S. 3.3)
Then the annealed field is trapping if and only if the quenched field is trapping.
As 7(x) < 7(z), we are only interested in one direction of the theorem.
3.2 A criterion for trapping

A criterion for trapping is established for the annealed case, and under the assumptions of Theorem 1, the

criterion also holds for the quenched case. Let 7(x) = inf{k : X}, = x} denote the first hitting time of the

3Indepcndent and identically distributed

12



point z. Define the quantities:

Ry =7 ~log(1 - q(Xi)Lr(x,)=i; (3.4)

Then the probability of no trapping in the annealed chain up to time n is given by:

P,(X; ¢ T; for all i < n||Xo, ..., X,) = exp(—R,,)

Similarly, for the quenched problem we have:

P.(X; ¢ T forall i < n||Xo, ..., X)) = exp(Ry)

Thus, the trapping probabilities are:

m(z) = E[l — exp(—Rinfiy)], (3.5)

7(x) = E[l — exp(—Rinfty)],

We want to determine a trapping criterion for the annealed case, so we need to find Rin #ty such that 7(x) =

1. From the equations above, we can see that if Reo = 00 we get:

7(z) =E[1— i] =E[1] =1,

eOO

So, our problem now is to determine when R, = oo with probability 1. Define:

=0

The way we defined R, we see that R, = oo if and only if Seo = 0. Therefore, a necessary condition for

trapping in the annealed case is that for all z,

ES, = Zg(:co,x)q(x) =00 (3.6)
€S

This is a necessary, but not sufficient condition for trapping.

Definition 1 A subset A C S is transient for z if P,(X,, € A for some n) < 1. A is transient if it is transient

for some x. When all states communicate in A€, then A must be transient for all = or for no z.

The example below depicts a situation when Z g(xo,x)q(x) = oo but the chain is not trapping.
zeS

13



Example 6. Let A be any transient set satisfying Z g(zo,z) = co. An example of such a set A for a simple
T€EA
random walk in Z? is the set

{z: ||z — (0,0,2™)| < 2"/? for some n > 1}

Let g(z) = ¢ € (0,1) forz € Aand O for x ¢ A. Then clearly 7(zo) < 1 (so the chain is non-trapping),

while Zg(O, z)q(x) = oo.

zeS
Theorem 2 — Suppose that the annealed field is non-trapping, i.e., for some xo,7(x9) < 1. Then there
exists a subset A C S such that:

(1) A is transient for xo and

() D glwo,z)g(w) < oo

zeS\A

3.3 A necessary and sufficient condition for trapping

We now discuss under which conditions Z g(z0,x)q(x) = oo is not only a necessary but also a sufficient

€S
condition for trapping. We do so by imposing some conditions on the geometry inherent in the Greens

function. Assume here that the Greens function bound (3.3) holds.

Definition 2 — For 2y € S, L < K and « € (0, 1) the Greens function annulus H, (L, xg) is the set

{reS:L=>gxo,z)2al}

We say the Markov chain has reasonable annuli ﬁf for some o € (0,1) and for every L < K,z¢ €

S and A C transient with respect to xg, the annulus H,, (L, z¢) has finite cardinality and:

lim sup —|HQ(L’ o) (4]

<1 3.7
L—0 |Ho (L, )|

Theorem 3 Suppose the Markov chain on S with transitions p(x,y) has reasonable annuli, and suppose

that, for some C,C1 > 1, the function q : S — [0,1) satisfies the following regularity condition:

1 1

ag(wo,x) < g(zo,y) < Cg(xo, z) = aq(x) < q(y) < Cry(x) (3.8)

Then 7(x) = 1 if and only lfz g(zo, z)q(x) = 0.

4 Simulation

We ran some simulations for the problems of absorbing Markov chains (using the example of the gambler’s ruin)
and also for quenched and annealed Markov chains in a field of traps, comparing both cases. All simulations
were made using Matlab. It must be emphasized that the purpose of the simulations is neither to prove or confirm
anything — since everything we are simulating has already been proven (in a very fashion way), we are only

entertaining ourselves while illustrating the theory reviewed in the previous section.

4Annuli is a plural of annulus.
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4.1 Gambler’s ruins

As mentioned in example (number), two players each have a finite number of coins, say n; and ny. A coin is
flipped. If the result is TAILS, player 1 gives one of his coins to player 2. If the result is HEADS, player 2 gives
one of his coins to player 1. The game stops when one of the players runs out of coins. The probability that a
player will go bankrupt is equal to the ratio of the amount of coins his opponent have to the total amount of coins.

Calling P; the probability that player ¢ will go bankrupt (which we shall refer as “failure”), we have:

n2
P=—
ni + ng

ni
Pp=—1"—
ny +n2

We wrote a small code in Matlab to examine the probabilities above. We do this by running the code several
times and comparing the frequencies F'v; and Fyo of failure for each player with the calculated probabilities.
Matlab has special commands to generate pseudo-random numbers and arrays. Some of them worth mentioning

are:

» rand — Basic syntax: rand(n) returns an n-by-n matrix containing pseudo-random values drawn from the

standard uniform distribution on the open interval (0,1).

» randi — Basic syntax: r = randi(imax,n)returns an n-by-n matrix containing pseudo-random integer values

drawn from the discrete uniform distribution on 1:imax.

e randn — Basic syntax: r = randn(n) returns an n-by-n matrix containing pseudo-random values drawn from

the standard normal distribution.

¢ binornd — Basic syntax: binornd(N,P). This command generates random numbers from the binomial distri-
bution with parameters specified by the number of trials, N, and probability of success for each trial, P. N
and P can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of

R. A scalar input for N or P is expanded to a constant array with the same dimensions as the other input.

» sprandsym — Basic syntax: sprandsym(S) returns a symmetric random matrix whose lower triangle and

diagonal have the same structure as S. Its elements are normally distributed, with mean O and variance 1.

 sprand — Basic syntax: sprand(S)has the same sparsity structure as S, but uniformly distributed random

entries.

e sprandn — Basic syntax: sprandn(S)has the same sparsity structure as S, but normally distributed random
entries with mean 0 and variance 1.

 randsrc — Basic syntax: randsrc(m)generates an m-by-m matrix, each of whose entries independently takes
the value -1 with probability 1/2, and 1 with probability 1/2. This command can also be used to generate
a random matrix using prescribed alphabet. This is done by the elements of the alphabet, and the prob-
abilities of occurrence of each element. Then, a m X n random matrix is generated with the command

randsrc(m,n,[alphabet; prob]).

Each of these commands have many possibilities as to parameters input; ore information on the syntax of each
command and some examples can be found at the MathWorks website (see references).

Below is the pseudo-code for our program. The inputs are the quantities of coins n; and ny each player has
at the beginning of the game and p, the probability of a coin turning HEADS (the probability that player 1 wins a

coin from player 2) and m, the desired number of matches. The output is: N7, the number of failures for player
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1 out of m matches; Ns, the number of failures for player 2; v, a vector of length m which stores information
of the number of steps at each match until one of the players wins the game, and mwv, which is just the mean of
vector v. When mu is not an integer, we simply take the closest integer, since the purpose of this part of the code is

just to give a glimpse at the magnitude of the number of steps until the end of the game as the initial conditions vary.

In the pseudo-code below, only the main features of the algorithm are presented, as the Matlab code has auxil-
iary variables used to store the initial values of ny and no (which are the same from the first to the mth match), and

so on. The results obtained are summarized below, where each line contains the information of m = 100 matches.

Input: nl,n2,p,m
Output: N1, N2, v, mv
while i < m + 1 do
while (n; # 0) AND (ns # 0) do
R = binomial (p);
if R=1 then
ni:=n1+ 1;
N9 :=ng — 1;
k=k+1;
end
else

ny=ny — 1;

ng :=ng + 1;
k=k+1,
end
end
if n; = 0 then

%Player 1 has lost the game Ny := Ny + 1;
$number of defeats for player 1

end

else

9%Player 2 has lost the game N5 := Ny + 1;
$number of defeats for player 2

end
1:=1+1;
v(m) :=k;

Algorithm 1: The gambler’s ruin

The results obtained are summarized in the next tables, where each line contains the information of m = 100

matches.
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Table 1: Game with n; = ny = 10, p = 0.5, m = 100. Calculated probabilities for failure are P, = P> = 0.5.

ny =ng =10,p=0.5
N1 FNl N2 FN2 muv
52 |1 052 | 48 | 048 | 111
53 |1 053 | 47 | 047 | 82
48 | 048 | 52 | 0.52 | 86
59 [ 059 | 41 | 041 | 112
47 | 047 | 53 1 0.53 | 99
44 | 0.44 | 56 | 0.56 | 100
50 | 0.50 | 50 | 0.50 | 98
54 |1 054 | 46 | 0.46 | 106
55 | 055 ] 45| 045 | 99

The simulation seems to indicate that the probabilities of failure are related to the calculated ratio between
your opponents coins and the total amount of coins, and the number of steps until the game reaches and end is
reasonable — around one hundred steps. Let’s now examine a situation when one of the players has far more coins
then the other, aside with a better probability at his side (similar to casinos, which always have more money than

individual players and usually also have better chances of winning).

Table 2: Game with n; = 10000, n2 = 10, p = 0.7, m = 100. Calculated probabilities for failure are P; = 0.01
and P, = 0.99.

nq = 10000, ny = 10, p = 0.7
N1 FNl N2 FN2 muv
0 0 100 1 26
0 0 100 1 24
0 0 100 1 27
0 0 100 1 26
0 0 100 1 24
0 0 100 1 27
0 0 100 1 27
0 0 100 1 24
0 0 100 1 24

Repetitive as it seem, the lines of this table show us what we already knew — the player starting with less coins
has greater chance of losing. But still, one could argue that even at casinos there are games in which the odds are
not so good for the house, and thus players have a chance of (eventually) winning. So, let’s examine a situation in

which one of the players has more coins, but the other has better odds:
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Table 3: Game with ny = 10000, no = 10, p = 0.3 (so the player with less coins has some advantage), m = 100.
Calculated probabilities for failure are P, = 0.01 and P> = 0.99.

nyp = 100000, no = 10, p = 0.3
Ny | Fyi | No | Fiyg | mo
0 0 100 1 2510
0 0 100 1 2507
0 0 100 1 2477
0 0 100 1 2497
0 0 100 1 2518
0 0 100 1 2499
0 0 100 1 2484
0 0 100 1 2512
0 0 100 1 2513

Analyzing table 3, once again the result is obvious: since the probabilities of failure depend on the amount
of coins you start, even when the poorer player has better odds, it will lose. Plating the game with these initial
conditions is just like running my Matlab program for this case: it takes longer, but nobody doubts what the result is
going to be. This example was intended to show two things: first, an absorbing Markov chain reaches an absorption
state after a given number of steps — which may not be a really big number, after all — with probability 1. as Table
1 indicates. Second, when considered the long-term profits among several games, casinos always win. That’s a

mathematical fact. E]

4.2 Drunkard walk — one dimensional random walk

We now turn to the comparison of trapping probabilities for annealed and quenched fields, bearing in mind the
result obtained by Pemantle and Volkov: assuming that the bound on the Greens function holds, than the annealed
field is trapping if and only if the quenched field is trapping. Suppose a drunkard is currently at position d = 0. At
position d = —b and d = h (where b and h are integers) are the bar and his house, respectively. He takes discrete
steps with equal probabilities to left or right, and once he reaches the bar or his house he stays there with fixed
probabilities p, and by,. The bar and the house represent traps with fixed probabilities, hence this is a quenched
problem. We want to investigate whether this is a trapping field. A Matlab program was written to simulate this
situation, and the pseudo-code is given below. The input data is the positions of the bar (a negative integer) and the
house (a positive integer), and their respective probabilities of trapping. The output is the final position d (either

the bar or his house) and the number k of steps taken.

Besides that, casinos make even more money by altering their payouts from true odds to casino odds. The following excerpt tells us
the difference between true and casino odds: “ Roulette offers a prime example of the difference between true odds and casino odds. On an
Anmerican roulette wheel, there are 38 pockets. The odds of any given number coming up on any given spin are 37 to 1. But when you bet on a
given number, the casino only pays out 35 to 1 if you win. Say you bet $1 on each number, for a total wager of $38. For the winning number,
you’ll be paid $35, plus you’ll get your $1 back on that particular number, for a total of $36. So, even when you bet on every available number,
you lose $2. That’s the house edge: 2/38, or 5.26 percent the difference between true odds and casino odds.”
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Input: b, h, py, pp

Output: d, k

while : < m + 1 do

step = randsrc(1,1); %the result is a step left or right with prob. 1/2;
k:=k+1;;

%onumber of steps position = position + step; % and he walks!;
if d = b then

¢ =binornd (1, pp);

if c=0 then

d :=b+1 % a step away from the bar;

k :=k+1 ;

end

end

if d = h then

¢ =binornd (1, py);

if c=0 then

d :=h-1 % a step away from the bar;
k:=k+1;

end

end

end

4.2.1 Quenched field

As we have proceeded for the gambler’s ruin, we run the algorithm above with different parameters. Once again,
we have ran the program 100 times and calculated the mean number of steps until reaching an end (each line is the
result of this set of a hundred walks). We have also included a stop criterion based on the number of steps at the
beginning of the program, just in case the walk never reaches one of the traps. The results are summarized over

the next tables:

Table 4: Drunkard walk with b = —10, p, = 0.5, h = 10, pp, = 0.5 — symmetric random walk

Quenched problem: b = —10,p, = 0.5,h = 10,pp = 0.5
d=bar | d=house mean number of steps

48 52 117

42 58 126

52 48 112

60 40 115

45 55 111

48 52 116

48 52 117

40 60 118

47 53 121

It seems this field is trapping. But we could try and make the walk a little more interesting by making it
asymmetric — the probabilities of taking a step left or a step right are no longer equal. This can be done with some
small changes in our code. Let’s also put the bar and the house at considerably different distances, that is, either
|b| >> |h| or |h| >> |b|. Will the field still be trapping? In the next simulation, the probability of taking a step
left is 0.2 (and consequently, the probability of taking a step right is 0.8).
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Table 5: Drunkard walk with b = —10, p, = 0.5, A = 15000, p;, = 0.5 — asymmetric random walk

Quenched problem: b = —10, p, = 0.5, h = 15000, p;, = 0.5
d=bar | d=house mean number of steps
0 100 5007
0 100 5012
0 100 5002
0 100 5023
0 100 5007
0 100 5010
0 100 5014
0 100 5009
0 100 5018
Just for a comparison, we ran the program for the symmetric random walk with the values b = —10,p, =

0.5, h = 15000, p;, = 0.5 used above, and the mean number of steps until reaching a trap is not considerably
different from the above. The mean number of steps until reaching an absorbing state is 6408 steps, with the
difference that the preferential absorbing state is now the bar (because it is closer, and the probabilities of taking
a step left or right are equal). In fact, it can be seen in the tables above that the probabilities of getting trapped
in trap ¢ are close to the ratio between the distance from the origin to trap j and the distance from one trap to the
other (which is quite intuitive, but still interesting to observe!). This is actually very similar to the problem of the
gambler’s ruin, which is natural since the gambler’s ruin problem is itself a random walk.

The simulations above suggest that the field in this problem is trapping (the field here is the set of integers
S = [b, h] with traps at positions = = b and « = h, with fixed probabilities).

4.2.2 Annealed field

We consider now the annealed problem (where the probabilities that the bar and the house are traps aren’t fixed).
Once the drunkard reaches the bar or the house, the probability of trapping is a random number, chosen from
a uniform distribution on the interval(0,1). The annealed field is trapping if and only if the quenched field is
trapping, we expect to observe trapping for all cases considered. Over the next table, each line contains the results

of a hundred walks. We do this for both the symmetric and the asymmetric case. The results are:

Table 6: Drunkard walk with b = —10, h = 10, p;, and p;, not fixed — symmetric random walk

Annealed problem: b = —10,h = 10
d=bar | d=house | mean number of steps
59 41 114
44 59 125
51 49 136
56 44 120
54 46 109
44 56 119
35 65 118
56 44 129
47 53 117

Now we consider the asymmetric random walk, with the probability of taking a step left as 0.2. We have also

put the bar and the house at considerably different distances.
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Table 7: Drunkard walk with b = —10, h = 15000p;, and p;, not fixed — asymmetric random walk

Annealed problem: b = —10,h = 10
d=bar | d=house | mean number of steps
0 100 4991
0 100 5006
0 100 5013
0 100 5008
0 100 4987
0 100 4995
0 100 5017
0 100 5010
0 100 4990

From the tables above, we can see the field is annealed, as we expected. In the previous section, we stated in

which conditions Z g(x0,x)q(x) = oo is a necessary and sufficient condition for trapping.

€S
We are taking only homogeneous Markov chains (the probabilities of going from one state to another don’t

depend on the number of the step). Let’s examine the probabilities P(X,) = z by looking at the transition
probability matrix. Let’s refer to our example of the drunkard: he never stays at a given position for more than one
unit of time — he must always take a step left or right. The only exception is when he reaches one of the trapping
(absorbing) states — namely, the bar or his house, for which x=-b or x=h — where he stays with fixed probabilities
(quenched problem) or varying probabilities (annealed problem). Anyway, the probability of trapping is a function
g(z) such that 0 < 1¢(x) <; besides that, he walks only from one state to its immediate neighbor — he can’t jump
from the origin to state 3, for example. Setting the origin as zero, the bar at x=-b and the house at x=h, the transition
probability matrix has the special property that each row has at most two non-null elements. Just to give an idea of
how this matrix looks like, below is an example in which the x = -3 is an absorbing state with probability 0.4; x =
2 is an absorbing state with probability 0.4 and each step has equal probabilities for both right and left sides.

-3 -2 -1 0 1

-3 (1 0 0 0 0
-2104 0 05 O 0
05 0 05 O

0 05 0 05
0 0 05 0 04
0 0 0 0 1

o O O O N

0
0
0
0

We computed some powers of this matrix with Matlab to see how the values evolve. The nth power of this

matrix, for large n, is:

-3 -2 -1 0 1 2
-3 1 0O 0 0 O 0
-21064 0 05 0 0 0.16
-11048 05 0 05 0 0.32

0 032 0 05 0 05 048
1 0.16 0 0 05 0 0.64
2 0 0 0 0 0 1

We can see from the matrix above that all higher powers have the same values for each and every element, so,

now matter where we start, clearly Z g(x0,z)q(x) = oo. For our problem the results would be similar, the only
zeS
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difference being the size of the matrix. As most Markov chains, a simple random walk has reasonable annuli (see

[7]), and so our condition is sufficient and enough for trapping.

5 Conclusions

The simulations all showed the same results that were proved theoretically. Also, while writing the code used to run
the simulations we confirmed the simplicity and power of modeling phenomena as Markov chains: the algorithms
are very simple and can easily be changed to study more complex phenomena (provided that this is still a Markov

chain, of course), as all it takes to run these programs is essentially a random number generator.
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