Tight Lagrangian submanifolds

Jhoan Sebastián Báez ¹ Supported by CNPq. joint work with Luiz A. B San Martin ²

In 1991, Y.-G. Oh [3] introduced the notion of *tightness* of closed Lagrangian submanifolds in compact Hermitian symmetric spaces. Let $(\widetilde{M}, \omega, J)$ be a Hermitian symmetric space of a compact type and L be a closed embedded Lagrangian submanifold of \widetilde{M} . Then L is said to be *globally tight* (resp. *tight*) if it satisfies

$$\sharp (L \cap g \cdot L) = \mathrm{SB} (L, \mathbb{Z}_2)$$

for any isometry $g \in G$ (resp. close to identity) such that L transversely intersects with $g \cdot L$. Here SB (L, \mathbb{Z}_2) denotes the sum of \mathbb{Z}_2 -Betti numbers of L. The concept of tightness has applications to the problem of Hamiltonian volume minimization. In particular, Oh showed that the standard \mathbb{RP}^n inside \mathbb{CP}^n is tight and has the least volume among its Hamiltonian deformations.

We will explore the concept of *infinitesimally tight* which we show to be equivalent to the notion of locally tight. In addition, we will prove that a Lagrangian orbit $L = \mathbb{S}^3$ of U(2) in the flag $\mathbb{F}(1,2)$ is infinitesimally tight.

References

- H. Iriyeh, and T. Sakai, Tight Lagrangian surfaces in S²×S², Geometriae Dedicata, 145(1), 1-17, 2010.
- [2] L. A. B. San Martin, Grupos de Lie, Editora Unicamp, 2017.
- [3] Y. -G. Oh, Tight Lagrangian submanifolds in CPⁿ, Math. Z., 207, 409-416, 1991.

 $^{^1{\}rm PhD}$ student at the State University of Campinas. Email: ra192307@ime.unicamp.br $^2{\rm Professor}$ at the State University of Campinas. Email: smartin@ime.unicamp.br