On characterization of certain maximal curves

by

Saeed Tafazolian

(IASBS at Zanjan, Iran)

Let C be a (non-singular, projective, geometrically irreducible, algebraic) curve of genus g defined over a finite field \mathbb{F}_q with q elements. We know after A. Weil that the number of \mathbb{F}_q-points of a curve of genus g defined over \mathbb{F}_q satisfies the following limitations:

$$q + 1 - 2g\sqrt{q} \leq \#C(\mathbb{F}_q) \leq 1 + q + 2g\sqrt{q},$$

where $C(\mathbb{F}_q)$ denotes the set of \mathbb{F}_q-rational points of the curve C.

Here we will be interested in maximal (resp. minimal) curves over \mathbb{F}_{q^2}, that is, we will consider curves C attaining Hasse-Weil’s upper (resp. lower) bound:

$$\#C(\mathbb{F}_{q^2}) = q^2 + 1 + 2qg \text{ (resp. } q^2 + 1 - 2qg).$$

Here we are interested to consider the hyperelliptic curve C given by the equation $y^2 = x^m + 1$ over \mathbb{F}_{q^2}. We are going to determine when this curve is maximal over \mathbb{F}_{q^2}. In fact, we show that

Theorem 0.1. Suppose q is an odd prime power and let m be a positive integer such that $\gcd(q, m) = 1$. The smooth complete hyperelliptic curve C corresponding to

$$y^2 = x^m + 1$$

is maximal over \mathbb{F}_{q^2} if and only if m divides $q + 1$.

This generalizes [1, Propositions 2, 3 and 5]) which deals with the particular case when $m = 7, 8$ and 12.

References