Counting numerical semigroups of a given genus via even gaps

Matheus Bernardini
(Joint with Fernando Torres)

University of Campinas / Federal Institute of São Paulo

June 24th 2016

Both authors are supported in part by CNPq
Introduction

Let S be a numerical semigroup.

- $G(S) := \mathbb{N}_0 \setminus S$ - set of gaps of S;
- $g(S) := \#G(S)$ - genus of S;
- $n_g := \#\{S : g(S) = g\}$.

Examples

- $n_0 = 1 \quad \mathbb{N}_0$
- $n_1 = 1 \quad \mathbb{N}_0 \setminus \{1\}$
- $n_2 = 2 \quad \mathbb{N}_0 \setminus \{1, 2\}$ and $\mathbb{N}_0 \setminus \{1, 3\}$
- $n_3 = 4 \quad \mathbb{N}_0 \setminus \{1, 2, 3\}, \mathbb{N}_0 \setminus \{1, 2, 4\}, \mathbb{N}_0 \setminus \{1, 2, 5\}$ and $\mathbb{N}_0 \setminus \{1, 3, 5\}$
Interest

Studying the behavior of n_g.

Main Goal (but still not solved)

\[n_g \leq n_{g+1}, \text{ for all } g. \]
Interest

Studying the behavior of n_g.

Main Goal (but still not solved)

$$n_g \leq n_{g+1}, \text{ for all } g.$$
A brief survey

First Bound

If \(g(S) = g \), then \(2g + \mathbb{N}_0 \subset S \). Hence,

\[
 n_g \leq \binom{2g - 1}{g}.
\]

M. Bras-Amorós and A. de Mier - 2007

\[
 n_g \leq C_g = \frac{1}{g + 1} \binom{2g}{g}.
\]
A brief survey

First Bound

If $g(S) = g$, then $2g + \mathbb{N}_0 \subset S$. Hence,

$$n_g \leq \binom{2g - 1}{g}.$$

M. Bras-Amorós and A. de Mier - 2007

$$n_g \leq C_g = \frac{1}{g + 1} \binom{2g}{g}.$$
From now on, let \(\varphi = \frac{1 + \sqrt{5}}{2} \).

M. Bras-Amorós - 2006/2008 (Conjecture)

1. \(n_g + n_{g+1} \leq n_{g+2}, \text{ for all } g; \)
2. \(\lim_{g \to \infty} \frac{n_{g+1}}{n_g} = \varphi; \)
3. \(\lim_{g \to \infty} \frac{n_{g+1} + n_g}{n_{g+2}} = 1. \)
Let \((F_n)_{n \geq 0} = (1, 1, 2, 3, 5, 8, 13, \ldots)\) be the Fibonacci sequence. Then

\[2F_g \leq n_g \leq 1 + 3 \cdot 2^{g-3}, \forall g \geq 3.\]

where \(a_g\) and \(c_g\) are coefficients of some explicit generating functions.

\[a_g \leq n_g \leq c_g, \forall g \geq 1\]
Let \((F_n)_{n \geq 0} = (1, 1, 2, 3, 5, 8, 13, \ldots)\) be the Fibonacci sequence. Then
\[
2F_g \leq n_g \leq 1 + 3 \cdot 2^{g-3}, \forall g \geq 3.
\]

S. Elizalde - 2010

\[
a_g \leq n_g \leq c_g, \forall g \geq 1
\]
where \(a_g\) and \(c_g\) are coefficients of some explicit generating functions.
A. Zhai - 2011/2013

1. \[\lim_{g \to \infty} \frac{n_{g+1}}{n_g} = \varphi; \]

2. \[\lim_{g \to \infty} \frac{n_{g+1} + n_g}{n_{g+2}} = 1. \]

Remark

- Zhai’s first item implies that \(n_g < n_{g+1} \), for \(g \gg 0 \).
- Checking if \(n_g \leq n_{g+1} \) for all \(g \) is still an open problem (weaker conjecture).
A. Zhai - 2011/2013

1. \[\lim_{g \to \infty} \frac{n_{g+1}}{n_g} = \varphi; \]

2. \[\lim_{g \to \infty} \frac{n_{g+1} + n_g}{n_{g+2}} = 1. \]

Remark

- Zhai’s first item implies that \(n_g < n_{g+1} \), for \(g \gg 0 \).
- Checking if \(n_g \leq n_{g+1} \) for all \(g \) is still an open problem (weaker conjecture).
\[m(S) := \min\{s \in S : s \neq 0\} \] - multiplicity of \(S \);

\[N(m, g) := \#\{S : g(S) = g \text{ and } m(S) = m\} \]
g \ m	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	N(g)	
0	1																									1		
1	1	1																								1		
2	1	1	1																							1		
3	1	1	1	1																						2		
4	1	1	1	1	1																				4			
5	1	1	1	1	1	1																		7				
6	1	1	1	1	1	1	1																	12				
7	1	1	1	1	1	1	1	1																23				
8	1	1	1	1	1	1	1	1	1															39				
9	1	1	1	1	1	1	1	1	1	1														67				
10	1	1	1	1	1	1	1	1	1	1	1														118			
11	1	1	1	1	1	1	1	1	1	1	1	1														204		
12	1	1	1	1	1	1	1	1	1	1	1	1	1													343		
13	1	1	1	1	1	1	1	1	1	1	1	1	1	1												592		
14	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1											1001		
15	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1										1693		
16	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1									2857		
17	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1								4806		
18	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1							8045		
19	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1							13467	
20	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						22464	
21	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1					37396	
22	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1				62194	
23	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			103246	
24	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		170863	
25	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		282828
																										467224		
Ordinarization transform of a semigroup:
- Remove the multiplicity (smallest non-zero non-gap)
- Add the largest gap (the Frobenius number).

The result is another numerical semigroup.
The genus is kept constant in all the transforms.
Repeating several times (:= ordinarization number) we obtain an ordinary semigroup.

$r(S)$ - ordinarization number of S;
$n_{g,r} := \#\{S : g(S) = g \text{ and } r(S) = r\}$.
$r(S)$ - ordinarization number of S;

$n_{g,r} := \#\{S : g(S) = g \text{ and } r(S) = r\}$.
If $r > \max\{\frac{g}{3} + 1, \left\lfloor \frac{g+1}{2} \right\rfloor - 14\}$, then $n_{g,r} \leq n_{g+1,r}$.

If $r > \frac{g}{3}$, then $n_{g,r} \leq n_{g+1,r}$.
If \(r > \max\{\frac{g}{3} + 1, \left\lfloor \frac{g+1}{2} \right\rfloor - 14\} \), then \(n_{g,r} \leq n_{g+1,r} \).

If \(r > \frac{g}{3} \), then \(n_{g,r} \leq n_{g+1,r} \).
Our approach

- \(\gamma(S) \): number of even gaps of \(S \) - \(\# [G(S) \cap 2\mathbb{Z}] \);
- \(\gamma \)-hyperelliptic semigroup: numerical semigroup with \(\gamma \) even gaps;
- \(N_\gamma(g) := \# \{ S : g(S) = g \text{ and } \gamma(S) = \gamma \} \).

\[n_g = \sum_{\gamma=0}^{g} N_\gamma(g) \]
Our approach

- $\gamma(S)$: number of even gaps of $S - \#[G(S) \cap 2\mathbb{Z}]$;
- γ-hyperelliptic semigroup: numerical semigroup with γ even gaps;
- $N_\gamma(g) := \#\{S : g(S) = g \text{ and } \gamma(S) = \gamma\}$.

\[
n_g = \sum_{\gamma=0}^{g} N_\gamma(g)\]
Examples

- \(n_0 = 1 \ (\mathbb{N}_0) \) and
 \[
 N_\gamma(0) = \begin{cases}
 1, & \text{if } \gamma = 0 \\
 0, & \text{if } \gamma \geq 1.
 \end{cases}
 \]

- \(n_1 = 1 \ (\mathbb{N}_0 \setminus \{1\}) \) and
 \[
 N_\gamma(1) = \begin{cases}
 1, & \text{if } \gamma = 0 \\
 0, & \text{if } \gamma \geq 1.
 \end{cases}
 \]

- \(n_2 = 2 \ (\mathbb{N}_0 \setminus \{1, 2\} \text{ and } \mathbb{N}_0 \setminus \{1, 3\}) \) and
 \[
 N_\gamma(2) = \begin{cases}
 1, & \text{if } \gamma = 0 \\
 1, & \text{if } \gamma = 1 \\
 0, & \text{if } \gamma \geq 2.
 \end{cases}
 \]
If γ and g are the number of even gaps and the genus of a numerical semigroup S, respectively, then $3\gamma \leq 2g$.

Remark

If γ is even, then

$$\mathbb{N}_0 \setminus (\{2, 4, \ldots, 2\gamma\} \cup \{1, 3, \ldots, \gamma - 1\})$$

is a numerical semigroup with genus $g = \frac{3\gamma}{2}$.

$$n_g = \sum_{\gamma=0}^{\left\lfloor \frac{2g}{3} \right\rfloor} N_{\gamma}(g)$$
If γ and g are the number of even gaps and the genus of a numerical semigroup S, respectively, then $3\gamma \leq 2g$.

Remark

If γ is even, then

$$\mathbb{N}_0 \setminus (\{2, 4, \ldots, 2\gamma\} \cup \{1, 3, \ldots, \gamma - 1\})$$

is a numerical semigroup with genus $g = \frac{3\gamma}{2}$.

$$n_g = \sum_{\gamma=0}^{\left\lfloor \frac{2g}{3} \right\rfloor} N_{\gamma}(g)$$
Theorem 1

Let γ be a positive integer and $g \geq 3\gamma$. Then

$$N_\gamma(g) = N_\gamma(3\gamma).$$

Thus, $N_\gamma(g) = N_\gamma(g + 1)$, for all $g \geq 3\gamma$.
Notice that

\[
 n_g = \sum_{\gamma=0}^{\lfloor g/3 \rfloor} N_{\gamma}(g) + \sum_{\gamma=\lfloor g/3 \rfloor+1}^{2g/3} N_{\gamma}(g).
\]

\[
 n_{g+1} = \sum_{\gamma=0}^{\lfloor g/3 \rfloor} N_{\gamma}(g+1) + \sum_{\gamma=\lfloor g/3 \rfloor+1}^{2(g+1)/3} N_{\gamma}(g+1).
\]

Theorem 1 states that \(N_{\gamma}(g) = N_{\gamma}(g+1) \), for \(\gamma \leq \frac{g}{3} \).
Notice that

\[n_g = \sum_{\gamma=0}^{\left\lfloor \frac{g}{3} \right\rfloor} N_\gamma(g) + \sum_{\gamma=\left\lfloor \frac{g}{3} \right\rfloor+1}^{\left\lfloor \frac{2g}{3} \right\rfloor} N_\gamma(g). \]

\[n_{g+1} = \sum_{\gamma=0}^{\left\lfloor \frac{g}{3} \right\rfloor} N_\gamma(g + 1) + \sum_{\gamma=\left\lfloor \frac{g}{3} \right\rfloor+1}^{\left\lfloor \frac{2(g+1)}{3} \right\rfloor} N_\gamma(g + 1). \]

Theorem 1 states that \(N_\gamma(g) = N_\gamma(g + 1) \), for \(\gamma \leq \frac{g}{3} \).
Notice that

\[n_g = \sum_{\gamma=0}^{\left\lfloor \frac{g}{3} \right\rfloor} N_{\gamma}(g) + \sum_{\gamma=\left\lfloor \frac{g}{3} \right\rfloor+1}^{\left\lfloor \frac{2g}{3} \right\rfloor} N_{\gamma}(g). \]

\[n_{g+1} = \sum_{\gamma=0}^{\left\lfloor \frac{g}{3} \right\rfloor} N_{\gamma}(g+1) + \sum_{\gamma=\left\lfloor \frac{g}{3} \right\rfloor+1}^{\left\lfloor \frac{2(g+1)}{3} \right\rfloor} N_{\gamma}(g+1). \]

Theorem 1 states that \(N_{\gamma}(g) = N_{\gamma}(g + 1) \), for \(\gamma \leq \frac{g}{3} \).
Corollary

\[n_g \leq n_{g+1} \]

if, and only if,

\[\sum_{\gamma=\left\lfloor \frac{g}{3} \right\rfloor +1}^{\left\lfloor \frac{2g}{3} \right\rfloor} N_\gamma(g) \leq \sum_{\gamma=\left\lfloor \frac{g}{3} \right\rfloor +1}^{\left\lfloor \frac{2(g+1)}{3} \right\rfloor} N_\gamma(g+1). \]
<table>
<thead>
<tr>
<th>(g / \gamma)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>(n_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>19</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>21</td>
<td>32</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>23</td>
<td>51</td>
<td>33</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>23</td>
<td>62</td>
<td>91</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>23</td>
<td>65</td>
<td>142</td>
<td>98</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>343</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>23</td>
<td>68</td>
<td>174</td>
<td>257</td>
<td>59</td>
<td>1</td>
<td></td>
<td></td>
<td>592</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>23</td>
<td>68</td>
<td>192</td>
<td>412</td>
<td>271</td>
<td>25</td>
<td></td>
<td></td>
<td>1001</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>23</td>
<td>68</td>
<td>197</td>
<td>514</td>
<td>678</td>
<td>197</td>
<td>6</td>
<td></td>
<td>1693</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>23</td>
<td>68</td>
<td>200</td>
<td>570</td>
<td>1100</td>
<td>793</td>
<td>92</td>
<td>1</td>
<td>2857</td>
</tr>
</tbody>
</table>
Conjecture

Let γ be a non-negative integer. Then

$$N_\gamma(g) \leq N_\gamma(g + 1), \forall g.$$

Remark

If this Conjecture holds, then $n_g \leq n_{g+1}$ for all g.
Conjecture

Let γ be a non-negative integer. Then

$$N_{\gamma}(g) \leq N_{\gamma}(g + 1), \forall g.$$

Remark

If this Conjecture holds, then $n_g \leq n_{g+1}$ for all g.
Construction of a γ-hyperelliptic semigroup of genus g

- γ - positive integer
- $T = \mathbb{N}_0 \setminus \{q_1, \ldots, q_\gamma\}$ numerical semigroup

$$S = 2 \cdot T \cup (2 \cdot \mathbb{N}_0 + 1) \setminus \{“suitable\ choice”\ of\ g - \gamma\ odd\ numbers\}$$
“suitable choice” ensures that the final set is closed under addition.

- \(S \) is a \(\gamma \)-hyperelliptic semigroup: even gaps and even non-gaps are determined by \(T \).
- \(S \) has genus \(g \) if, and only if, the number of green points chosen as gaps is \(g - \gamma - k \).

Lemma

Let \(S \) be a \(\gamma \)-hyperelliptic semigroup of genus \(g \) and \(O \) the first odd number in \(S \). Then

\[
2g - 4\gamma + 1 \leq O \leq 2g - 2\gamma + 1.
\]
“suitable choice” ensures that the final set is closed under addition.

- S is a γ-hyperelliptic semigroup: even gaps and even non-gaps are determined by T.
- S has genus g if, and only if, the number of green points chosen as gaps is $g - \gamma - k$.

Lemma

Let S be a γ-hyperelliptic semigroup of genus g and O the first odd number in S. Then

$$2g - 4\gamma + 1 \leq O \leq 2g - 2\gamma + 1.$$
- “suitable choice” ensures that the final set is closed under addition.
- S is a γ-hyperelliptic semigroup: even gaps and even non-gaps are determined by T.
- S has genus g if, and only if, the number of green points chosen as gaps is $g - \gamma - k$.

Lemma

Let S be a γ-hyperelliptic semigroup of genus g and O the first odd number in S. Then

$$2g - 4\gamma + 1 \leq O \leq 2g - 2\gamma + 1.$$
“suitable choice” ensures that the final set is closed under addition.

- S is a γ-hyperelliptic semigroup: even gaps and even non-gaps are determined by T.
- S has genus g if, and only if, the number of green points choosen as gaps is $g - \gamma - k$.

Lemma

Let S be a γ-hyperelliptic semigroup of genus g and O the first odd number in S. Then

$$2g - 4\gamma + 1 \leq O \leq 2g - 2\gamma + 1.$$
Proof (Thm 1)

- Odd q_i must be gaps! (otherwise, $S \ni q_i + q_i = 2q_i \notin S$)
- $g \geq 3\gamma \implies O \geq 2\gamma + 1 > q_\gamma \geq q_i$, for all i.

\[O \geq 2g - 4\gamma + 1\]
Proof (Thm 1)

Odd \(q_i \) must be gaps! (otherwise, \(S \ni q_i + q_i = 2q_i \notin S \))

\[g \geq 3\gamma \quad \Rightarrow \quad O \geq 2\gamma + 1 > q_\gamma \geq q_i, \text{ for all } i. \]
Proof (Thm 1)

- \(S_\gamma(g) := \{ S : g(S) = g \text{ and } \gamma(S) = \gamma \} \)
- For a fixed \(g \geq 3\gamma \), we find a bijection between \(S_\gamma(g) \) and \(S_\gamma(3\gamma) \)
Proof (Thm 1)

• Given $S(g) \in S_{\gamma}(g)$, let $O(g)$ be the first odd number of $S(g)$

• Let $M := g - 3\gamma$. Making a translation by $-2M$ only on the odd numbers higher than or equal to $O(g)$, we obtain a NS S, such that $O(3\gamma) = O(g) - 2M \geq 2\gamma + 1$ (and this is the first odd number of S)

• The even gaps of $S(g)$ and S are the same, as the odd gaps of $S(g)$ and S lower than $O(3\gamma)$. The odd gaps of $S(g)$ and S higher than $O(3\gamma)$ are translated by $-2M$

• Under this construction, we have $g(S) = g - M = 3\gamma$. Hence, $S \in S_{\gamma}(3\gamma)$ and $\#S_{\gamma}(g) \leq \#S_{\gamma}(3\gamma)$

• Similarly (by making a translation by $+2M$), we can verify the other inequality and the result follows.
A related problem

- \(\gamma \) non-negative integer
- For \(g \geq 3\gamma \), the sequence \(N_\gamma(g) \) is constant and equal to \(N_\gamma(3\gamma) \)
- A natural task is about the behavior of \(f_\gamma := N_\gamma(3\gamma) \)

Lemma

Let \(\gamma \) be a non-negative integer and \(M_\gamma := 2^\gamma \left(\frac{\gamma}{2} + 1 \right) - 1 \). Then

\[
M_\gamma + (n_\gamma - \gamma) \cdot (\gamma + 1) \leq f_\gamma \leq M_\gamma + (n_\gamma - \gamma) \cdot 2^\gamma.
\]
A related problem

- γ non-negative integer
- For $g \geq 3\gamma$, the sequence $N_\gamma(g)$ is constant and equal to $N_\gamma(3\gamma)$
- A natural task is about the behavior of $f_\gamma := N_\gamma(3\gamma)$

Lemma

Let γ be a non-negative integer and $M_\gamma := 2^\gamma \left(\frac{\gamma}{2} + 1\right) - 1$. Then

$$M_\gamma + (n_\gamma - \gamma) \cdot (\gamma + 1) \leq f_\gamma \leq M_\gamma + (n_\gamma - \gamma) \cdot 2^\gamma.$$
Theorem 2

Let $\epsilon > 0$. Then

$$\lim_{\gamma \to \infty} \frac{f_\gamma}{(2\varphi + \epsilon)^\gamma} = 0$$

and

$$\lim_{\gamma \to \infty} \frac{f_\gamma}{2^\gamma} = \infty.$$

It suggests that the asymptotic behavior of f_γ is exponential of order β^γ, where $2 < \beta \leq 2\varphi$.
Theorem 2

Let $\epsilon > 0$. Then

$$\lim_{\gamma \to \infty} \frac{f_{\gamma}}{(2\varphi + \epsilon)^\gamma} = 0$$

and

$$\lim_{\gamma \to \infty} \frac{f_{\gamma}}{2^\gamma} = \infty.$$

It suggests that the asymptotic behavior of f_{γ} is exponential of order β^γ, where $2 < \beta \leq 2\varphi$.
<table>
<thead>
<tr>
<th>g</th>
<th>γ</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>n_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>19</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>21</td>
<td>32</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>23</td>
<td>51</td>
<td>33</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>23</td>
<td>62</td>
<td>91</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>23</td>
<td>65</td>
<td>142</td>
<td>98</td>
<td>5</td>
<td></td>
<td></td>
<td>343</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>23</td>
<td>68</td>
<td>174</td>
<td>257</td>
<td>59</td>
<td>1</td>
<td></td>
<td>592</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>23</td>
<td>68</td>
<td>192</td>
<td>412</td>
<td>271</td>
<td>25</td>
<td></td>
<td>1001</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>23</td>
<td>68</td>
<td>197</td>
<td>514</td>
<td>678</td>
<td>197</td>
<td>6</td>
<td>1693</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>23</td>
<td>68</td>
<td>200</td>
<td>570</td>
<td>1100</td>
<td>793</td>
<td>92</td>
<td>1</td>
</tr>
<tr>
<td>γ</td>
<td>f_γ</td>
<td>$f_\gamma/f_{\gamma-1}$</td>
<td>$n_{2\gamma}$</td>
<td>$f_\gamma/n_{2\gamma}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>3.5</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>3,285714</td>
<td>23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>2,956522</td>
<td>67</td>
<td>1,015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>2,941176</td>
<td>204</td>
<td>0.981</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>615</td>
<td>3,075</td>
<td>592</td>
<td>1,039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1764</td>
<td>2,868292</td>
<td>1693</td>
<td>1,042</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5060</td>
<td>2,868480</td>
<td>4806</td>
<td>1,053</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>14626</td>
<td>2,890514</td>
<td>13467</td>
<td>1,086</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>41785</td>
<td>2,856899</td>
<td>37396</td>
<td>1,117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>117573</td>
<td>2,813761</td>
<td>103246</td>
<td>1,139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>332475</td>
<td>2,827818</td>
<td>282828</td>
<td>1,176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>933891</td>
<td>2,808905</td>
<td>770832</td>
<td>1,212</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2609832</td>
<td>2,794579</td>
<td>2091030</td>
<td>1,248</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conjecture

\[\lim_{\gamma \to \infty} \frac{f_\gamma}{f_{\gamma-1}} = \phi^2 \approx 2.618 \]

and

\[\lim_{\gamma \to \infty} \frac{f_\gamma}{n_{2\gamma}} = C, \]

where \(C \) is a constant.

Remark

There is a relation between the sequence \(f_\gamma \) and the conjecture proposed by M. Bras-Amorós (11). In fact, if \(f_\gamma \) is an increasing sequence, then the conjecture is also true.
Conjecture

\[\lim_{\gamma \to \infty} \frac{f_\gamma}{f_{\gamma-1}} = \phi^2 \approx 2.618 \]

and

\[\lim_{\gamma \to \infty} \frac{f_\gamma}{n_{2\gamma}} = C, \]

where \(C \) is a constant.

Remark

There is a relation between the sequence \(f_\gamma \) and the conjecture proposed by M. Bras-Amorós (11). In fact, if \(f_\gamma \) is an increasing sequence, then the conjecture is also true.
M. Bernardini and F. Torres, Counting numerical semigroups of a given genus via even gaps, *preprint.*

Thank You!
Feliz Cumpleaños, Fernando!
(22/06/2016)