ALGEBRAIC CURVES WITH MANY POINTS
OVER FINITE FIELDS
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As long as Algebra and Geometry proceeded along separate paths, their advance
was slow and their applications limited.

But when these sciences joined company they drew from each other fresh
vitality and thenceforward marched on at a rapid pace towards perfection.

J.L. Lagrange
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is the following
Let p be a prime and m > 2 an integer such that p does
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not divide m. Let [F, denote the finite field with p elements. How many solutions in the
projective plane P?(F,) exist for the curve

X"+Y"m+ 2" =07

In the early years of the 19th century, Gauss considered finite sums of powers of pth
root of unity (now known as Gauss sums) to give a proof of one of the great theorems in
mathematics: the Quadratic Reciprocity Law (cf. m = 2); the proof suggests an approach
to Higher Reciprocity Law (cf. m > 2). Let N be the number of IF,-solutions of the curve
above. It turns out that N is a Jacobi sum; i.e., a finite sum of sums closely related
to Gauss sums. Gauss calculated N for m = 2 and m = 3; see e.g. [81, Ch. 6]. If
m > 3 however, things get progressively more complicated and in general there is only an
estimate, namely
[N =+ D] <[29vp],

where g = (m — 1)(m — 2)/2 is the genus of the curve, see Weil [102]. This result is
indeed a particular case of a deep result in Algebraic Curve Theory, namely the so-called
Hasse-Weil bound (HW-bound) (or the Riemann-Hypothesis) for curves over finite fields.
Throughout, let X' be a curve (nonsingular, projective, geometrically irreducible) of genus
g over the finite field IF, with ¢ elements. The HW-bound assert that

[#X(Fy) — (¢ +1)| < [29v/4);

Hasse (around 1932) showed the case g = 1 via complex multiplication on elliptic curves
and Weil (around 1940) showed the general case via the theory of the correspondences
[101]. The key starting point was a conjecture of Artin (Ph.D. thesis, 1924) on the complex
module of the zeroes of a zeta-function of a curve, see Theorem 1.2. Such a function was
introduced by Artin himself in analogy with Dedekind’s zeta-function of numerical fields
and the aforementioned conjecture was inspired by the well-known classical Riemann
hypothesis.

Bombieri [8] gave an elementary proof of the HW-bound by following ideas of Stepanov,
Postnikov, Stark and Manin; his proof uses the Riemann-Roch theorem only. Now, once
the HW-bound was available, some sharp upper bounds were obtained in the context of
questions associated to curves; e.g. exponential sums [89], [70] and the number of elements
of plane arcs [49], [50] and [48] (see also the references therein).

Let N,(g) be the maximal number of rational points that a curve of genus g over F, can
have. In the last years, due mainly to applications in Coding Theory and Cryptography,
there has been considerable interest in computing the actual value of N,(g). It is a classical
result that N,(0) = ¢+1. Deuring [16] and Serre [88] computed N, (1) and NV, (2); we quote
these computations in Example 1.5. For ¢ = 3 we have the Voloch’s bound which says
that N,(3) < 2¢+6 whenever g # 8,9, see Example 1.6. Serre computed N,(3) for ¢ < 25
[88] and Top [94] extended these computations to ¢ < 100; see Remarks 1.7, 1.8. The
tables in [34] describe what is known about N,(g) for ¢ < 50 and ¢ € {2, 3,4,8,9, 16, 27}.
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By using narrow ray class extensions, Niederreiter and Xing found bounds on N,(g) for
qg=2,3,4,5,8,16 and 1 < g < 50 [75]; see also [76] and the references therein.

In general, a closed formula for N,(g) seems still to be a long way off. An upper bound on
N,(g) is clearly the HW-bound; Serre [87] observed that this bound may be sharpened in
several cases via the HWS-bound in (1.4) or the “explicit formulas” method in Proposition
1.9. Osterlé used tools from linear programing to optimize this method [88] by selecting
the “best” trigonometric polynomial in (1.6); this is called the Osterlé bound. Currently,
powerful tools related to Abelian Varieties are used to investigate N, (g); cf. Howe, Lauter,
Serre [59], [60], [61], [62], [63], [64], [65]; we will not survey these results here.

In order to find lower bounds on N,(g) we look for curves X “with many points” in the
sense that #X (F,) has to be as close as possible to the best upper bound known on N,(g).
In most cases, the best known bound comes from Osterlé’s (cf. [62]). If #X (F,) = N,(g),
the curve is called Optimal. In Section 5 we investigate a particular family of optimal
curves, the so-called Maximal Curves; i.e., those whose number of rational points attains
the upper HW-bound. A distinguished example here is the Hermitian curve which is
intrinsically determined by its genus and number of rational points [82]; see Theorem 5.3
here. There are also two important families of optimal curves, namely the Suzuki curves
and the Ree curves; each curve in each family is intrinsically determined by the data:
(1) the genus, (2) the number of rational points and (3) the automorphism group (see
Hansen [39], Hansen-Pedesrsen [40], Hansen-Stichtenoth, [41], Heen [46]). An important
result is Theorem 4.1, where we show that the Suzuki curve is characterized by properties
(1) and (2) only; it seems that this property is an open problem for the Ree curve. It is
worthwhile to point out that the Hermitian curve, the Suzuki curve and the Ree curve
are respectively the Deligne-Lusztig varieties of positive genus associated to connected
reduction algebraic group of type 1A%, 3 B? and 5 R? [15].

Apart from Bombieri’s work in simplifying the proof of the HW-bound and the bounds on
exponential sums and plane arcs mentioned above, qualitative aspects of the study of the
HW-bound in 1940 was similar to that in 1977. The interest on this matter was renewed
after Goppa (around 1977) constructed error-correcting codes from linear series on curves,
the so-called Geometric Goppa Codes (GG-codes) (as they currently are known); see [37],
[38]. These codes generalize the well-known Reed-Solomon codes, BCH-codes and the
“classical” Goppa codes (see van Lint [67], van Lint-van der Geer [68]). Goppa’s idea
showed for the first time how two totally different areas of mathematics: Algebraic Curve
Theory (“pure” subject) and Coding Theory (“applied” subject) can be related to each
other.

Next we briefly describe (the dual construction) of a GG-code. Let g7 be a r-dimencional
linear series on X of degree e defined over F, and whose sections are contained in a
Riemann-Roch space £(G). For simplicity we shall assume that g. = |G| is complete. Let
Py, ..., P, be pairwise distinct F,-rational points of the curve such that P, € Supp(G) for
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any ¢. Consider the F,-linear map
eyt f € L(G) = (f(P1),..., f(P)) €T
Then the following g-ary linear code, namely
Cx(G, D) = ey(L(G))

is the Goppa code defined by the triple (X, G, D), where D :== P, + ...+ P,. Let k and
d be respectively the dimension and minimum distance of the code. Then

(1) k = {(G) — (G — D), where £(.) denotes the F,-dimension of the corresponding
Riemann-Roch space;
(2) d > n —deg(G).

We observe that k& and d can be handled by means of the Riemann-Roch theorem. In
addition, (2) is only meaningful, if (fixed deg(G)), X is a curve with many points. With
respect to the dimension k, if n > deg(G), then

k=0G)=deg(G)+1—g+ K —-G)>deg(G)+1—g,
where K is a canonical divisor on X’; in particular,
(%) n+1>k+d>n+1-g.

Thus we are ready to appreciate an amazing asymptotic property of families of GG-
codes and to understand the first remarkable application of these codes in the context of
asymptotic problems in Coding Theory. As a matter of fact, Tsfasman, Vladut and Zink
[97] (see also [96], [70]) showed that, for ¢ > 49 a square, the Gilbert-Varshamov bound
can be improved via a sequence of GG-codes; roughly speaking, this is done as follows:

(A) They show that there is a family of GG-codes (&;) such that the sequence of their
relative parameters (r;,d;) has a limit point (R, ). Here the sequence of genus
gi — 0o and limsuppi% =91

(B) Then inequality (*) implies R + ¢ = 1 — 1/(,/q — 1); this improves the Gilbert-
Varshamov.

For Items (A) and (B) above, one studies values N,(g) of ¢g-ary GG-codes based on curves
of genus g over F, (¢ fixed and g large enough) and ask for the limit

Nq(Q)
g

A(q) := limsup,

to be as large as possible. We consider this question in Section 2, where our main references
were the papers by Kresch et al. [56] and Elkies et al. [19].

Coming back to the study of the HW-bound for a single curve, Stohr and Voloch (around
1982) development a geometric method to bound #X(F,) based on F,-linear series on
the curve [91]; such a bound will be denoted by SV-bound. We report some features on
this theory in the Appendix. The SV-bound gives a new proof of the HW-bound and
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improvements in several cases. For example, via the SV-bound, Voloch obtained the best
upper bound known so far on the order of complete arcs in projective planes over prime

fields [99], [100].

There is a natural link between the arithmetic and geometry of a curve which comes from
a linear series naturally defined from the zeta-function of the curve (see Section 3). This
linear series is simple and its existence implies the uniqueness of the Suzuki curve. In
the case of maximal curves, the linear series is very ample (Theorem 5.1) and thus we
can study maximal curves embedded in projective spaces and apply classical results from
Algebraic Curve Theory or Finite Geometry such as:

e The Castelnuovo genus bound for curves in projective spaces [10], [6], [78], [42];

e Halphen’s bound on the genus of the curve taking into consideration the degree of
a surface where the curve is contained [11];

e Properties of quadratic surfaces in P*(FF,) [48].

We recall that Castelnuovo and Halphen bounds are valid in positive characteristic by
Hartshorne [42] (space curves) and Rathmann [78].

From the interplay of these properties with the Stohr-Voloch theory (Appendix) we deduce
quantitave and qualitative properties of maximal curves (see Hirschfeld et al. [51]); we
will mention a few of them in Section 5.

Tafasolian [92] (Ph. D. Thesis, 2008) investigated properties of maximal curves via Cartier
Operators; among other things, he characterized certain HWS-maximal curves, HW-
maximal Fermat curves and HW-maximal Artin-Schreier curves. His results improve
on previous work in [2], [5], [3], [1], [22].

Standard references are the books by Fulton [25], Arbarello et al. [6], Hartshorne [42],
Namba [73], Stichtenoth [90], Moreno, [70], Stepanov [89], Goldschmidt [36], Goppa [38],
Tsfasman and Vladut [96], Hirschfeld et all. [51]. For the convenience of the reader we
include an Appendix on the Theory of Stéhr-Voloch [91].

Throughout this paper, by a curve over F, (the finite field with ¢ elements) we mean a
nonsingular, projective, geometrically irreducible algebraic curve defined over F,.

1. THE FUNCTION N,(g)

In this section we discuss curves with many points. Our references on zeta-functions are
e.g. the books [90], [89] or [70]. Let X be a curve of genus g over ;. Let N; = #X(F,)
be the number of [F i-rational points of X. Thanks to Riemann, Dedekind, Artin, Hasse,
Welil, ... all the information about the N; is contained in the zeta-function

(1.1) Z(t) = Z(X,q;t) := exp(z N;t' /i)
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of X over F,. By the Riemann-Roch theorem, there is a polynomial L(t) = L(X,q;t) of
degree 2¢ satisfying:
Proposition 1.1. (1) L(t) = Z(t)(1 —t)(1 — qt);
(2) L(t) = 7T]2~i1(1 — ayt) where the a; are algebraic integers which can be arranged in
such a way that o;a; = q.

Thus from (1.1) we obtain

29 9
(1.2) Ni=q¢+1=) ai=¢+1-) (a}+al}).

j=1 j=1
The main result to bound #X(F,) is the following.

Theorem 1.2. (Riemann hypothesis) The compler value of each oy is \/q.

Therefore (1.2) implies the Hasse-Weil bound (HW-bound) mentioned in the introduction
(for i = 1), namely

(1.3) [#X(Fy) — (¢ +1)] < [20V/¢) -

Example 1.3. (The Hermitian curve) If ¢ = ¢, the HW-bound is sharp as the following
curve, known as the Hermitian curve

H . XZJrl 4 Y€+1 + ZZ+1 =0

shows. The genus of H is g = (({—1)/2 and #H(Fp) = 3+ 1. Riick and Stichtenoth [82]
noticed that H is the unique curve having these properties; we will improve this result in
Theorem 5.3.

Example 1.4. (The Klein quartic over Fg) In general the HW-bound is not sharp: Con-
sider the curve

K: XY+Y3Z+23X=0,
known as the Klein quartic. 1f ¢ = 8, the curve is nonsingular of genus ¢ = 3. The
HW-bound is 25; however, #/IC(Fg) = 24.

In Remark 5.4 we will see that the HW-bound is not necessarily sharp even if ¢ is a square.
Set
N,y(g) == max{#Y(F,) : Y a curve of genus g defined over F } .

Example 1.5. (Deuring [16], Serre [88]) Write ¢ = p® and m = [2,/q]. Thus
o N,(1) = ¢+ 1+ m except when a > 3 is odd, and p divides m; in this case,
Ny(1) =g+ m.
o N,(2) = ¢+ 1+ 2m except in the following cases: (1) N4(2) = 10, No(2) = 20;

(2) a is odd, p divides m; (3) « is odd and ¢ of the form z?> + 1, 2> + x + 1 or
4+ r+2(x€Z).
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In cases (2) and (3) above we have N,(2) = ¢ + 2m if 2,/ —m > (v/5—1)/2 or
Ny(2) = ¢+ 2m — 1 otherwise.

As a nice application of the Appendix we prove the Voloch’s bound for curves of genus 3;
cf. Serre [88], Top [94, Prop.1].

Example 1.6. For ¢ # 8,9, N,(3) < 2¢ + 6. Indeed, let X be a curve of genus 3 over
F, with #X(F,) > 2¢ + 6. Then X is nonhyperelliptic. We apply the Appendix to the
canonical linear series D. Let 0 = vy < v be the F-Frobenius orders and S the [F-divisor
of D respectively. Thus
2q+ 6 < deg(S)/2 = (41 + (¢ + 2)4)/2

so that v; > 1. Thus the order sequence of D is 0,1, and js(P) > vy + 1 for any
P e X(F,). The Hefez-Voloch theorem (Appendix) gives #X (F,) = 4(¢ — 2) and thus

deg(R) = (1+1n)4+ 12> #X(F,) =4(¢ —2),
and hence ¢ < vy +6; ie. ¢ €{2,3,4,5,7,8,9} as vy < 4. On the other hand, #X(F,) =
4qg — 8 > 2q + 6 so that ¢ = §,9.

Remark 1.7. We have that 28 < Ny(3) and 24 < Ng(3) due to the Hermitian curve and
the Klein quartic above.

Case: ¢ = 9. Following the example above we find that 14 = 3 whenever #X(Fy) <
deg(S)/2 = 28 In particular, No(3) = 28. We observe that there is just one curve of genus
g = 3 over Fy with 28 rational points, namely the Hermitian X* 4+ Y4 + Z4 = 0, cf. [82].

Case. ¢ = 8. As in Case 1 we find that v; = 2 and Ng(3) = 24. From [94, Propl.1(a)]

the Klein quartic over Fg is the unique curve of genus 3 with 24 rational points.

Remark 1.8. From the table in [94] we observe that Voloch’s bound is sharp for ¢ =
4,5,7,11,13,16,17,19,25. Let ¢ = p?* with p an odd prime and a > 1 an integer.
Ibukiyama [52] showed that there exist a curve of genus 3 over [, whose number of
rational points attains the HW-bound. Thus N,(3) = p** + 1 + 6p°.

Serre [87] noticed that the HW-bound (1.3) may be improved to the following HWS-
bound:

(1.4) [#X(Fy) = (¢ +1)| < g[2v/a] -

This bound is sharp as Example 1.4 above shows. Now we remark the Serre “explicit
formulas” method; cf. [88], [39].

From Theorem 1.2 we can write a; = /gexp(v/—16;). From (1.2)

g
(1.5) Ni:qi+1—2\/§iZcosz'0j.
j=1
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Let f(0) be a trigonometric polynomial of the form

f(o) = 1+220ncosn9.

n>1
Set
Ya(t) == cuat™ d>1.
n>1
After some computation, (1.5) implies
g
(1.6) S FO) ++ Y dagbalqT?) = g+ (g ?) + (g,
j=1 d>1

where ag is the number of points of degree d. Notice that N; = > dli day. Whence we
obtain the following.

Proposition 1.9. Suppose that the c;’s are non-negative real number not all zero. Suppose

that f(8) > 0 for all 6. Then

Ny = #X(F) < — 2o+ 1+ nle?)

~ hi(g?) Ui(g='7?)
equality holds if and only if

Y f6;)=0, and > dagpa(g?)=0.

=1 d>2

Set
(1.7) h(t) = h(X,q;t) ==t L(X,q;t7 ).

The following result is the key starting point for the characterization of the Suzuki curve
given in Section 4.

Proposition 1.10. (cf. [88]) Let ¢ = 2¢3 with qo a power of two. Let X be a curve of
genus g = qo(q — 1) with Ny = ¢*> + 1 rational points. Then

h(t) = (t* + 2qot + q)? .
Proof. Let h(t) = [T]_,(t — o) (t — a;) with a; = exp(v/—16;). We let
f(0) :==1++v2cos0 + %(30329 = %(1 +V2cos6)?.

Thus v, (t) = ‘/7525 + V14t% and y(t) = 1t2. After some computations from Proposition
1.9 we have »29_, f(0;) = 0. It follows that cost; = _\/Li and hence o + &; = —2qp; the

result follows. UJ
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2. ASYMPTOTIC PROBLEMS

In this section we survey a few results related to Tsfasman-Vladit-Zink improvement on
the Gilbert-Varshamov bound. The key matter is to find a family of curves (X)) (indexed
by its genus and defined over a fixed field F;) such that

A(g) := lim Supqu—@
g

be as large as possible. This number was introduced by Ihara [53] (and the inverse value
was considered by Manin, loc. cit.). Thara showed

1
N,y(9) Sq+1+5\/(8q+1)92+4(q2—q)g—g

and thus if g > \/q(\/q — 1)/2, Ny(g) is less than the HW-bound. From the upper bound
on N,(g) above it follows that

1
Alg) = 5(v8g+1-1).
Vladut and Drinfeld [98] improve this bound and show that indeed

Aq) <+/q—1.

To find lower bounds on A(q) one needs to produce families of curves with many points.
Serre used class field theory [87], [88] to show that A(q) > 7, with 7, a positive constant
depending of ¢ (see also [74]). We have a stronger result, namely N,(g) > 7,9 for any
g (see Elkies et al. [19]). Thara used supersingular points on a family of modular curves
(X,) to show that, when ¢ is an square, one can take v, = /¢ — 1 and hence

(2.1) Alg) = va—1.

The GG-codes constructed on the respective curves (X,) above have the best asymptotic
parameters that can be constructed so far; for practical applications one needs an explicit
description of the aforementioned codes; this task seems to be very hard in the case
of modular curves. Garcia and Stichtenoth proved (2.1) via curves defined by “explicit
equations” (see [26], [27]). It is an intrigued fact that Garcia and Stichtenoth curves are
also modular curves (see Elkies [18]).

For ¢ = p*™!, it seems that the true value of A(q) is unknown. Zink showed A(p®) >

2(p*—1)/(p+2) (curves with no explicit equations). van der Geer and van der Vlugt [33]
for ¢ = 8 and Bezerra et al. [7] for any ¢ as above generalized Zink’s bound (curves with
explicit equations).

Further asymptotic results on N,(g) which implies consequence both for A(q) and
A~ (q) = liminf,N,(g)/g can be found in the quite nice references [56] and [19] (see
also the references therein).
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3. ZETA-FUNCTIONS AND LINEAR SERIES

Let X be a curve of genus g over F, such that #X'(F,) > 0. Let L(t) = L(&X, ¢;t) be the
enumerator of the zeta-function of X over F,. We consider the function h(t) defined in
(1.7), namely

g

h(t) = L") = [t = a)(t = ay)

j=1

where the o are defined in Proposition 1.1. Then h(t) is monic, of degree 2¢g whose inde-
pendent term is non-zero; moreover, h(t) is the characteristic polynomial of the Frobenius
morphism ® 7 on the Jacobian J of the curve X (here we consider ® ; as an endomor-
phism on a Tate module). Let

n(e) = T 1’0

be the factorization of h(t) in Z[t]. Since ®; is semisimple and the representation of
endomorphisms of 7 on the Tate module is faithfully, see [93, Thm. 2|, [58, VI§3], it
follows that

(3.1) [[ri(®s)=0.
J
Let ® denote the Frobenius morphism on X. Let m : X — J be the natural morphism
P [P — B, where Py € X(F,). We have
To®P=> 07
and thus (3.1) implies the following linear equivalence of divisors on X

(3.2) th(q)(P)) ~mP,, where P € X and m := th(l) :

J

This suggests the study of the linear series
D .= ]mPo‘ .

Let us write

H hj(t) = tU + OéltUil + OégtUiZ + ...+ OéUflt + oy .
J

We assume:

(A) ag > 1, (we already known that oy | ¢);
(B) ajz1 > ajforj=1,...,U -1

Remark 3.1. There are curves which do not satisfy conditions (A) and (B) above; cf. [9].
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Next we compute some invariants of the linear series D above according to the results in
the Appendix; we use the notation of that Appendix. Let r be the dimension of D. For
P e X(F,) we have the following sequence of non-gaps at P:

0=mo(P) <my(P)<...<mu_1(P) <m.(P)=m.
Lemma 3.2. (1) If P € X(F,), then the (D, P)-orders are
O=m—m.(P)<m—m,_1(P)<...<m—my(P)<m—my(P);
2) If P & X(F,), then ji(P) = 1;

(3) The numbers 1,ay,...,ay are orders of D;
(4) If ®UHL(P) # P, then ay is a non-gap at P. In particular, ay is a generic non-gap
of X;

(5) If ®Y(P) # P and ®YVTY(P) = P, then ay — 1 is a non-gap at P.

Proof. The proof of (1), (2) or (3) is similar to [22, Thm. 1.4, Prop. 1.5]. To show the
other statements, let us apply ®, in (3.2); thus

agP ~ ®YHP) 4+ (a; — 1)®Y(P) + (ay — )@Y (P) + ... + (ay — ay_1)®(P) .
Then (4) and (5) follow from hypothesis (A) and (B) above. O

We finish this section with some properties involving rational points.
Proposition 3.3. Suppose that char(F,) does not divide m.

(1) If #X(F,) > 2g + 3, then there exists P € X(F,) such that (m — 1) and m are
non-gaps at P;

(2) The linear series D is simple; i.e., the morphism w: X — 7(X) C P"(F,) defined
by D s birational.

Proof. (1) Following [103], let P # P, be a rational point. We have mP ~ mFP, by
(3.2). Let x : X — PL(F,) be a rational function with div(z) = mP — mP,. Let n be
the number of rational points wchich are unramified for . Then by Riemann-Hurwitz
2g—22>m(—=2)+2(m—1)+ (#X(F,) —n—2) so that n > #X(F,) — (2g+2) > 1. Thus
there exists Q) € X(F,), Q # P, Py such that div(z —a) = Q +D —mPF, with D € Div(X),
Py, @ ¢ Supp(D). Let y be a rational function such that div(y) = mP, — m@). Then
div((x —a)y) = D — (m — 1)@ and the proof is complete.

(2) Let @ € X(F,) be the point in (1) and z,y € F,(X) be such that dive(z) = (m—1)Q
and dive(y) = m@Q. Then F (X) = F,(x,y) and we are done. O

Proposition 3.4. (1) € = vp_1;
(2) Let P € X(F,) and suppose that #X(F,) > q(m — ay) + 2. Then j.—1(P) < ay;
wm particular, €, = ay and P is a D-Weierstrass point;
(3) If#X(F,) > qay+1, then #X(F,) = qay+1 and my(P) = oy for any P € X(F,).
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Proof. (1) Definition of D.
(2) We have #X(F,) < gmi(P) + 1 by Lewittes [66, Thm. 1(b)]. Then the result follows

from Lemma 3.2.

(3) Let P € X(F,). We have m;(P) < my(Q), where () is a generic point of X (apply
the Appendix to the canonical linear series on X'). Therefore, m;(Q) < ay by Lemma
3.2 and hence qapy + 1 < X(F,) < gmi(P)+ 1 < gay + 1. O

4. A CHARACTERIZATION OF THE SUZUKI CURVE

This section is based on [24]; it is a nice application of the interplay of Section 3 and the
Appendix. Throughout, we let gy = 2° > 2 be a power of two and set q := 2¢2. As we
mentioned in the Introduction, the Suzuki curve S is the unique curve over F, defined by
the following data:

(I) genus: g = qo(q — 1);
(IT) number of F,-rational points: N; = ¢ + 1;
(III) F,-automorphism group equals the Suzuki group.

Our aim is to show the following.

Theorem 4.1. Let X be a curve of genus g = qo(q¢—1) overF, such that Ny = #X(F,) =
¢*> + 1. Then X is isomorphic to the Suzuki curve S.

We first show some lemmas. The reference “Lemma A” below is placed in the Appendix.

Let X be as in the theorem. Let h(t) = t*L(t™!) be the polynomial defined in (1.7). The
starting point of the proof is Proposition 1.10; thus

h(t) = (t* + 2qot + q)? .

Let ® : X — X be the Frobenius morphism on X. From Section 3 we conclude that X is
equipped with the linear series

D :=|(1+29 +q)F|, Foarational point
such that for any P € X
(4.1) P*(P) + 2q0®(P) + qP ~ (1 +2q0 + q) .

Let r denote the dimension of D. We already know that m = m,(P) = 1 + 2qo + ¢ for
any P € X(F,). Lemma 3.2 and Proposition 3.4 imply the following properties:

(1) my(P)=¢q and j,_1(P)=142¢q forany P e X(F,);
(2) eg=1 and € =v,_1=gq.

Lemma 4.2. r >3 and ¢,_1 = 2qqo.
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Proof. By Lemma 3.2 the numbers 1, 2¢p and ¢ are orders of D and thus » > 3. Since
€r—1 < jr—1(P) = 1+ 2qy (Lemma A) and ¢, = ¢ we have
290 < €1 < 1+ 2¢o.

Suppose that €,_; = 14 2¢y (observe that 2q is also an order of D). Let P € X(F,). By
Lemma A

Vr—o < Jre1(P) — j1(P) < €29 = 2qq.

Thus the sequence of Frobenius orders of D would be €y, €1,...,€,_9,€¢.. Now for any
P e X(F,) (Lemma A)

0p(8) 2 3 Giea(P) 1) = 3 Giea(P) =) + GelP) = vr) 2 (r = DJ(P) + 14 240
so that
(4.2) deg(S) > (r +2qo)V; .

From the following identities

o 29—2= (29 —2)(1+2q +q) = (290 — 2)m,(P),
o Ny=(1-2q+¢q)(1+2q+q) = (1—-2q +qm.(P),

inequality (4.2) becomes

r—1

(QCIO—Q)ZV¢+(T+Q) > (r+2q0)(1 —2q +q).

1=0

Since v,_1 = q it follows that

ﬁ
|
o

r—2

€ = v, > (r—1)qo.

i

I
o
Il
o

Now we use a property involving the orders of D (see [20]): € +¢; < € for i+ j <r.
We apply this in the form €; +€¢; < €,_9 with i 4+ j = — 2. Thus

r—2
2261 <(r—1)e—o2=(r—1)2q.
i=0
We conclude that €; + €,_o_; = €,_o for i = 0,1,...,r — 2. In particular, €,_3 = 2g5 — 1

and the p-adic criterion (cf. [91, Cor. 1.9]) would imply ¢ = i for i = 0,1,...,r — 3.
These facts imply r = 2¢gp + 2. Finally, we are going to see that this is a contradiction
according to Castelnuovo’s genus bound applied to D; we must have

(¢ +2g0 — (r —1)/2)?
r—1 .
For 7 = 2qo+2 this gives 2¢o(¢—1) < (¢+0)*/2¢0 = qoq+q/2+qo/2, a contradiction. [

29 = 2qo(q — 1) <
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Remark 4.3. We write an alternative proof of the previous lemma. We have 2¢g < €,_1 <
Jr—1(P) = 2qo + 1. Suppose €,_1 = 2¢qo + 1 and thus €¢,_o = 2¢y. For any P € X(F,),
€r—2 < Jr—o(P) < jr—1(P) = 1 + 2qp; thus j,_o(P) = 2¢o and 1 + ¢ € H(P). If we take
P € X(F,) such that 1+ 2qo + ¢,2q0 + ¢ € H(P) (Proposition 3.3), H(P) contains the
semigroup

H:={(q,q+ 1,290+ q,1+2g+ q)

and hence g < g(H) := (Ny \ H). However, one shows that ¢ > ¢g(H) as in Remark 4.6
below.

Lemma 4.4. There exists P € X(F,) such that the following properties hold true:

(1) 51(P) =1;
(2) ji(P)=vii+1 fori=2,...,r— 1.

Proof. Let P € X(F,). In the proof of Lemma 4.2 we obtained the following inequality

N

vp(S) = Z(ji+1(P) — ) +14+2g > (r — 1)j1(P) +1+2g0 >+ 2q.
i=0
Thus it is enough to show that vp(S) = r 4 2¢y for some point P € X(F,). Suppose on
the contrary that vp(S) > r + 2¢o + 1 for any P € X(F,). Then arguing as in the proof

of Lemma 4.2 we would have
r—2

ZViZTQO+1-

=0
As v; S €11, then

r—2 r—1
1+ ZVZ- < ZQ‘ <re—1/2
=0 =0

and thus
rgo+2 < re._1/2
so that €,_1 > 2qo which is a contradiction according to Lemma 4.2. O
Lemma 4.5. (1) € is a power of two;
(2) v > € = 1.

Proof. (1) It is a consequence of the p-adic criterion [91, Cor. 1.9].

(2) Suppose that v; = 1. Let P be a F,rational point satisfying Lemma 4.4. Then
jo(P) = 2 and thus by Lemma 3.2 the Weierstrass semigroup H(P) at P contains the
semigroup

H = (g, —142q0+¢,2q0 + ¢, 1+ 2q0 + q) -
Therefore g < g(H) := #(Ny \ H). This is a contradiction as we will see in the remark
below. .
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Remark 4.6. Let H be the semigroup defined above. We are going to show that g(H) =

g — ¢2/4. To begin with we notice that L := U?i(’l—lLi is a complete system of residues

module ¢, where

L — {ig4i2g0— 1) 4= 0,2} i 1<i<g -1,
Lgq = {@a+q—q@+j:j=0,...,9 — 1},
Lyt = {(@+1)g+1+3j:5=0,...,q — 1},
Losi = {(do+ g0+ (2 —3)go+i—1+7:7=0,....q0—2 +1}U

(

{lgo+)g+ (2i—2)go+i+7:7=0,...q0— 1} if 2<i<qy/2,

Lagj2+i = {(3q0/2+i)qg+ (q/2+i—1)(290 —1) +qo+2i —1+j:
J=0,...,q0—2—1} if 1<i<qy/2—1.

Moreover, for each ¢ € L, ¢ € H and {—q ¢ H. Hence g(H ) can be computed by summing
up the coefficients of ¢ from the above list (see e.g. [86, Thm. p.3]); i.e.

g(H) = Zgl i(20+ 1)+ g2 + (g0 + 1)go + 22’1/22((10 +1)(2q0 — 2i + 2)+
SN2 (302 4 1) (qo — 20) = qolq — 1) — g3 /4.

In the remaining part of this paper we let Py be a point satisfying Lemma 4.4. We set
m; := m;(Py) and denote by v = vp, the valuation at Fj.

By Lemma 4.5 the Frobenius orders of D are vy = 0,11 = €9, ...,1,_1 = €, and thus

m; =2q+q—€._; ifi=1,...,r—2,
(43) my_q :2QO+CL

Let z,ya, ...,y € F (X) be rational functions such that div.(z) = m1 Py, and dive(y;) =

m; Py for i = 2,...,r. The fact 4 > 1 means that the following matrix
7 S Vi
1 =z y ... oy
0 1 Dlys ... Dly,

has rank two (cf. [91, Sect. 2]). Here DJy; denotes the jth Hasse derivative (see e.g. [83],
[84], [44]). In particular,

(4.4) y! —y; = Diy(29 —x) fori=2,...,7.

Lemma 4.7. (1) For P € X(F,), the divisor (29 — 2)P is canonical; in particular,
the Weierstrass semigroup at P is symmetric;
(2) Letn € H(FPy). If n < 2qo + q, then n < qo + q;
(3) For i = 2,...,r there exists g; € F,(X) such that Dly; = g*. Furthermore,
dive(g:) = gmi=g” p

€2
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Proof. (1) Let P € X(F,). We have m,P ~ m,FP, by (4.1) and 29 — 2 = (2¢p — 2)m,.
Thus we can assume P = F,. Let t be a local parameter at Fy. We shall show that

v(fl—f) = 2g — 2. The equation i = r in (4.4) by fl—f and the product rule give
dx dy,
e — q_
dt (yr yT) dt (Q? SU) )
from properties of valuations: v(i—f) —qm, = —m, — (¢* +1); i.e.,
dx
() = (a—=1)my = (1= 2g0 + q)m, = (290 — 2)m, = 29 — 2.

(2) We know that the elements ¢, 2go + ¢ and 1 4 2¢y + g belong to the Weierstrass
semigroup H(Fy) at Fy. Then the numbers

kq+ 7290+ q) +i(1+2q0 +q) = (k+j+i)g+ (j +i)g + i
are also non-gaps at Fy where k, 7,7 € Ny. Let k = 2qy — 2, j +1 = qo — 2. Hence,
(2g0 —2)g+q—4q0+7 forj=0,...,q0—2
are also non-gaps at Py. Therefore, by the symmetry of H(F,), the elements below
l4+q+qg+j5 withj=0,...,q0—2
are gaps at Py and the proof follows.
(3) Set f; := Dly;. By Hasse-Schmidt [43, Satz 10] it is enough to show that
Difizo , for1<j<e.

From Eqs 4.4 it is clear that D}C fi = 0. Now as €5 > 2 each matrix below has rank two
(cf. [91, Sect. 1])

1 €T y2 e yT‘
01 D;yg D;yr 9 2§j<€2a
0 0 Diyg . Dgyr

consequently D?f; = 0 for 2 < j < €. Finally from the computations v(g;) = v(f;)/es
and —gm; = v(f;) — ¢* by (4.4) we find v(f;) = —qgm; + ¢*. If P # B, % = ¢, where
t =x — x(P) is a local parameter at P by Item (1). O

Lemma 4.8. ¢, =¢qg and r =4.

Proof. By Lemma 4.2, r > 3. We claim that r > 4; otherwise, let g, be the rational
function in Lemma 4.7(3). We have v(ga) = —¢q since my = 2¢p + ¢ and €2 = 2qp.
Therefore there exist elements a # 0 and b in F, such that x = ag, + b (notice that
v(xz) = —q). The case i = 2 in (4.4) reads

Y29 Y2 _ 2900 a _ .

=90 (9 a);

let v :=yo/a, u = g, and set w := v® — y®*!, Thus

w! —w = u®(u? — u)
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and we find that gy + ¢ is a non-gap at Py (cf. [41, Lemma 1.8]). This contradiction
eliminates the case r = 3.

Let 7 > 4 and 2 < i < r. We show that €5 = ¢o. The element (gm,_» — ¢?)/e€s is a positive
non-gap at Py and hence at least m; = q. Thus m,_o—q > €; (x) and 2go—€3 > €5 by (4.3);
it follows that gy > €. Now by Lemma 4.7(2) m,_s < qo + ¢; from m, o = 2go + q — €,
qo < €.

Finally we show that r = 4. As in (%) we deduce that my — ¢ > € and from (4.3)
200 — €,_2 > €3 = qp; 1.€, o > €,_2 > €3 = (o S0 that €,_o = €5 and the proof follows. [

Proof of Theorem 4.1. Let P, € X(F,) be as above. The case i = 2 in (4.4) and
Lemma 4.7 give

Y3 —y2 = g5 (¢ — @) ;
moreover, ms = ¢o + ¢ and so v(g2) = —q. Thus z = ags + b with @ and b in F,, a # 0; in

particular,
Y2t Y2 %
— T =0

(92— 92) -

a a
It follows that X is defined by the plane equation

vl — v =u®(u! —u),
where v := yy/a and u := gy, and thus its automorphism group (over F,) is the Suzuki
group (Henn [46]). As the Suzuki group is simple it follows that it is also defined over
F,. We conclude that X is isomorphic to the Suzuki curve by the statements (I), (II) and
(III) stated at the beginning of this section.

5. MAXIMAL CURVES

Let X be a curve of genus g > 0 over F, with ¢ = ¢2. The curve is called mazimal if its
number of rational points attains the HW-bound. By (1.2), the a;’s in Proposition 1.1
satisfies a; = —¢ for any j. Thus the polynomial A(t) in (1.7) is of the form

h(t) = (t+£)*.

Let ® : X — X be the Frobenius morphism over F,. By Section 3 the curve X" is equipped
with the linear series

D=|(1+¢)P]|, P, a rational point
such that
(5.1) ®(P)+ (P~ (1+0)P,
for any P € X; see the picture below

We already know that the Hermitian curve ‘H is maximal. We can obtain many examples
of maximal curves by taking into consideration the following Serre’s remark (cf. [57]).
Let Y be a curve over Fy2 and X — ) a non-constant morphism over Fy2; then P(Y, (?;t)
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\

divides P(X, ¢?;t). In particular, if X' is maximal, ) is so. Therefore if G is a subgroup of
the automorphisms group of H, the quotiont curve H /G is also maximal; we remark that
there exists maximal curves which are not covered by the Hermitian curve (see Example
5.9). van der Geer and van der Vlught constructed maximal curves via methods coming
from linear codes. See Hirschfeld et al. [51] for a complete bibliography on maximal
curves.

5.1 The linear series D. Let r and

WZ(foifli---ifr)

be respectively the dimension and the morphism defined by D. We use the notation of
the Appendix. Set P" := P"(Fj2), PM := PM(F.).

By Proposition 3.4, ¢, = £ which is equivalent (see e.g. [31]) to the existence of rational

functions wg, wy, . .., w, (not all zero) such that

(5.2) wofo+wifi+. .+ whf, =0.

For P € X let v = vp and t = tp denote respectively the valuation and a local parameter
at P. We let e = ep := min{v(wy),v(wy),...,v(w,)} and z; =t~ w;.

Then for any P € X, the D-osculating hyperplane at P is defined by
(20(P), 21(P), ..., 2 (P)).

»r

Hence from (5.1) and (5.2) we obtain the following dual relation

A natural question is the following: Is 7 an embedding?. Since j;(P) = 1 for any P we

have just to investigate whether or not 7 is injective. Let us consider the morphism
di=(wo:wy:...:w)=(20:21:-..:2).

Let M be the dimension of the linear series D’ associated to ¢. By (5.3) D’ satisfies (5.1)

in the sense that all the divisor of type ®(P) + ¢P € D’; we notice that we may have
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M < r since the w;’s may be linearly dependent. We obtain the following qualitative
properties of maximal curves [54].

Theorem 5.1. (1) The morphism m: X — P is an embedding;
(2) The morphism ¢ : X — P" is an embedding; thus X is isomorphic to ¢(X) C PM;
(3) Let us identify the curve X with its image w(X) C P". The curve is contained in
an Hermitian variety,
(4) Let Y C P be a curve of degree £ + 1 over F,. If Y is contained in an Hermitian
variety, then Y is a mazximal curve.

Proof. (sketch) (1) If n(P) = w(Q), by (5.1) {P,®(P)} = {Q,®(Q)}. Let P = ®(Q)
(and one shows that @ is rational). Let @ : P — P denote the Frobenius morphism on
P’. We have 7 0 ® = ® o 7 and hence 7(P) is rational; that is ®(7(P)) = 7(P). After a
change of coordinates we can assume m(P) = (1:0:...:0) with fo =1 and v(f;) > 1.
Let z;(t) = 2z;(P) + al(-l)t +...fori=0,1,...,r. From (5.2):

T

D= (20(P)fo+2(P)fi+ ...+ 2(P)f;) == fil(a)t" +..))

=0
We have to show that vp(D) = £+ 1. From the equation above,

T

vD) =+ v() fi(((@P) + (@)t +...) .

=0
As vp(f;) > 1 for i > 1 we just have to check that a(()l) = 0. This comes from (5.3).
(2) The proof is similar to (1).

(3) The linear series D’ is a sub linear series of D; in particular each z; is a Fjp-linear
combination of type z; = > i a;;fi. After some linear computations, the result follows
from (5.3).

(4) See [54, Thm. 4.1]. O

Remark 5.2. The minimum dimension of the Hermitian variety which contains a maximal
curve is M = dim(D’).

5.2 The Hermitian Curve. Notation as above. We notice that » > 2 by (5.1). We
shall prove the following. We recall that the Hermitian curve can be also defined by the
equation y* 4+ y = 2t

Theorem 5.3. ([24], [72]) Let X be a mazimal curve over Fp of genus g > 0. The

following statements are equivalent:

(1) X is the Hermitian curve;

(2) g> (L—1)*/4;
(3) r=2.
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Proof. The genus in (1) is £(¢ — 1)/2 and (2) follows. Assume (2). Since D is simple we
apply Castelnuovo’s genus bound; i.e.,

29 < (20 —r+1)?/4(r —1).

If r > 3, then 2g < (¢ —1)%/4, a contradiction. Now assume (3). To proof (1) we proceed
as in Theorem 4.1. Let z,y € Fp (&) whose pole divisor are respectively dive(z) = (5
and diveey = (( + 1) Fy (Lemma 3.2). Since v; = ¢ we have a relation of type

(5.4) (v —y)Dix = (+" —2)Dyy,
Let f:= Dly. Then D!f = 0. Now since e = v; = ¢ (Proposition 3.4), for i = 2,...,<
€, = ¢ the rank of the following matrices is two:
Y
/
Dy

O O =
O~ K

Thus Diy = 0 for i = 2,...,¢ and from (5.4), D':f =0 fori=1,...,£ —1. So by [43,
Satz 10], f is a (-th power, says f = f{. From (5.4), vp,(f) = —¢* and so vp,(f1) = —¢;
thus f; = ax + b with a,b € Fp2, a # 0. If x; := ax 4+ b and y; := ay, the equation (5.4)
becomes

ny —N = xf(ﬂf — 11);
therefore

0+1

Y =y + oy — 2]

i+ —=
and the proof is complete. 0

5.3. The genus. Here we discuss some properties concerning the genus ¢ of a maximal
curve over Fp2. First of all we notice that Theorem 5.3 implies the following restriction
on g which was conjectured by Xing and Stichtenoth [103]; see [21], [23]. (This gives a
partial answer of a question of Serre [88].) We have

(5.5) 9< g =[((=1)%/4], or g=g =(l-1)/2.

Remark 5.4. Thus Np(g) < 02 4+ 1+ 20g for g» < g < g1 (cf. Lauter [59]).

We already know that g = ¢; occurs only for the Hermitian curve. A similar property
holds for g = g5: the unique maximal curves of genus gs is the quotient of the Hermitian

curve by certain involutions; these curves are defined by the following plane curves [22],

2], [55]

o ity =2xt/2if ¢is odd;
o 24 49?4y =a%"if ¢is even.
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We can improve (5.5) as follows. Let g3 := h({ + 1,3) = |({* — ¢ + 4)/6] denote the
Halphen’s number which asserts that any non-degenerate curve in P?(F) of degree ¢ + 1
of genus g > g3 is contained in a quadratic surface. Thus, as the curve has many rational
points, g > gs.

Theorem 5.5. ([55]) The genus g of a mazimal curve over Fp satisfies

9§93:L(€2—€+4)/6Ja or QZQQZL@—DQ/‘U or g=g1=Ll—-1)/2.

There exist examples of maximal curves of g = g3: for example the quotient curves of the
Hermitian curve by certain subgroups of order three; they are defined by the following
plane equations [28], [13], [14]

o pUFD/B L 2N/ 4 g — 0if £ =2 (mod 3);
o w208 49t — 0 if ¢ = 1 (mod 3), where w € Fp such that
/—1 __ —1:
w - ’
o ylty=_tatB)?if 0 =3

Question 5.6. There is a unique maximal curve of genus g3 which is Galois covered by
the Hermitian curve, namely the examples above [14, Prop. 2.1]. Is there exist a maximal
curve of genus g3 which is not covered by the Hermitian curve?

For ¢ # 0 (mod 3), we can improve Theorem 5.5 as follows.

Theorem 5.7. ([95]) Let X be a maximal curve over Fp of genus g. Assume ¢ # 0
(mod 3) and r = 3. If (40 —1)(2g — 2) > ({ + 1)(¢* — 50 — 2), then

g> (> —20+3)/6.
Proof. First we show that e = 2; on the contrary, €5 > 4, by the p-adic criterion (here

we use the hypothesis on ¢). Let R and S be the ramification and F2-Frobenius divisor
of D respectively. We have (Lemma A)

vp(S) > ja(P) + (j3(P) —€2) > 5 for any P € X(Fp)
and so the maximality of X implies
deg(S) = (0 +1)(29 —2) + (*+3)(( +1) > 5({ +1)* +5((29 — 2).

It follows that
(C+1)(2—50—2)> (40— 1)(29 — 2),

a contradiction. Now we use the ramification divisor R:
deg(R) = (0 +2+1)(29 —2) +4((+1) > (£ +1)* + £(2g — 2)
and thus g > (¢ — 2 + 3)/6. O
Corollary 5.8. Let X, g and ¢ be as in the theorem above. If g > (¢ — 1)(£ — 2)/6, then
g> (> —20+3)/6.
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Proof. The hypothesis on g implies » < 3. If » = 2, then g = ¢(¢ — 1)/2 by Theorem 5.3.
Let r = 3; the hypothesis on g is equivalent to (29 —2) > (¢ 4 1)(¢ — 4)/3 and hence

(40—1)(29—2) > (M —1)({+ 1)l —4)/3> (L +1)(* —50—2)

and the result follows. O

5.4 Examples. Throughout, by a maximal curve we mean a maximal curve over [F.

Example 5.9. (Curves covered by the Hermitian curve, I) We have already noticed that
any curve covered by the Hermitian curve is also maximal. However, there exist maximal
curves that cannot arise in this way. The first example of such a situation was given by
Giulietti and Korchmaros [35]; their example is the case m = 3 of the nonsingular model
of the curve defined in P?(Fpm) (m odd) by the equations

{Z(Zm-l—l)/(é—l-l) = yh(z)

(xf + $)N/é — y£+1

where h(z) = SN (=1)"12@ D and N(£ — 1) +1 = (0™ +1)/(£ + 1). After some
computations one shows that the curve is contained in an Hermitian variety and that any
irreducible component is defined over Fjp2m; it follows that each irreducible component
is maximal according to Theorem 5.1. In addition the genus of such components is
(0™ +1)(N¢ —2)/2+ 1. By using the Riemann-Hurwitz genus formula and by counting
rational points one concludes that such components cannot be covered by the Hermitian
curve. We should say that we have no a theoretically explanation on the existence of
these examples. We shall start with the question below.

Example 5.10. (Curves covered by the Hermitian curve, II) Let X be a maximal of
genus g. By Theorem 5.5, X' is covered by the Hermitian curve provided that

g>cll)=(F—1+4)/6.

Question 5.11. Shall we improve the bound ¢(¢)?

Notice that ¢(¢) is the Halphen’s bound related to quadratic surfaces in P%; we may obtain
further improvements on ¢(¢) by taking into considerations constraints that curves with
many rational points may impose on surface of arbitrary degree.

Example 5.12. (On the uniqueness of maximal curves, I) Let X be a maximal curve of
genus g. Let d be a divisor of £ 4+ 1. Let £ + 1 = dn. The curve is defined by the plane
curve

v +y=a"
whenever there exists a rational point P of X whose Weierstrass semigroup is generated
by n and ¢ [22] (see also [1], [3] for analogous results).
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Example 5.13. (On the uniqueness of maximal curves, II) Let d be a divisor of ¢ + 1.
The previous example suggests to consider the uniqueness of maximal curves X’ of genus

1 (+1
=—-(l-1)(———-1).
g=5(-1)(———1)
If d = 2, g coincides with Castelnuos genus bound. In this case, the geometry of the curve
equipped with the linear series |2D| implies the hypothesis on non-gaps above; thus there

is a unique maximal curve of genus (¢ — 1)?/4 as we have pointed out above.

If d = 3, g also coincides with Castelnuovo genus bound and as in the case above, the
hypothesis on non-gaps hold true and there exists a unique maximal curve of genus

(6 —1)(¢ —2)/6.

Now observe that ¢ = (¢ — 1)(¢ — 2)/6 is an integer for £ = 1 (mod 3). However, for
¢ > 13, there is no maximal curves having such a genus [55]. Here one uses a beautiful
theorem due to Accola [4] concerning further constraints on curves whose genus equals
Castelnuovo’s genus bound.

Question 5.14. Shall we exclude the hypothesis on non-gaps in Example 5.127

Example 5.15. (On the uniqueness of maximal curves, III) A maximal curve is not
necessarily characterized via its genus.

(1) Let £ =3 mod 4. Consider the maximal curve X and ) defined respectively by the
plane curves:
PO L D2 L ) and gt 4y = 2/

They have the same genus g = (¢ — 1)(¢ — 3)/8 but they are not isomorphic because the
semigroup (¢ —1)/2,,(€+1)/2) is a Weierstrass semigroup at some point of X but there
is no point on Y satisfying this property [30], [12]. Moreover, in the last reference it is
shown that the unique plane maximal curve of degree (¢4 1)/2 (¢ > 11 odd) is the curve
X above.

(2) Let us consider maximal curves over Fgy. Let € be a primitive 3th-root of unity.

Curve X: The Hermitian curve is given by 2° +y%+1 = 0. Consider T : (z,y) — (x, €y).
Thus the quotient curve X; := H/ < Tj > is defined by u® +v®+1 = 0 (*). Now consider
Ty : (u,v) — (eu,e tv). Then X,/(Ty) is defined by 2* + 2 = w?® (to see this we just
multiply (%) by u?); clearly its genus is ¢ = 3 and it is maximal since it is covered by the
Hermitian curve (cf. Rodriguez [79], Luengo et all. [80]).

Curve ): Consider the maximal curve ) : 2422 +2 = 3°. We can use the automorphism
Ty : (z,y) — (z,ey) to obtain the maximal curve ) := Y, /(T}) of genus 3 defined by
ut +u? +u=wd.

Claim. The curves X and ) above are non-isomorphic over Fgy (cf. [29], [95]). There is
just one point Py over x = oo or u = 0o. The number 5 does not belong to the Weierstrass
semigroup at Py and so for both curves D = 4F, is the canonical linear series. We apply
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the Appendix to D and one shows that the curve X and ) have 5 and 17 Weierstrass
points respectively.

Let £ # 0 (mod 3). Then by Corollary 5.8 the genus g of a maximal curve does not belong
to the interval
1

(56) IF

Let S(¢) be the set of numbers that arise as the genus of maximal curves over Fp. For
¢ <5, the set S(¢) is complete determined [28, Remark 6.1]; by taking into consideration
such a remark we work out the following.

(C—1)(—2)] +1, (é(ﬁ—2€+3ﬂ 1.

Example 5.16. Case { = 7. g < g3 = 7 or {0,1,2,3,5,7,9,21} C S(7); 6 € S(7) by
(5.6).

Case £ =8. g < g3 =10 or {0,1,2,3,4,6,7,9,10,12,28} C S(8); 8 & S(8) by (5.6),

Case { = 11. g < g3 = 19 or {0,1,2,3,4,5,7,9,10,11,13,15,18,19,25,55} C S(11);
16 ¢ S(11) by (5.6),

Case £ = 13. g < g3 = 26 or {0,1,2,3,6,9,12,15, 18,26, 36,78} C S(13); 23,24 & S(13)
by (5.6). Moreover, 22 ¢ S(13) (cf. Example 5.13).

Case £ = 16. g < g3 =40 or {0,1,2,4,6,8,12,24,28,56,120} C S(16); 36,37 ¢ S(16) by
(5.6. Moreover, 35 ¢ S(16) (cf. Example 5.13).

Question 5.17. (1) Does 4 (resp. 5) belong to S(7) (resp. S(8))7
(2) Does g = g4 := [§(¢* — 20+ 3)] belong to S(¢) for infinitely many ¢? (In each case
above such a g exists).
(3) What about the genus of a maximal curves in the interval [g4, g5 — 1]7

Example 5.18. (Plane maximal curves) Here we consider (nonsingular) plane maximal
curves (over Fy2)

(1) Fermat curves: X™ 4+ Y™ 4+ Z™ = (. Clearly the curve is maximal if m | (¢ + 1).
Tafazolian [92] proved that in fact the curve is maximal only if this condition holds.

(2) Hurwitz curves (cf. [5], [29]). Let H,, : X"Y +Y"Z+Z"X = 0. This curve is covered
by the Fermat curve
Un2—n+1 4 Vn2—n+1 + Wn2—n+1 =0

(via an unramified morphism). In particular, if (n> —n+ 1) | (¢ + 1), H, is maximal.
Conversely, if H,, is maximal, £+ 1 belongs to the Weierstrass semigroup at any rational
point. After some computations via the Weierstrass semigroup at P = (0 : 1 : 0), which
is generated by the set

S={s(n—1)+1:s=1,...,n},
one shows that (g + 1) is a multiple of (n? — n + 1). As a numerical example we choose
n = 3 and conclude that the Klein curve is maximal over Fy2 if and only if = 6 (mod 7).
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Appendix: On the Stohr-Voloch theory.

In this appendix, we recall some results of Stohr-Voloch paper [91] concerning Weierstrass
points and Frobenius orders. Let X be a curve of genus g defined over F,.

Let D C |E| be a base-point-free linear series of dimension r and degree D on X. For
P € X and ¢ > 0 an integer, we define sub-sets of D which will provide with geometric
information on X. Let D;(P) :={D € D : vp(D) > i} (here D = ,vp(D)P). We have
D;(P) =0 for i > D,

D D Dy(P) D2 Dy(P) 2 ... 2 Dyy(P) 2 Dp(P),

and each D;(P) is a sub-linear series of D such that the codimension of D;1(P) in D;(P)
is at most one. If D;(P) 2 Ds1(P), then the integer i is called a (D, P)-order; thus by
Linear Algebra we have a sequence of (N + 1) orders at P:

0=Jo(P) <ji(P) <...<j(P) <d.

Notice that D = Dy(P) since D is base-point-free by hypothesis. It is a fundamental
result the fact that the sequence above is the same for all but finitely many points P of
X, see [91, Thm. 1.5]. This constant sequence is called the order sequence of D and will
be denoted by

=<6 <...<6.
The finitely many points P, where exceptional (D, P)-orders occur, are called the D-

Weierstrass points of X'. There exists a divisor R on X, the ramification divisor of D,
whose support is exactly the set of D-Weierstrass points:

R = div (det (D§' f;)) + () &)div(dt) + (r + 1)E,
i=0
where 7 = (fo : f1: ... : f) is the morphism defined by D, t a separating element of
F,(X)|F, and the operator D} is the ith Hasse derivative (properties of these operators
can be seen in Hefez’s paper [44]). Moreover, the number of D-Weierstrass points of X
(counted with multiplicity) is the degree of R.

Now to deal with rational points over F, we require that both X and D be defined over
this field. Choose the coordinates f;’s above in such a way that vp(f;) +vp(E) = j:(P),
where vp denotes the valuation at P. Set L;(P) = (f;, ..., fr). Thus

D;(P)={div(f)+ E: f e Li(P)}.
Fori=0,...,7 —1 set

T;(P) := Npes,Supp(D) .

This is a subspaces of the dual of P"(F,) whose projective dimension is i. Notice that

{P}:TO(P)ng(P)g"'gTr—l(P)'
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The spaces T,_1(P) and T;(P) are usually called the D-osculating hyperplane and the
D-tangent line at P respectively.

Let ® : X — X be the Frobenius morphism on X'. Suppose that for a generic P, ®(P) €
Tyn_1(P). Then there exists an integer 1 < I < r — 1 such that ¢(P) € T;(P) \ T;_1(P).
Define v; := ¢; for 0 < j < I —1 and v; = ¢4y for j = I,...,r — 1. The sequence
0=1vy <1y <...<wvn_is called the Frobenius order sequence of D (with respect to Fy;
cf. [91, Sect. 2]). The key property related with rational points in [91] is the existence of
a divisor S, the Frobenius divisor of X (over F,) satisfying Lemma A(3)(4)(5)(6) below.
This divisor is defined as follows. Let L denote the determinant of the matrix whose rows
are:

(S fh Y, (DYifo,DYify,....DYf), i=0,1,...,r—1.
Then

r—1
S = div(L ZVZ div(dt) + (¢ +r)E .
1=0

We notice that X' (F,) C Supp(S) and vp(S) > r for P € X(F,) (Lemma below). Thus
#X(F,;) < deg(5)/r.
We subsume some properties of the ramification divisor and Frobenius divisor of D.

Lemma A. Let P € X and ¢ be a power of a prime p.

(1) For each i, j;(P) > e;

(2) vp(R) > >0, (Ji(P) — €); equality holds if and only if det ((JEJP))) # 0 (mod p);

(3) If P € X(F,), then for each i, v; < jHl(P) — 11(P);

(4) If P € X(F,), then vp(S) > S27— ) (jiy1(P) — v;); equality holds if and only if
det ((”*1(13 )) # 0 (mod p);

(5) If P € X(F,), then vp(S) > rji(P);

(6) T P & X(F,), then vp(S) > Y123 (ji(P) — v4).

Frobenius non classical plane curves. (Hefez-Voloch [45]) Let X be a plane curve
of degree d defined over F,. We consider the linear series D := g% (whose elements cuts
out the curve by lines). Let 0 < v be the F,-Frobenius order sequence of D. Assume
that ¥ > 1 (one usually says that X is non-classical). Thus the order sequence of D is
0 <1 < v and hence

deg(R) = (1+v)(29g —2)+3d, and deg(S)=r(2g9—2)+ (¢+2)d.
The Hefez-Voloch used in this paper affirm
#X(Fy) = deg(S) — deg(R) = d(q —d+2).
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