GENERALIZED HERMITIAN CODES

C. MUNUERA, A. SEPÚLVEDA, AND F. TORRES

Abstract. We investigate one-point algebraic geometry codes defined from curves related to the Hermitian curve. We obtain codes attaining new records on the parameters.

1. Introduction

Goppa constructed error-correcting linear codes, the so-called algebraic geometry (or AG) codes, using tools from algebraic geometry: a (non-singular, projective, geometrically irreducible, algebraic) curve X defined over a finite field and two rational divisors D and G on X. These divisors are chosen in a way that $D = P_1 + \ldots + P_n$ is the sum of n distinct rational points and $P_i \notin \text{supp}(G)$, $i = 1, \ldots, n$. The AG code $C(X, D, G)$ is defined as

$$C(X, D, G) := \{ ev(f) = (f(P_1), \ldots, f(P_n)) : f \in \mathcal{L}(G) \},$$

where $\mathcal{L}(G)$ denotes the Riemann-Roch space associated to G, see [7, 15] as general references for all facts concerning AG codes.

Let q be a prime power and let \mathbb{F}_{q^r} be the finite field of order q^r, $r \geq 2$. In this paper we are interested in algebraic geometry codes obtained from the non-singular model X over \mathbb{F}_{q^r} of the plane curve

$$(1.1) \quad \sum_{i=0}^{r-1} y^{q^i} = p(x) := x^{1+q} + \ldots + x^{1+q^{r-1}} + x^{q+q^2} + \ldots + x^{q+q^{r-1}} + \ldots + x^{q^2+q^r}$$

or equivalently $s_{r,1}(y, y^q, \ldots, y^{q^{r-1}}) = s_{r,2}(x, x^q, \ldots, x^{q^{r-1}})$, where $s_{r,1}$ and $s_{r,2}$ are respectively the first and second symmetric polynomials in r variables. For $r = 2$ this is the Hermitian curve over \mathbb{F}_{q^2}. Codes on that curve (Hermitian codes) have been extensively studied and much is known about them. In particular their parameters and generalized Hamming weights can be found in [1, 9, 11]. For $r > 2$ we obtain the generalized Hermitian curves [5], and generalized Hermitian codes. A basic property of generalized Hermitian curves is the existence of one unique point $Q \in X$ at infinity which is the unique pole of the rational functions x and y (loc. cit.). Hermitian codes and generalized Hermitian codes are the AG codes $C_m = C(X, D, G)$ coming from X and the divisors

$$(1.2) \quad G := mQ \quad \text{and} \quad D := \sum_{P \in X(\mathbb{F}_{q^r}) \setminus \{Q\}} P.$$
Bulygin [3] studied in detail these codes when \(q = 2 \) and \(r \geq 3 \). In this paper we extend these results for \(q \geq 3 \).

2. Arithmetic properties of Generalized Hermitian curves

Throughout, let \(\mathcal{X} \) be the generalized Hermitian curve over \(\mathbb{F}_{q^r} \) and let \(D, G \) be the divisors defined by equation 1.2. Before studying the code \(C(\mathcal{X}, D, mQ) \), we recall some basic properties of \(\mathcal{X} \).

Lemma 2.1. (1) \(\mathcal{X} \) has genus \(g = q^{r-1}(q^{r-1} - 1)/2 \) and \(q^{2r-1} + 1 \) rational points.
(2) \(\text{div}_\infty(x) = q^{r-1}Q \) and \(\text{div}_\infty(y) = (q^{r-1} + q^{-2})Q \).
(3) Let \(z := x^{q+1} - y^q + x^{q-1}y \). Then \(\text{div}_\infty(z) = (q^r + 1)Q \).
(4) For each \(\alpha \in \mathbb{F}_{q^r} \) there exists an effective divisor \(D_\alpha \leq D \) of degree \(q^{r-1} \) such that \(\text{div}_0(x - \alpha) = D_\alpha \).
(5) \(D \sim q^{2r-1}Q \).

Proof. (1) and (2) are shown in [5]. (3) was first proved by Bulygin in the binary case [3]. For general \(q \), from equation (1.1) we have
\[
z^{q-1} = h(x) - x^{q^r-q^{-1}} \sum_{i=0}^{r-2} y^{q^i} - y,
\]
where \(h(x) := p(x) - p(x)^q + x^{q^r+q^{r-1}} + \cdots + x^{q^r+q^1} \). After some computation
\[
h(x) = \sum_{i=1}^{r-1} x^{q^i} - \sum_{i=1}^{r-2} x^{q^r+q^i} + \cdots - \sum_{i=0}^{r-2} (x^{q^r+q^i} + \cdots + x^{q^i+q^1}).
\]
This polynomial has degree \(q^r + 1 \) hence \(v(h(x)) = (q^r + 1)v(x) \). Thus
\[
v(x^{q^r-q^{-1}}) + v(\sum_{i=0}^{r-2} y^{q^i}) = (q^r - q^{-1})v(x) + (q^{r-2} + q^{r-3})v(x)
\]
and \(v(z) = q^r + 1 \). To prove (4) note that for each \(\alpha \in \mathbb{F}_{q^r} \) the line \(x = \alpha \) intersects the affine curve given by equation 1.1 at \(q^{r-1} \) distinct points. As a consequence we have \(\text{div}(x^{q^r} - x) = D - q^{2r-1}Q \) and (5) holds. \(\square \)

Given a divisor \(E \), we denote by \(\ell(E) \) the dimension of \(\mathcal{L}(E) \). Let us remember that the Weierstrass semigroup at \(Q \) is defined as
\[
H(Q) = \{ t \in \mathbb{Z} : \ell(tQ) \neq \ell((t-1)Q) \}.
\]

Proposition 2.2. The Weierstrass semigroup at \(Q \) is
\[
H(Q) = \langle q^{r-1}, q^{r-1} + q^{r-2}, q^r + 1 \rangle.
\]

In particular it is symmetric.
Proof. The sequence \(q^{r-1} < q^{r-1} + q^{r-2} < q^r + 1 \) is telescopic [8, Def. 6.1] hence so is \(\langle q^{r-1}, q^{r-1} + q^{r-2}, q^r + 1 \rangle \). By [8, Lemma 6.5], this semigroup is symmetric of genus \(g = q^{r-1}(q^{r-1} - 1)/2 \). From Lemma 2.1 we have \(\langle q^{r-1}, q^{r-1} + q^{r-2}, q^r + 1 \rangle \subseteq H(Q) \) and both semigroups have the same genus, so they are equal. \(\square \)

By using this Proposition we can describe basis of \(\mathcal{L}(mQ) \).

Corollary 2.3. Let \(z \) be the function defined in Lemma 2.1 and \(m \in \mathbb{Z} \). The set
\[
\{ x^s y^t z^u : 0 \leq s, 0 \leq t < q, 0 \leq u < q^{-2}, sq^{r-1} + t(q^{r-1} + q^{r-2}) + u(q^r + 1) \leq m \}
\]
is a basis of \(\mathcal{L}(mQ) \). \(\square \)

Let us write \(H(Q) = \{ m_1 = 0 < m_2 < \cdots \} \). The curve \(\mathcal{X} \) over \(\mathbb{F}_q \) is said to be **Castle** if \(H(Q) \) is symmetric and \(\# \mathcal{X}(\mathbb{F}_q) = q^m m_2 + 1, [12] \). From Lemma 2.1 and Proposition 2.2 we have

Corollary 2.4. \(\mathcal{X} \) is a Castle curve. \(\square \)

3. **Generalized Hermitian codes**

Let \(C_m = C(\mathcal{X}, D, mQ) \). A generator matrix of \(C_m \) is obtained from Corollary 2.3. Its length is \(n = q^{2r-1} \) and its dimension can be computed by using the fact that it is a Castle code, [12]. Define \(\iota(m) := \max\{ j : m_j \leq m \} \) and \(m_0 = -\infty \).

Proposition 3.1. Let \(m \) be an integer, \(1 \leq m \leq n + 2g - 2 \).

(1) \(C_m \) has dimension \(k_m = \iota(m) - \iota(m - n) \).

(2) The dual of \(C_m \) is isometric to \(C_{n+2g-2-m} \).

Then the dimension of \(C_m \) depends only on the semigroup \(H = H(Q) \). Let \(H^* = H \setminus (n + H) \). Then \(\# H^* = n \) [7] and we can restrict to consider GH codes \(C_m \) with \(m \in H^* \). If \(m_1, \ldots, m_n \), is an enumeration of the elements of \(H^* \), then \(\dim(C_{m_1}) = i \). Next we shall give some results on the minimum distance \(d_m \) of \(C_m \). Recall that by the Goppa bound we have \(d_m \geq n - m \). Let us first study the case \(0 \leq m < n \).

Proposition 3.2. Let \(d_m \) be the minimum distance of the GH code \(C_m \). Then

(1) If \(m = aq^{r-1} \) with \(0 \leq a < q^r \), then \(d_m = n - m \).

(2) If \(m = aq^{r-1} + b(q^{r-1} + q^{r-2}) \) with \(0 \leq a \leq q^r - q^{r-1} - q^{r-2} \) and \(0 \leq b < q^{r-1} \), then \(d_m = n - m \).

(3) If \(m = q^{2r-1} - q^{r-1} + b \) with \(0 \leq b \leq q^{r-1} \), then \(d_m = q^{r-1} \).

Proof. (1) Let \(\alpha_1, \ldots, \alpha_n \) be a distinct elements in \(\mathbb{F}_q \). Then \(f = (x - \alpha_1) \cdots (x - \alpha_n) \in \mathcal{L}(mQ) \) and , according to Lemma 2.1 (4), \(ev(f) \) has weight \(n - m \). (2) Consider the set
Proof. If \(a \in \mathbb{F}_{q^r} : p(\alpha) \neq \gamma \), with \(\gamma \in \mathbb{F}_q^\times \). Then \#A \geq q^r - q^{-1} - q^{-2} \geq a. Choose \(a \) distinct elements \(\alpha_1, \ldots, \alpha_a \in A \) and define

\[
f_1 := \prod_{\mu=1}^a (x - \alpha_\mu).
\]

\(f_1 \) has \(aq^{-1} \) distinct zeros in the support of \(D \). On the other hand there exist \(q^{-1} \) distinct elements \(\beta \in \mathbb{F}_{q^r} \) such that \(\beta q^{-1} + \beta q^{-2} + \cdots + \beta = \gamma \in \mathbb{F}_q \). Choose \(b \) of them and define

\[
f_2 := \prod_{\nu=1}^b (y - \beta_\nu).
\]

Therefore \(f_2 \) has \(b(q^{-1} + q^{-2}) \) distinct zeros in the support of \(D \), all of them being distinct from the zeros of \(f_1 \). Then \(f_1 f_2 \in \mathcal{L}(m\mathcal{Q}) \), has \(m \) distinct zeros in the support of \(D \), and the corresponding codeword \(ev(f_1 f_2) \) has weight \(n - m \). (3) From (1) we have \(d_{n-q^{-1}} = q^{-1} \). Therefore \(d_m = q^{-1} \) by [12, Proposition 4 (5)]. \(\square \)

Let us study now the case \(n \leq m \leq n + 2g - 2 \). In this case we can compute the exact minimum distance of all codes \(C_m \).

Lemma 3.3. A non negative integer \(s \) has a unique representation of the form

\[
s = aq^{-1} + bq^{-2} + c,
\]

with \(0 \leq a, 0 \leq b < q \) and \(0 \leq c < q^{-2} \). Furthermore \(s \in H(Q) \), if only if \(a \geq b + cq \).

Proof. The first statement is clear. To see the second one, let \(s = aq^{-1} + bq^{-2} + c \) as above. If \(a \geq b + cq \), then \(h = x^{a-b-c}y^{b}z^{c} \in \mathcal{L}(s\mathcal{Q}) \) and \(-v_{\mathcal{Q}}(h) = ((a - b - cq)q^{-1} - b(q^{-2} - q^{-1} - c(q^{-1} + 1))) = s \in H(Q) \). In order to prove the converse, assume \(a < b + cq \) and \(s \in H(Q) \). We may write \(s = iq^{-1} + j(q^{-2} + q^{-1}) + k(q^{-1} + 1) \) with \(0 \leq i, 0 \leq j < q \) and \(0 \leq k < q^{-2} \). Then \(j = b, k = c \) and \(a = i + b + cq \), a contradiction. \(\square \)

For \(0 \leq m \leq n + 2g - 2 \) we define \(m^\perp = n + 2g - 2 - m \). By Proposition (3.1) \(C_{m^\perp} \) is isometric to the dual of \(C_m \). Note that when \(n \leq m \leq n + 2g - 2 \) we have \(m \in H \) and \(0 \leq m^\perp \leq 2g - 2 \). If \(m^\perp \) is a gap, let \(t^\perp \) be the largest nongap before \(m^\perp \). Then \(C_{m^\perp} = C_{t^\perp} \), and consequently, by dimension reasons, \(C_m = C_t \). Thus we can restrict to consider those \(m \) for which \(m^\perp \) is a nongap. Thus, according to the previous Lemma, we can write \(m^\perp = aq^{-1} + bq^{-2} + c \) with \(0 \leq b + cq \leq a \leq q^{-1} - 2 \) (since \(m^\perp \leq 2g - 2 \)) and \(b + cq \leq a \) (since \(m^\perp \) is a nongap).

Proposition 3.4. For \(n \leq m \leq n + 2g - 2 \), let \(t^\perp \leq m^\perp = n + 2g - 2 - m \) be the largest integer such that \(t^\perp = aq^{-1} + bq^{-2} + c \), as in Lemma 3.3, with \(a \geq b + cq \). Then the minimum distance \(d_m \) of \(C_m \) verifies

(1) if \(a = b + cq \), then \(d_m = a + 2 \);
(2) if \(a > b + cq \) with \(a = b' + c'q \) and \(b' < b \), then \(d_m = a + 2 \);
(3) if \(a > b + cq \) with \(a = b' + c'q \) and \(b' \geq b \), then \(d_m = a + 1 \).
Proof. As noted above we have $\mathcal{L}(L^Q) = \mathcal{L}(L^T)$. By using a basis of this space we can obtain a parity check matrix H of C_m. (1) If $a = b + cq$ then a basis of $\mathcal{L}(L^Q)$ is \{1, x, y, \ldots, x^{q-1}, $x^{q-2}y$, \ldots, y^{q-1}, z, $x^{q-1}y$, \ldots, x^a, \ldots, y^bz^c\}. Consider the set \{\(P_i = (0, \beta_i) : i = 1, \ldots, q^r\)\} \subseteq \text{supp}(D) with $\beta_i \neq \beta_j$ for $i \neq j$. Note that $z(P_i) = -(\beta_i)^q$.

By evaluating the functions of the above basis at these points we find a submatrix of H corresponding to the columns of A obtained by choosing any $a+2$ points listed in (3.1) in the given order; and iii) each entry of H is computed as follows:

\[
\left[
\begin{array}{ccccccc}
1 & 1 & 1 & \cdots & 1 & \cdots & 1 \\
\beta_1 & \beta_2 & \beta_3 & \cdots & \beta_{a+2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\beta_1^{q-1} & \beta_2^{q-1} & \beta_3^{q-1} & \cdots & \beta_{a+2}^{q-1} \\
-\beta_1^q & -\beta_2^q & -\beta_3^q & \cdots & -\beta_{a+2}^q \\
-\beta_1^{q+1} & -\beta_2^{q+1} & -\beta_3^{q+1} & \cdots & -\beta_{a+2}^{q+1} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}
\right]
\]

This matrix is singular so its columns are linearly dependent, hence $d(C_m) \leq a+2$. To see the converse, let A be a submatrix of H obtained by choosing any $a+1$ different columns of H. Since each column of H corresponds to a point $P_{\alpha, \beta} = (\alpha, \beta)$, we can order the points corresponding to the columns of A as

\[
P_{\alpha_1, \beta_1, 1}, P_{\alpha_1, \beta_1, 2}, \ldots, P_{\alpha_1, \beta_1, b_1}, P_{\alpha_2, \beta_2, 1}, \ldots, P_{\alpha_2, \beta_2, b_2}, \ldots, P_{\alpha_l, \beta_l, 1}, \ldots, P_{\alpha_l, \beta_l, b_l},
\]

where the α_i’s are pairwise distinct and $b_1 \geq b_2 \geq \cdots \geq b_l \geq 1$, $b_1 + \cdots + b_l = a + 1$. It is easy to check that $x^{i-1}y^kz^t \in \mathcal{L}(L^Q)$ for $0 \leq k_i + t_iq \leq b_i - 1$, $0 \leq k_i < q$, $1 \leq i \leq l$. Order these functions as

\[
1, y, \ldots, y^{q-1}, z, yz, \ldots, y^{r_1}z^s, x, xy, \ldots, xy^{q-1}, xz, xyz, \ldots, xxy^{r_2}z^{s_2}, \ldots, x^{l-1}, \ldots, x^{l-1}y^{r_l}z^{s_l},
\]

where $r_i + s_iq = b_i - 1$. We construct an $(a+1) \times (a+1)$ submatrix B of A as follows: i) rows correspond to the above functions in the given order; ii) columns correspond to the points listed in (3.1) in the given order; and iii) each entry of B is obtained by evaluation as follows: $B = [B_{ij}]$, $i, j = 1, \ldots, l$, where B_{ij} is the $(b_i \times b_j)$ matrix whose (u, v) entry is $\alpha_j^{i-1}b_{ij}^{u_1}z^{u_2}(P_{\alpha_j, \beta_j, u}), u_1 + u_2q = u - 1$. So $B_{ij} = \alpha_j^{i-1}D_{ij}$, where
After some computation and using induction we obtain

\[D_{ij} := \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \beta_{j,1} & \beta_{j,2} & \cdots & \beta_{j,b_j} \\ \beta_{j,1}^2 & \beta_{j,2}^2 & \cdots & \beta_{j,b_j}^2 \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{j,1}^{q-1} & \beta_{j,2}^{q-1} & \cdots & \beta_{j,b_j}^{q-1} \\ z(P_{\alpha_j,\beta_j,1}) & z(P_{\alpha_j,\beta_j,2}) & \cdots & z(P_{\alpha_j,\beta_j,b_j}) \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{j,1}^{r}z_{s_j}(P_{\alpha_j,\beta_j,1}) & \beta_{j,2}^{r}z_{s_j}(P_{\alpha_j,\beta_j,2}) & \cdots & \beta_{j,b_j}^{r}z_{s_j}(P_{\alpha_j,\beta_j,b_j}) \end{pmatrix}, \]

with \(r_i + s_iq = b_i - 1 \). This matrix is equivalent, in the sense that one matrix is obtained from the other by a sequence of elementary row operations, to

\[\tilde{D}_{ij} := \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \beta_{j,1} & \beta_{j,2} & \cdots & \beta_{j,b_j} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{j,1}^{q-1} & \beta_{j,2}^{q-1} & \cdots & \beta_{j,b_j}^{q-1} \\ -\beta_{j,1}^{q} & -\beta_{j,2}^{q} & \cdots & -\beta_{j,b_j}^{q} \\ \vdots & \vdots & \ddots & \vdots \\ (-1)^{s_j}\beta_{j,1}^{b_j-1} & (-1)^{s_j}\beta_{j,2}^{b_j-1} & \cdots & (-1)^{s_j}\beta_{j,b_j}^{b_j-1} \end{pmatrix}. \]

After some computation and using induction we obtain

\[\det(B) = \left(\prod_{i=1}^{l} \det(D_{i,i}) \right) \left(\prod_{j=2}^{l} \tau_{j}^{b_j} \right) = \left(\prod_{i=1}^{l} \det(\tilde{D}_{i,i}) \right) \left(\prod_{j=2}^{l} \tau_{j}^{b_j} \right), \]

where \(\tau_{j} = \prod_{i=1}^{j-1}(\alpha_j - \alpha_i), j = 2, 3, \ldots, l \). Next, we note that any \(a + 1 \) columns of \(A \) are linearly independent. In fact, since the \(\alpha_i \)'s are pairwise distinct we have \(\tau_{j} \neq 0 \) for \(j = 2, \ldots, l \). Since the \(\beta_{i,j} \)'s are pairwise distinct for a given \(i \), we have \(\det(\tilde{D}_{i,i}) \neq 0 \) hence \(\det(B) \neq 0 \) and \(a + 1 = \text{rank}(B) \leq \text{rank}(A) \leq a + 1 \). Thus \(d_m = a + 2 \). Proofs of (2) and (3) are similar.

Thus we have computed the true minimum distance of all codes \(C_m \) when \(n \leq m \leq n + 2g - 2 \). For \(0 \leq m < n \) we remark that besides the Goppa bound there are several bounds available to estimate the minimum distance of a code. One of the most interesting is the order bound. For one-point codes we can follow the version of [6], which is briefly explained below. Let \(H^* = H(Q) \setminus (n + H(Q)) = \{ m_1^* = 0 < \cdots < m_n^* \} \) be as above. For \(i = 1, \ldots, n \), let

\[\Lambda_i^* = \{ m \in H^* : m - m_i^* \in H^* \}. \]

Then the minimum distance of \(C(\mathcal{X}, D, m_i^*Q) \) verifies

\[d(C(\mathcal{X}, D, m_i^*Q)) \geq d^*(i) = \min\{ \#\Lambda_1^*, \ldots, \#\Lambda_i^* \}. \]
In the following examples we consider some small values of q and r. We find several codes with the best known parameters.

Example 3.5. Let $q = 3$ and $r = 3$. Then $g = 36$, $n = 243$ and $H(Q) = \langle 9, 12, 28 \rangle$. A simple computation gives $H^* = \{0, 9, 12, 18, 21, 24, 27, 28, 30, 33, 36, 37, 39, 40, 42, 45, 46, 48, 49, 51, 52, 54, 55, 56, 57, 58, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, \ldots, 244, 245, 246, 247, 248, 249, 250, 251, 253, 254, 256, 257, 258, 259, 260, 262, 263, 265, 266, 268, 269, 272, 274, 275, 277, 278, 281, 284, 286, 287, 290, 293, 296, 302, 305, 314 \}$. Computing the order bound, we find the following codes over \mathbb{F}_{27} with the best known parameters (according to the tables [10]): $[243, 137, \geq 72], [243, 146, \geq 63], [243, 149, \geq 60], [243, 155, \geq 54], [243, 158, \geq 51], [243, 161, \geq 48]$ and $[243, 165, \geq 45]$. Some of these codes are not necessarily the best possible. For example, according to the Gilbert-Varshamov bound, there exist (unknown so far) codes with parameters $[243, 161, \geq 49], [243, 165, \geq 46]$.

Example 3.6. Let $q = 2$ and $r = 4$. Then $g = 28$, $n = 128$ and $H(P_\infty) = \langle 2, 12, 17 \rangle$. Computing the order bound, we find a $[128, 5, \geq 111]$ and a $[128, 8, \geq 103]$ codes over \mathbb{F}_{16}. Both codes have the best known parameters according to [10].

Remark 3.7. In the above example, via the MAGMA computer package [2], we can compute the exact minimum distance of the codes. As a matter of fact, we obtain a $[128, 5, 112]$ code and a $[128, 8, 104]$ code respectively.

The order bound we are using allows us to easily obtain improved codes. For $i = 1, \ldots, n$, consider a function $f_i \in L((n + 2g - 2)Q)$ with $\nu_Q(f) = m_i^\ast$. Given an integer δ, $1 \leq \delta \leq n$, the improved code $C(X, D, Q, \delta)$ is defined as

$$C(X, D, Q, \delta) = \{\{ev(f_i) : \#\Lambda_i^\ast \geq \delta\}.$$ Then $C(X, D, Q, \delta)$ is a code of dimension $\#\{ev(f_i) : \#\Lambda_i^\ast \geq \delta\}$ and minimum distance $\geq \delta$, see [6]. Remark that the functions f_i’s can be obtained from the basis stated in Corollary 2.3, so that the code $C(X, D, Q, \delta)$ may be explicitly computed.

Example 3.8. Let $q = 3$ and $r = 3$ as in Example 3.5. We find the improved codes with the following best known parameters: $[243, 159, \geq 50], [243, 162, \geq 48], [243, 163, \geq 47], [243, 167, \geq 44], [243, 169, \geq 42]$ and $[243, 171, \geq 40]$. As in previous examples, the Gilbert-Varshamov bound implies the existence of codes $[243, 167, \geq 45], [243, 169, \geq 43], [243, 171, \geq 42]$.

4. **Subcovers of the Generalized Hermitian Curve**

Let $b \in \mathbb{F}_q^\ast$ be such that $T_{F_q^r} (b) = 0$, where T is the trace function. Then for $j = 1$ and $j = r - 2$, we can consider the curve X_j^\ast defined over \mathbb{F}_{q^r} by the affine equation

$$s_{r, 2}(x, x^q, \ldots, x^{q^{r-1}}) = y_j^{q^r-1} + \ldots + b^{q^r-1-q} + 1) y_j^{q^{r-1}} + \ldots + \left(b^{q^r-1-q} + \ldots + b^{q^2-q} + 1 \right) y_j$$
where \(s_{r,2} \) is the second symmetric polynomial in \(r \) variables. This curve was introduced by Deolalikar [4] for \(r = 3 \), and generalized for all \(r \) in [12]. \(\mathcal{X}_r^j \) is covered by the Generalized Hermitian curve and a covering map is given by
\[
c(x, y) = (x, y^{q^{r-j-1}} + (b_1 y^{q^{r-1}} + \cdots + b_{r-j-1} y^{q^{r-2}} + \cdots b_2 y^{q^2} + 1) + y^{q^{r-1}} + \cdots + b_2 y^{q^2} + 1) y).
\]
The following Proposition states some of the main properties of \(\mathcal{X}_r^j \). See [12] for the proofs.

Proposition 4.1. The curve \(\mathcal{X}_r^j \), \(j = 1 \) and \(j = r-2 \), verifies the following properties.

1. The only pole of \(x, Q_j^r \), is totally ramified.
2. The genus of \(\mathcal{X}_r^j \) is \(g = (q^j - 1)q^{r-1}/2 \).
3. The number of rational points of \(\mathcal{X}_r^j \) is \(q^{r+j} + 1 \).
4. The Weierstrass semigroup at \(Q_j^r \) is \(H(Q_j^r) = \langle q^j, q^{r-1} + 1 \rangle \).
5. Let \(z = x^{1+a} + x^{1+q^2} + \cdots + x^{q^{r-3}+q^2} - y^{q^j} \). Then \(\{x^{a}z^b : 0 \leq a, 0 \leq b < q^j \text{ and } aq^j + b(q^{r-1} + 1) = m \} \) is a basis of \(\mathcal{L}(mQ_j^r) \).

For \(m = 0, 1, \ldots \), we can consider the codes \(C_{r,m}^j = C(\mathcal{X}_r^j, D, mQ_j^r) \), where \(D \) is the sum of all rational points of \(\mathcal{X}_r^j \) except \(Q_j^r \). The properties of these codes can be studied in a similar way as done previously for Generalized Hermitian curves. Here we just show an example that this curve provides good codes.

Example 4.2. For \(q = 3 \) and \(r = 3 \), the curve \(\mathcal{X}_3^1 \) have genus 9 and 82 rational points over \(\mathbb{F}_{27} \). For \(m = 10 \) we get a \([81, 5, \geq 71]\) code, which is a new record.

References

Dept. of Applied Mathematics, University of Valladolid, Avda Salamanca SN, 47012 Valladolid, Castilla, Spain

Faculdade de Matemática, Universidade Federal de Uberlândia, Av. J. N. de Ávila 2160, Uberlândia, 38408-100, MG-Brazil

Institute of Mathematics, Statistics and Computer Science, P.O. Box 6065, University of Campinas, 13083-970, Campinas, SP, Brazil

E-mail address: cmunuera@arq.uva.es
E-mail address: alonso@famat.ufu.br
E-mail address: ftorres@ime.unicamp.br