\mathbb{F}_{p^2}-MAXIMAL CURVES WITH MANY AUTOMORPHISMS ARE
GALOIS-COVERED BY THE HERMITIAN CURVE

DANIELE BARTOLI, MARIA MONTANUCCI, AND FERNANDO TORRES

Abstract. Let \mathbb{F} be the finite field of order q^2, $q = p^t$ with p prime. It is commonly
attribute to J.P. Serre the fact that any curve \mathbb{F}-covered by the Hermitian curve $\mathcal{H}_{q+1}: y^{q+1} = x^q + x$ is also \mathbb{F}-maximal. Nevertheless, the converse is not true as the Giulietti-
Korchmáros example shows provided that $q > 8$ and $t \equiv 0 \pmod{3}$. In this paper, we
show that if an \mathbb{F}-maximal curve \mathcal{X} of genus $g \geq 2$ where $q = p$ is such that $|\text{Aut}(\mathcal{X})| > 84(g - 1)$ then \mathcal{X} is Galois-covered by \mathcal{H}_{p+1}. Also, we show that the hypothesis on the
order of $\text{Aut}(\mathcal{X})$ is sharp, since there exists an \mathbb{F}-maximal curve \mathcal{X} for $q = 71$ of genus
$g = 7$ with $|\text{Aut}(\mathcal{X})| = 84(7 - 1)$ which is not Galois-covered by the Hermitian curve \mathcal{H}_{72}.

1. Introduction

Throughout this paper, by a curve we shall mean a projective, non-singular, geometrically
irreducible algebraic curve defined over a finite field $\mathbb{F} = \mathbb{F}_{p^2}$ of order q^2. A curve \mathcal{X} of
genus $g = g(\mathcal{X})$ is called \mathbb{F}-maximal if the number of its \mathbb{F}-rational points attains the
Hasse-Weil upper bound; that is to say

$$|\mathcal{X}(\mathbb{F})| = q^2 + 1 + 2qg.$$

A basic obstruction here is given by the well-known Ihara’s bound $g \leq q(q - 1)/2$ (see [20]); by Rück and Stichtenoth [30] this bound is sharp as equality holds if and only if
\mathcal{X} is \mathbb{F}-isomorphic to the Hermitian curve, namely the plane curve $\mathcal{H}_{q+1}: y^{q+1} = x^q + 1$. Further examples of maximal curves arise from \mathbb{F}-subcovers of \mathbb{F}-maximal curves, which
is a result commonly attributed to J.P. Serre (see [23]). Concrete examples which all are
dominated by \mathcal{H}_{q+1} can be found e.g. in [13, 4, 28, 25]. However, not every maximal curve
arises in this way as the Giulietti-Korchmáros curve (currently referred as the GK-curve)
shows [16] (see also [33]). Any of these examples occurs whenever $q = p^{3h} > 8$, where p
is a prime. In this paper we investigate the existence of similar examples for $q = p$. Our
main result is the following.

Theorem 1.1. Let p be a prime and $\mathbb{F} = \mathbb{F}_{p^2}$ the finite field of order p^2. Let \mathcal{X} be an
\mathbb{F}-maximal curve with genus $g = g(\mathcal{X}) \geq 2$, and $\text{Aut}(\mathcal{X})$ the \mathbb{F}-automorphism group of \mathcal{X}.

2010 Math. Subj. Class.: Primary 11G; Secondary 14G.
Keywords: finite field, maximal curve, Hermitian curve, Galois-covering.
If Aut(\(X\)) does not satisfy the classical Hurwitz bound; i.e., |Aut(\(X\))| > 84(g − 1), then \(X\) is Galois-covered by the Hermitian curve \(H_{p+1} : y^{p+1} = x^p + x\) over \(\mathbb{F}\).

Furthermore, the bound on the size of Aut(\(X\)) in the main theorem is sharp as we shall see in Section 4: Indeed, here we consider the so-called Fricke-Macbeath curve over \(\mathbb{F}_{712}\) as a very basic counter-example to Theorem 1.1; see Theorem 4.4.

2. Preliminary results

Let \(X\) be a curve defined over the finite field \(\mathbb{F} = \mathbb{F}_q^2\) of order \(q^2\) with \(q = p^t\) a power of a prime \(p\). Let Aut(\(X\)) be the \(\mathbb{F}\)-automorphism group of \(X\). For \(m \geq 1\) a divisor of \(q + 1\), we let \(H_m\) denote the non-singular model of the plane curve

\[y^m = x^q + x. \]

Notice that \(H_{q+1}\) is the aforementioned Hermitian curve. We start by recalling two characterizations of \(H_m\): The first one, involving automorphisms of curves, is due to Garcia and Tafazolian [14, Thm. 5.2] (see also [34, Thm. 4.1]); the second characterization of \(H_m\) that we shall point out here is given in terms of the Weierstraß semigroup at certain \(\mathbb{F}\)-rational point of \(H_m\) (e.g. the unique point in \(H_m\) over \(x = \infty\)) (see Garcia et al. [11, Thm. 5.2]).

Theorem 2.1. Let \(X\) be an \(\mathbb{F}\)-maximal curve.

1. Suppose that there exists an abelian subgroup \(H\) of Aut(\(X\)) whose order equals \(q\) such that the quotient curve \(X/H\) is rational. Then there exists a divisor \(m\) of \(q + 1\) such that \(X\) is \(\mathbb{F}\)-isomorphic to the curve \(H_m\) above.
2. Suppose that there is a non-gap \(m\) at a point \(P \in X(\mathbb{F})\) such that \(m\) is a divisor of \(q + 1\). Then \(X\) is \(\mathbb{F}\)-isomorphic to \(H_m\).

Lemma 2.2. The curve \(H_m\) above is Galois-covered over \(\mathbb{F}\) by the Hermitian curve \(H_{q+1}\). Also, Aut(\(H_m\)) contains a cyclic subgroup \(C_m\) of order \(m\) such that Aut(\(H_m\))/\(C_m \cong PGL(2,q)\) and hence |Aut(\(H_m\))| > 84(g − 1), where \(g = g(H_m) = (m − 1)(q − 1)/2\).

Proof. Let \(\Sigma\) and \(\Sigma'\) be the corresponding \(\mathbb{F}\)-function fields of \(H_{q+1}\) and \(H_m\) respectively. Clearly \(\Sigma'\) is \(\mathbb{F}\)-covered by \(\Sigma\), because of the morphism \(\varphi : (x,y) \mapsto (x,y^{(q+1)/m})\); also, \([\Sigma : \Sigma'] = (q + 1)/m\). Consider the \(\mathbb{F}\)-automorphism group \(G\) of \(\Sigma\) given by

\[G = \{ \varphi_\lambda : (x,y) \mapsto (x,\lambda y) \mid \lambda^{(q+1)/m} = 1 \}, \]

which is of order \((q + 1)/m\). Then the quotient function field \(\Sigma/G\) equals \(\Sigma'\), as the functions \(x\) and \(y^{(q+1)/m}\) are fixed by \(G\) and |\(G\)| = [\(\Sigma : \Sigma'\)]. The claim on the structure of Aut(\(H_m\)) follows from [19, Thm. 12.11]. □

Let \(X\) be a curve over \(\mathbb{F}\) of genus \(g = g(X)\), \(G\) a subgroup of Aut(\(X\)) and \(P \in X\); we recall that an orbit under \(G\) (resp. a stabilizer in \(G\)) of \(P\) is the set \(G(P) := \{ \tau(P) : \tau \in G \}\).
(resp. \(G_P := \{ \tau \in G : \tau(P) = P \} \)). The orbit \(G(P) \) is either short or long provided that \(|G_P| > 1\) or not. A short orbit \(G(P) \) is either tame or non-tame according to \(p \nmid |G_P| \) or not, where \(p \) is the characteristic of \(\mathbb{F} \).

The following theorem gives the exact structure of the short orbits under \(G \) for which \(|G| > 84(g(\mathcal{X}) - 1)\); see [19, Thm 11.56, Thm. 11.126].

Theorem 2.3. Let \(\mathcal{X} \) be curve over \(\mathbb{F} \) of genus \(g \geq 2 \) and let \(G \leq \text{Aut}(\mathcal{X}) \) with \(|G| > 84(g^2 - 1)\). Then the quotient curve \(\mathcal{X}/G \) is rational and there are at most three short orbits under \(G \) as follows:

1. Exactly three short orbits: one non-tame and two tame. Each point in each tame short orbit has stabilizer in \(G \) of order 2;
2. Exactly two short orbits, both non-tame;
3. Only one short orbit which is non-tame;
4. Exactly two short orbits, one non-tame tame and one tame. In this case \(|G| < 8g^3\), with the following exceptions:
 - \(p = 2 \) and \(\mathcal{X} \) is isomorphic to the hyperelliptic curve \(y^2 + y = x^{2k+1} \) with genus \(2k-1 \);
 - \(p > 2 \) and \(\mathcal{X} \) is isomorphic to the Roquette curve \(y^2 = x^q - x \) with genus \((q-1)/2 \);
 - \(p \geq 2 \) and \(\mathcal{X} \) is isomorphic to the Hermitian curve \(y^{q+1} = x^q + x \) with genus \(q(q-1)/2 \);
 - \(p = 2, q_0 = 2^e, q = 2q_0^2 \) and \(\mathcal{X} \) is isomorphic to the Suzuki curve \(y^q + y = x^{q_0}(x^q + x) \) with genus \(q_0(q-1) \).

The following lemma will be used to ensure that a Sylow \(p \)-subgroup of a non-tame automorphism group of a \(\mathbb{F} \)-maximal curve \(\mathcal{X} \) fixes exactly one \(\mathbb{F}_{p^2} \)-rational point of \(\mathcal{X} \).

Lemma 2.4. ([17, Prop. 3.8, Thm. 3.10]) Let \(\mathcal{X} \) be an \(\mathbb{F} \)-maximal curve of genus \(g \geq 2 \). Then the automorphism group \(\text{Aut}(\mathcal{X}) \) fixes the set \(\mathcal{X}(\mathbb{F}) \) of \(\mathbb{F} \)-rational points. Also, automorphisms of \(\mathcal{X} \) over the algebraic closure of \(\mathbb{F} \) are always defined over \(\mathbb{F} \).

Corollary 2.5. For \(q = p^t \), let \(\mathcal{X} \) be an \(\mathbb{F} \)-maximal curve with \(g = g(\mathcal{X}) \geq 2 \) such that \(p \mid |\text{Aut}(\mathcal{X})| \), and let \(S \) be a Sylow \(p \)-subgroup of \(\text{Aut}(\mathcal{X}) \). Then \(S \) fixes exactly one point \(P \in \mathcal{X}(\mathbb{F}) \) and acts semiregularly on the set of the remaining \(\mathbb{F} \)-rational points of \(\mathcal{X} \). In particular, if \(p \nmid g \), every \(\sigma \in S \) has order at most equal to \(q \).

Proof. From Lemma 2.4, \(S \) acts on the set \(\mathcal{X}(\mathbb{F}) \) of \(\mathbb{F} \)-rational points of \(\mathcal{X} \). Since \(|\mathcal{X}(\mathbb{F}_{p^2})| \equiv 1 \pmod{p} \), \(S \) must fix at least a point \(P \in \mathcal{X}(\mathbb{F}_{p^2}) \). Also, \(\mathcal{X} \) has zero \(p \)-rank and hence the claim follows from [19, Lemma 11.129]. \(\square \)

The following lemma provides a characterization of the Hermitian curve \(\mathcal{H}_{p+1} \) in terms of the order of a Sylow \(p \)-subgroup of its full automorphism group.
Lemma 2.6. Let p be a prime and \mathbb{F} a field of order p^2. Let \mathcal{X} be an \mathbb{F}-maximal curve of genus g such that there exists $G \leq \text{Aut}(\mathcal{X})$ with $p \mid |G|$. Then we can write

\begin{equation}
 g = \frac{a_1(p - 1)}{2} + a_2p,
\end{equation}

where a_1 is a non-negative integer such that $G_P^{(a_1+1)}$ is the last non-trivial ramification group at a point $P \in \mathcal{X}$ and $a_2 = g(\mathcal{X}/H)$, where H is a subgroup of G of order p. Also, $p^2 \nmid |G|$ unless \mathcal{X} is \mathbb{F}-isomorphic to the Hermitian curve \mathcal{H}_{p+1}.

Proof. Let $H \leq G$ with $|H| = p$. From Corollary 2.5, H has exactly one fixed point P which is thus \mathbb{F}-rational. Clearly H acts semiregularly on $\mathcal{X}(\mathbb{F}) \setminus \{P\}$ and so $|H| \mid (p^2 + 2gp)$. From the Riemann-Hurwitz formula $2g - 2 = p(2a_2 - 2) + (a_1 + 2)(p - 1)$, so that

\begin{equation}
 g = \frac{p(2a_2 - 2) + (a_1 + 2)(p - 1) + 2}{2} = \frac{a_1(p - 1)}{2} + a_2p.
\end{equation}

If $\mathcal{X} \cong \mathcal{H}_{p+1}$, there is nothing to prove; thus we assume that $\mathcal{X} \not\cong \mathcal{H}_{p+1}$. From [30], this implies that $p^2 + 2gp < p^2 + p^2(p - 1) = p^3$, as $2g < p(p - 1)$. Thus, if S is a Sylow p-subgroup of $\text{Aut}(\mathcal{X})$ containing H, either $|S| = p^2$ or $S = H$. Assume that $|S| = p^2$. From the Riemann-Hurwitz formula

\[2g - 2 = p^2(2g(\mathcal{X}/S) - 2) + (a_1 + 2)(p^2 - 1) + a_3p(p - 1), \]

for some non-negative integer a_3. In fact, if $i, j \geq 1$ are such that $G_P^{(i+1)} \neq G_P^{(i)}$ and $G_P^{(j+1)} \neq G_P^{(j)}$ then $i - j \equiv 0 \mod p$; see [19, Lemma 11.75 (v)]. Thus,

\[p(p - 1) > 2g = 2g(\mathcal{X}/S)p^2 + a_1(p^2 - 1) + a_3p(p - 1). \]

By direct checking, since a_1, a_3 and $g(\mathcal{X}/S)$ are non-negative, this implies that $g(\mathcal{X}/S) = a_1 = a_3 = 0$ and hence $g = 0$, a contradiction. \qed

In the following Lemma the known results on \mathbb{F}_{q^2}-maximal curves of high genus are collected; see [20, 30, 11, 12, 24],

Lemma 2.7. Let \mathcal{X} be an \mathbb{F}-maximal curve of genus $g = g(\mathcal{X})$, where $\mathbb{F} = \mathbb{F}_{q^2}$.

1. $g \leq g_2 := [(q^2 - q + 4)/6]$, or $g = g_1 := [(q - 1)^2/4]$, or $g = g_0 := (q(q - 1))/2$;
2. $g = g_0$ if and only if \mathcal{X} is \mathbb{F}-isomorphic to \mathcal{H}_{q+1};
3. $g = g_1$ if and only if \mathcal{X} is \mathbb{F}-isomorphic to $\mathcal{X}_{(q+1)/2}$ (resp. $y^{q+1} = x^{q/2} + \ldots + x$) if q is odd (resp. q even). In particular, in this case \mathcal{X} is a cyclic quotient of the Hermitian curve \mathcal{H}_{q+1} of order 2.

Corollary 2.8. Let \mathcal{X} be an \mathbb{F}-maximal curve of genus g with $\mathbb{F} = \mathbb{F}_{q^2}$, $p \geq 7$ a prime. Let a_1 and a_2 be as in Lemma 2.6 and suppose that one of the following conditions holds:

1. $a_1 > [(p^2 - p + 4)/3(p - 1)]$,
2. $a_2 > [(p^2 - p + 4)/6p]$,
3. $a_1 + a_2 \geq (p - 1)/2$ but $a_2 \leq [(p^2 - p + 4)/6p]$.
Then X is Galois-covered by the Hermitian curve H_{p+1}.

Proof. If (1) or (2) holds then $g > [(p^2 - p + 4)/6]$, and the claim follows from Lemma 2.7. Assume that $a_1 + a_2 \geq (p-1)/2$ but $a_2 \leq [(p^2 - p + 4)/6p]$. Then $a_1 \geq [(p-1)/2 - (p^2 - p + 4)/6p] = (p-1)/3$. Hence, $g \geq (p-3)(p-1)/6 + p > (p^2 - p + 4)/6$, and the claim follows again from Lemma 2.7. \qed

3. Proof of Theorem 1.1

Throughout this section, let X be an F-maximal curve of genus g, where $F = \mathbb{F}_{p^2}$ with p a prime.

3.1. Case: $p \leq 5$. Here we do not need the hypothesis $|\text{Aut}(X)| > 84(g - 1)$. For $p = 2$ and $p = 3$ the result is trivial by Lemma 2.7). For $p = 5$ we use the complete classification, up to isomorphism, of \mathbb{F}_{25}-maximal curves given in [8].

Lemma 3.1. Let X be an \mathbb{F}_{25}-maximal curve of genus $g = g(X)$. Then X is Galois-covered by the Hermitian curve H_6.

Proof. From [8, Thm. 11], $g(X) \in \{0, 1, 2, 3, 4, 10\}$ where

(1) $g = 10$ if and only if $X \cong H_6 : y^6 = x^5 + x$ over \mathbb{F}_{25};
(2) $g = 4$ if and only if $X \cong H_3 : y^3 = x^5 + x$ over \mathbb{F}_{25};
(3) $g = 3$ if and only if $X \cong C : y^6 = x^5 + 2x^4 + 3x^3 + 4x^2 + 3xy^3$ over \mathbb{F}_{25};
(4) $g = 2$ if and only if $X \cong H_2 : y^2 = x^5 + x$ over \mathbb{F}_{25},
(5) $g(X) = 1$ if and only if $X \cong D : y^2 + x^3 + 1 = 0$ over \mathbb{F}_{25}.

The cases (2) and (4) are Galois covered by H_6 by Lemma 2.2. The elliptic curve given in (5) is Galois covered by H_6 as this curve can also be described by the Fermat equation $y^6 + x^6 + 1 = 0$. Then $D = H_6/G$, where

$$G = \{a_{a,b}(x,y) = (ax, by) \mid a^2 = b^2 = 1\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$$

Finally, to prove that C is also Galois covered by H_6, since there is an unique, up to isomorphism, \mathbb{F}_{25}-maximal curve of genus 3 which is Galois covered by H_6 [4, Thm. 5.6], it is sufficient to construct a quotient curve of H_6 of genus 3. This follows considering the plane curve

$$Z : x^5 + y + 2x^2y^3 + xy^5 = 0.$$

From [4, Prop. 2.1], the curve Z equals H_6/H where $H \leq \text{Aut}(H_6)$ is a subgroup of order 3 of a Singer group of order 21. \qed
3.2. Case $p \geq 7$. Here Theorem 2.3 holds true as $|\text{Aut}(\mathcal{X})| > 84(g - 1)$. Let us start by showing that cases (1) and (2) in that result cannot occur.

Lemma 3.2. There is no an \mathbb{F}_p^2-maximal curve \mathcal{X} whose full automorphism group $\text{Aut}(\mathcal{X})$ satisfies any of the following property:

1. It admits exactly one non-tame short orbit O_1 and two tame short orbits O_2 and O_3;
2. It admits exactly two non-tame short orbits O_1 and O_2.

Proof. (1) By Theorem 2.3(4) \mathcal{X} is not isomorphic to \mathcal{H}_{p+1}. In particular, from Lemma 2.6 $p \mid |\text{Aut}(\mathcal{X})|$ but $p^2 \nmid |\text{Aut}(\mathcal{X})|$. Let H be a p-Sylow subgroup of $\text{Aut}(\mathcal{X})$. From Corollary 2.5 H fixes exactly an \mathbb{F}_p^2-rational point $P \in O_1$ and acts semiregularly in $O_1 \setminus \{P\}$. Thus we have that $|O_1| = 1 + np$ for some $n \geq 0$. From the Riemann-Hurwitz formula

$$2g - 2 = |\text{Aut}(\mathcal{X})|(2 \cdot 0 - 2) + (1 + np)[|\text{Aut}(\mathcal{X})|/(1 + np) - 1]$$

$$+ (a_1 + 1)(p - 1) + \frac{|\text{Aut}(\mathcal{X})|}{2}[(2 - 1) + (2 - 1)]$$

and hence

$$2g - 2 = (1 + np)(a_1p + p - a_1 - 2).$$

(3.1)

We now assume that $n > 0$. From Lemma 2.7 we have that $2g < p(p - 1)$ as \mathcal{X} is not isomorphic to \mathcal{H}_{p+1}. Thus, by direct checking, Equality (3.1) yields $n = 1$ and $a_1 = 0$. In this case $2p(p - 1) - 2 > 2g - 2 = (p + 1)(p - 2) = 2p(p - 1) - 2$, a contradiction. This yields that $n = 0$ and $\text{Aut}(\mathcal{X})$ fixes a point $P \in \mathcal{X}$. From (3.1) and (2.1)

$$a_1(p - 1) + 2a_2p - 2 = 2g - 2 = a_1(p - 1) + (p - 2).$$

Since this implies that $2a_2p = p$, we have a contradiction.

(2) From Corollary 2.5 we know that the fixed points of the Sylow p-subgroups of $\text{Aut}(\mathcal{X})$ lie on $\mathcal{X}(\mathbb{F}_{p^2})$, and hence O_1 and O_2 are contained in $\mathcal{X}(\mathbb{F}_{p^2})$. Also, as before, the size of each non-tame short orbit of $\text{Aut}(\mathcal{X})$ is congruent to 1 modulo p.

The size of the set $\mathcal{X}(\mathbb{F}_{p^2}) \setminus O_1$ is congruent to 0 (mod p). As also $O_2 \subsetneq \mathcal{X}(\mathbb{F}_{p^2})$ has length congruent to 1 (mod p) and $|\text{Aut}(\mathcal{X})| \equiv 0$ (mod p) we have a contradiction. □

Now we deal with cases (3) and (4) of Theorem 2.3.

Lemma 3.3. Let \mathcal{X} be an \mathbb{F}_p^2-maximal curve and assume that $\text{Aut}(\mathcal{X})$ satisfies any of the following properties:

1. It has exactly one non-tame short orbit O_1;
2. It admits exactly one non-tame short orbit O_1 and one tame short orbit O_2.

Then \mathcal{X} is Galois-covered by \mathcal{H}_{p+1}.

\[\text{D. Bartoli, M. Montanucci, and F. Torres}\]
Proof. (1) We can assume that for every Sylow p-subgroup H of $\text{Aut}(\mathcal{X})$, the quotient curve \mathcal{X}/H is not rational; otherwise, the claim follows from Theorem 2.1. In particular, this implies that $a_2 > 0$ in (2.1). As before, write $|O_1| = 1 + np$ for $n \geq 0$. From [19, Lemma 11.111] we have that $|O_1|$ divides $2g - 2$. Since the unique short orbit of $\text{Aut}(\mathcal{X})$ must be contained in $\mathcal{X}(\mathbb{F}_p)$, then either $\mathcal{X}(\mathbb{F}_p) = O_1$ or $\mathcal{X}(\mathbb{F}_p) = O_1 \cup \bigcup_{t=1}^n \tilde{O}_i$, where $|\tilde{O}_i| = |\text{Aut}(\mathcal{X})|$ for $t \geq 1$. Clearly the first case is not possible as $p^2 + 1 + 2gp > 2g - 2$. Assume that $\mathcal{X}(\mathbb{F}_p) = O_1 \cup \bigcup_{t=1}^n \tilde{O}_i$, where $|\tilde{O}_i| = |\text{Aut}(\mathcal{X})|$ for $t \geq 1$. This case can occur only if $|O_1|$ is a divisor of $p^2 + 1 + 2gp$ and $2g - 2$, that is, only if $|O_1|$ is a divisor of $(p + 1)^2$ which is congruent to 1 modulo p. This implies three possible cases: either $|O_1| = (p + 1)^2$ (a) or $|O_1| = 1$ (b) or $|O_1| = p + 1$ (c).

(a) holds. Here from Lemma 2.7, $p(p - 1) - 2 > 2g - 2 \geq (p + 1)^2$, a contradiction.

(b) holds. Here from the Riemann-Hurwitz formula

$$2g - 2 = |\text{Aut}(\mathcal{X})|(-2) + |\text{Aut}(\mathcal{X})| - (a_1 + 1)(p - 1),$$

and hence from (2.1) $2a_2p - p = -|\text{Aut}(\mathcal{X})|$, a contradiction to $a_2 > 0$.

(c) holds. Since $\text{Aut}(\mathcal{X})$ has no other short orbits, we have that $(p + 1) | p^2 + 1 + 2gp - (p + 1)$ and hence $(p + 1) | (a_1 + 1)(p - 1) + 2a_2p$. By direct computation this implies that $(p + 1) | 2a_1 + 2a_2 + 2$. In particular $a_1 + a_2 \geq \frac{p - 1}{2}$, while $1 \leq a_2 \leq \frac{p^2 - p + 1}{6p}$. The claim now follows from Lemma 2.8.

(2) As before, we can assume that for every Sylow p-subgroup H of $\text{Aut}(\mathcal{X})$ the quotient curve \mathcal{X}/H is not rational, otherwise the claim follows from Theorem 2.1. In particular, this implies that $a_2 > 0$ in (2.1). Assume that $|O_1| = 1 + np$ for $n \geq 0$.

Case 1: $\mathcal{X}(\mathbb{F}_p) = O_1 \cup O_2$. From the Riemann-Hurwitz formula

$$2g - 2 = |\text{Aut}(\mathcal{X})|(-2) + |\text{Aut}(\mathcal{X})| - (a_1 + 1)(p - 1) + \frac{|\text{Aut}(\mathcal{X})|}{1 + np} - 1$$

$$+(p^2 + 1 + 2gp - 1 - np)(\frac{|\text{Aut}(\mathcal{X})|}{p^2 + 1 + 2gp - 1 - np} - 1)$$

and hence,

$$2g - 2 = (1 + np)(a_1 + 1)(p - 1) - (p^2 + (2g - n)p).$$

Using (2.1) this reduces to $2a_2(p + 1) = (a_1 + 1)(n - 1)(p - 1)$. Since $a_2 > 0$ and $(p - 1, p + 1) = 2$, we have that $a_2 \geq (p - 1)/4$ and hence $g \geq p(p - 1)/2$. The claim now follows.

Case 2: $\mathcal{X}(\mathbb{F}_p) = O_1$. For $P \in O_2$ let $|\text{Aut}(\mathcal{X})_P| = hp$, where $(h, p) = 1$. Then $h \leq 4a_2 + 2$, as h is the order of a cyclic group in \mathcal{X}/H, where H is a p-group of order p; see [19, Thm. 11.60]. Let $Q \in O_2$. From the Riemann-Hurwitz formula

$$2g - 2 = -2ph|O_1| + |O_1|((hp - 1) + (a_1 + 1)(p - 1)) + |O_2||\text{Aut}(\mathcal{X})|/|O_2| - 1);$$

or equivalently $|\text{Aut}(\mathcal{X})| = 2(g - 1)|\text{Aut}(\mathcal{X})_P|/|\text{Aut}(\mathcal{X})_Q|$, where $N = |\text{Aut}(\mathcal{X})_Q|(-1 + (a_1 + 1)(p - 1)) - |\text{Aut}(\mathcal{X})_P| \geq 1; see [19, (11.67) and (11.68)]. This yields $-1/|\text{Aut}(\mathcal{X})_Q| \geq$
\[-(-1 + (a_1 + 1)(p - 1))/(hp + 1)\] and hence
\[
\frac{2g - 2}{ph|O_1|} = -\frac{1}{|\text{Aut}(X)_Q|} + \frac{(a_1 + 1)(p - 1) - 1}{hp} \geq \frac{(a_1 + 1)(p - 1) - 1}{hp(hp + 1)}.
\]

Thus,
\[
\frac{1}{hp^2} \geq \frac{2g - 2 - 2hp^2}{ph|O_1|} \geq \frac{(a_1 + 1)(p - 1) - 1}{hp(hp + 1)}.
\]

From the last inequalities, using \(h \leq 4a_2 + 2\), we get that \((4a_2 + 2)p + 1 \geq hp + 1 \geq a_1p^2 + p^2 - a_1p - 2p\) and hence
\[
a_2 \geq \frac{a_1p^2 + p^2 - a_1p - 4p - 1}{4p} \geq \frac{p^2 - 4p - 1}{4p},\quad \text{while} \quad g \geq \frac{p(p^2 - 4p - 1)}{4p} > g_3.
\]

If \(p \geq 11\) this gives a contradiction from [11]. If \(p = 7\), then \(g\) is not bigger than \(g_3\) if and only if \(a_1 = 0\). But since we are assuming that \(a_2 \geq 1\), then \(g \geq 7 = g_3\). The claim now follows from [9, Thm. 5].

Case 3: \(X(\mathbb{F}_{p^2})\) contains \(O_1\) and at least a long orbit of \(\text{Aut}(X)\). A case-by-case analysis is considered according to \(n = 0, n = 1\) or \(n > 1\).

Assume that \(n = 0\). In this case \(O_1 = \{P\}\) and \(\text{Aut}(X)_P = \text{Aut}(X)\). From the Riemann-Hurwitz formula
\[
2g - 2 = -2|\text{Aut}(X)| + (a_1 + 1)(p - 1) + |\text{Aut}(X)| - 1 + |O_2|(|\text{Aut}(X)|/|O_2| - 1).
\]
Then \(2a_2p - p = -|O_2|\), a contradiction since \(a_2 > 0\).

Assume that \(n = 1\). From the Riemann-Hurwitz formula
\[
2g - 2 = -2|\text{Aut}(X)| + (p + 1)(|\text{Aut}(X)|/|p+1|) - 1 + (a_1 + 1)(p - 1) + |O_2|(|\text{Aut}(X)|/|O_2| - 1),
\]
and hence from (2.1) \(|O_2| = p(a_1 + 1)(p - 1) - 2a_2p\). The length \(|O_2|\) must divide \(p^2 + 2gp - p\). If \(O_2\) is not contained in \(\mathbb{F}_{p^2}\) then also \((p + 1)| p^2 + 2gp - (p + 1)\) and hence \((p + 1)| (a_1 + 1)(p - 1) + 2a_2p\) and it divides \(|\text{Aut}(X)|\). By direct computation this implies that \((p + 1)| 2a_1 + 2a_2 + 2\). In particular \(a_1 + a_2 \geq \frac{p-1}{2}\) and so the claim follows from Lemma 2.8. If \(O_2\) is contained in \(X(\mathbb{F}_{p^2})\), \(p^2 + 1 + 2gp - (p + 1) - |O_2|\) must be positive and \(|O_2|\) divides \(p^2 + 1 + 2gp - (p + 1) - |O_2| = 2a_2(p + p)\). Also, \(|O_2|/p = (a_1 + 1)(p - 1) - 2a_2\) divides \(p + 2g - 1 = (a_1 + 1)(p - 1) + 2a_2p - 1 = |O_2|/p + 2a_2 + 2a_2p - 1\). This implies that \(|O_2|/p\) divides both \(2a_2(p + 1) - 1\) and \(2a_2p + 1\) and hence \(|O_2| = p\). In particular \((a_1 + 1)(p - 1) - 2a_2 = 1\) and \(a_2 \geq (p - 2)/2\). Since this implies that \(g \geq p(p - 2)/2\) the claim follows.

Assume that \(n > 1\). From the Riemann-Hurwitz formula
\[
2g - 2 = -2|\text{Aut}(X)| + (1 + np)
\]
\[
\frac{|\text{Aut}(X)|}{1 + np} - 1 + (a_1 + 1)(p - 1) + |O_2|\left(\frac{|\text{Aut}(X)|}{|O_2|} - 1\right) \quad \text{and hence},
\]
\[
|O_2| = p[-2a_2 - n + 1 + n(a_1 + 1)(p - 1)].
\]
Since \(|O_2|\) is a divisor of \(p(p + 2g - n)\) we have that \(|O_2| \leq (p^2 - np)/2 + gp\) and
\[
\frac{p^2 - p + 4}{6} \geq g_3 \geq g \geq \frac{(1 + np)(-1 + (a_1 + 1)(p + 1))}{p + 2} - \frac{p^2 - np}{2(p + 2)} + \frac{2}{p + 2},
\]
which implies
\[
(3.2) \quad n \leq \left[\frac{p^3 + 4p^2 - 4p + 8 - 6a_1(p - 1)}{6p^2 - 9p + 6a_1p^2 - 6a_1p} \right].
\]
In particular we get that \(a_1 < p/6\) and \(n < (p + 6)/6\).

Assume that \(O_2\) is not contained in \(\mathcal{X}(\mathbb{F}_{p^2})\). As \(1 + np\) divides \(p^2 + 1 + 2gp - 1 - np = p(p + 2g - n)\) and hence \(p + 2g - n = p(1 + a_1 + 2a_2) - a_1 - n\), write \(p(1 + a_1 + 2a_2) - a_1 - n = \alpha(1 + np)\). Then \(\alpha \equiv -a_1 - n \pmod{p}\) and since \(a_1 < p/6\), \(n < (p + 6)/6\) and \(\alpha \leq p\), we get \(\alpha = p - a_1 - n\). Thus, \(p(1 + a_1 + 2a_2) - a_1 - n = (p - a_1 - n)(1 + np)\), and hence
\[
\frac{p}{2} = \frac{p}{6} + \frac{2p}{6} \geq a_1 + 2a_2 = n(p - a_1 - n) \geq \frac{2p}{p} = p,
\]
a contradiction. Thus, we can assume that \(O_1\) and \(O_2\) are both contained in \(\mathcal{X}(\mathbb{F}_{p^2})\).

Since \(1 + np\) divides \(p^2 - np + 2gp - |O_2|\), we have in particular that \(1 + np\) divides \(p + (1 - n)a_1(p - 1) + 2a_2(p + 1) + n\) and hence
\[
(3.3) \quad n \leq 1 + \frac{2a_2(p + 1)}{(p - 1)(a_1 + 1)}.
\]
Write \(k(1 + np) = p + (1 - n)a_1(p - 1) + 2a_2(p + 1) + n\). Thus \(k \equiv (n - 1)a_1 + 2a_2 + n \pmod{p}\) and \(k \leq p\) as \(p + (1 - n)a_1(p - 1) + 2a_2(p + 1) + n < p + \frac{p}{3}(p + 1) + \frac{p + 6}{6} = (2p^2 + 9p + 6)/6 < p(1 + 2p) \leq p(1 + np)\). We observe that from \(a_2 \leq p/6\) and (3.3),
\[
(n - 1)a_1 + 2a_2 + n \leq \frac{2a_2(p + 1)a_1}{(p - 1)(a_1 + 1)} + 2a_2 + 1 + \frac{2a_2(p + 1)}{(p - 1)(a_1 + 1)}
\]
\[
\leq \frac{2a_2(p + 1)}{(p - 1)} + 2a_2 + 1 \leq \frac{2a_2(p + 2)}{p - 1} + 1 < p + 1,
\]
and hence \(k = (n - 1)a_1 + 2a_2 + n\) with
\[
((n - 1)a_1 + 2a_2 + n)(1 + np) = p + (1 - n)a_1(p - 1) + 2a_2(p + 1) + n.
\]
Thus \((n - 1)((n + 1)(a_1 + 1) + 2a_2) = 0\), which is impossible for \((n + 1)(a_1 + 1) + 2a_2 \geq 5\) and \(n \neq 1\).

Therefore the proof of Theorem 1.1 follows from Theorem 2.2 and Lemmas 3.2, 3.3.

4. On the hypothesis concerning the classical Hurwitz’s bound

Let \(p\) be a prime and \(\mathbb{F}\) be the finite field of order \(p^2\). In view of Theorem 1.1, a natural question arises: Is any \(\mathbb{F}\)-maximal curve \(\mathcal{X}\) of genus \(g = g(\mathcal{X})\) Galois-covered by \(H_{p+1}\)
also when the classical Hurwitz’s bound $|\text{Aut}(\mathcal{X})| \leq 84(g - 1)$ \((*)\) hold true? As a matter of fact, there is not difficult to find examples of such curves which are not F-isomorphic to $\mathcal{H}_m : y^m = x^p + x$ with $m \mid (p + 1)$.

Example 4.1. The curve \mathcal{X} given by the affine model over $\mathbb{F} = \mathbb{F}_{49}$
\[y^8 = x^4 - x^2, \]
is \mathbb{F}-maximal with $g = g(\mathcal{X}) = 5$ [1, Ex. 4.5]. For $m \mid 8$, we have that $g(\mathcal{H}_m) = 6(m - 1)/2$. Thus, $\mathcal{X} \not\cong \mathcal{H}_m$ for any $m \mid 8$. By direct checking using MAGMA (computational algebra system), $|\text{Aut}(\mathcal{X})| = 192 < 336 = 84(g(\mathcal{X}) - 1)$. However we observe that \mathcal{X} is Galois-Covered by \mathcal{H}_8 from [13, Ex. 6.4, Case 1].

Next we present a \mathbb{F}_{71}-maximal curve of genus 7 such that $(*)$ holds which is not \mathbb{F}-Galois covered by \mathcal{H}_{72}. The starting point is the plane equation over the complex numbers
\[1 + 7xy + 21x^2y^2 + 35x^3y^3 + 28x^4y^4 + 2x^7 + 2y^7 = 0 \]
which defines the unique compact Riemann surface \mathcal{F} of genus 7 such that $\text{Aut}(\mathcal{F}) \cong PSL(2, 8)$ (so that equality in $(*)$ above holds true); Fricke [10], Macbeath [26], Edge [5], Hidalgo [18]. The curve \mathcal{F} is refered nowadays as the Fricke-Macbeath curve. This curve was considered over finite fields by Top and Verschoor [35]. In particular, we have the following.

Proposition 4.2. Let p be a prime, $p \equiv \pm 1 \pmod{14}$, and $\mathbb{F} = \mathbb{F}_{p^2}$. Then the Fricke-Macbeath curve \mathcal{F} above is \mathbb{F}-maximal if and only if the elliptic curve $\mathcal{E}: y^2 - (x^3 + x^2 - 114x - 127) = 0$ is so.

Proof. From [35, Thm. 2.6], since $p \equiv \pm 1 \pmod{7}$, the number of \mathbb{F}_{p^2}-rational points of \mathcal{F} satisfies $|\mathcal{F}(\mathbb{F}_{p^2})| = 7|\mathcal{E}(\mathbb{F}_{p^2})| - 6p^2 - 6$. Thus $|\mathcal{F}(\mathbb{F}_{p^2})| = p^2 + 1 + 14p$ if and only if $|\mathcal{E}(\mathbb{F}_{p^2})| = p^2 + 2p + 1$ that is if and only if \mathcal{E} is \mathbb{F}_{p^2}-maximal. \hfill \square

Remark 4.3. By direct checking with MAGMA, the curve \mathcal{F} is \mathbb{F}_{p^2}-maximal for $p \in \{71, 251, 503, 2591\}$ and $\text{Aut}(\mathcal{X}) \cong PSL(2, 8)$. Clearly, since the \mathbb{F}_{p^2}-maximality of \mathcal{F} is equivalent to an elliptic curve to be supersingular there exist infinitely many values of p for \mathcal{F} to be \mathbb{F}_{p^2}-maximal, see [6].

The main result of this section is the following.

Theorem 4.4. The \mathcal{F} Fricke-Macbeath curve above is \mathbb{F}_{71}^2-maximal of genus 7 with $\text{Aut}(\mathcal{F}) \cong PSL(2, 8)$ but it is not a Galois subcover of \mathcal{H}_{72}.

Proof. We only need to show the assertion on the covering. The proof is long and very technical. Assume by contradiction that $\mathcal{F} \cong \mathcal{H}_{72}/G$ for some $G \leq PGU(3, 71)$. The order of $PGU(3, 71)$ is equal to $2^7 \cdot 3^5 \cdot 5 \cdot 7 \cdot 71 \cdot 1657$. From the Riemann-Hurwitz formula,
\[\frac{|\mathcal{H}_{72}(\mathbb{F}_{71})|}{|\mathcal{F}(\mathbb{F}_{71})|} \leq |G| \leq \frac{2g(\mathcal{H}_{72}) - 2}{2g(\mathcal{F}) - 2}, \]
which yields $60 \leq |G| \leq 414$, as $2g(\mathcal{H}_{72}) - 2 = 4968$ and $2g(\mathcal{F}) - 2 = 12$. Since $|G|$ divides $|PGU(3, 71)|$, we have to deal with 47 cases, namely

$$|G| \in \{60, 63, 64, 70, 71, 72, 80, 81, 84, 90, 96, 105, 108, 112, 120, 126, 128, 135, 140, 142, 144, 160, 162, 168, 180, 189, 192, 210, 213, 216, 224, 240, 243, 252, 270, 280, 284, 288, 315, 320, 324, 336, 355, 360, 378, 384, 405\}.$$

(4.1) The different divisor Δ has degree

$$\deg(\Delta) = \sum_{\sigma \in G \setminus \{id\}} i(\sigma) = (2g(\mathcal{H}_{72}) - 2) - |G|(2g(\mathcal{F}) - 2) = 4968 - 12|G|.$$

(4.2) For the computation of $i(\sigma)$ we refer to the notation used in [29, Lemma 2.2] and the complete classification given in [29, Thm. 2.7].

Case 1: 71 divides $|G|$.

$|G| = 71$. From (4.2), $\deg(\Delta) = 4116$ but from [29, Thm. 2.7] either $\deg(\Delta) = 70 \cdot 2$ or $\deg(\Delta) = 70 \cdot (73)$, a contradiction.

$|G| = 142$. In this case either G is dihedral or cyclic. From (4.2), $\deg(\Delta) = 3264$. Assume that G is dihedral. From [29, Thm. 2.7] either $\deg(\Delta) = 70 \cdot 2 + 71 \cdot 72$ or $70 \cdot 73 + 71$, a contradiction. If G is cyclic then either $\deg(\Delta) = 70 \cdot 2 + 72 + 1 \cdot 70$ or $\deg(\Delta) = 70 \cdot 73 + 72 + 1 \cdot 70$, which are impossible.

$|G| = 213$. From (4.2), $\deg(\Delta) = 2412$ and G is cyclic. From [29, Lemma 2.2], if $\sigma \in G$ is tame then σ is of type (A) and hence $i(\sigma) = p + 1 = 72$. From [29, Thm. 2.7] either $\deg(\Delta) = 70 \cdot 2 + 72 + 1 \cdot 70$ or $\deg(\Delta) = 70 \cdot 73 + 72 + 140 \cdot 1$, a contradiction.

$|G| = 284$. There are 4 groups of order 284 up to isomorphism. We will refer to such groups keeping the standard GAP notation as $G \cong \text{SmallGroup}(284, i)$ for $i = 1, 2, 3, 4$. From [29, Thm. 2.7], if $G \cong \text{SmallGroup}(284, 1)$ then $\deg(\Delta) = 70 \cdot 1 + 142 \cdot \alpha + 70 \cdot \beta + 72$, where $\alpha \in \{0, 72\}$ and $\beta \in \{2, 73\}$. If $G \cong \text{SmallGroup}(284, 2)$ then $\deg(\Delta) = 140 \cdot 1 + 70 \cdot 1 + 2 \cdot \alpha + 70 \cdot \beta + 72$, where $\alpha \in \{0, 72\}$ and $\beta \in \{2, 73\}$. If $G \cong \text{SmallGroup}(284, 3)$ then $\deg(\Delta) = 70 \cdot 1 + 70 \cdot \beta + 143 \cdot 72$, where $\beta \in \{2, 73\}$. If $G \cong \text{SmallGroup}(284, 2)$, then $\deg(\Delta) = 210 \cdot 1 + 70 \cdot \beta + 3 \cdot 72$, where $\beta \in \{2, 73\}$. In all these cases, by direct checking $\deg(\Delta)$ does not satisfies (4.2), contradicction.

$|G| = 355$. There are 2 groups of order 355 up to isomorphism, namely $G \cong C_{71} \times C_5$ or $G \cong C_{355}$, where C_n denotes a cyclic group of order n. In the former case $\deg(\Delta) = 70 \cdot \alpha + 284 \cdot 2$, where $\alpha \in \{2, 73\}$. By direct checking $\deg(\Delta)$ satisfies (4.2) if and only if $\alpha = 2$. Thus from the Riemann-Hurwitz formula $g(\mathcal{H}_{72}/G) = 7 = g(\mathcal{F})$. Geometrically, the elements of C_{71} have exactly one fixed point $P \in \mathcal{H}_{72}$ while the elements of C_5 fix exactly the \mathbb{F}_{71}-rational vertexes of a triangle $T = \{P, Q, R\}$, where $Q \in \mathcal{H}_{72}$ and $R \notin \mathcal{H}_{72}$. Let $H \cong C_{712-1} < PGU(3, 71)$ fixing T point-wise. Clearly $C_5 < C_{712-1}$ and since H normalizes C_{71} $\bar{H} = (C_{71}, H) = C_{71} \times H$. Since $PSL(2, 8)$ contains no subgroups of order $|\bar{H}/G|$ the curves \mathcal{F} and \mathcal{H}_{72}/G are not isomorphic.
This shows that if $\mathcal{H}_{72}/G \cong \mathcal{F}$, then G must be tame.

Case 2: 71 does not divide $|G|$. We proceed with a case-by-case analysis according to $|G|$ and the possible group theoretical structure of G up to isomorphisms. In most of the obtained cases a numerical contradiction to (4.2) is obtained using [29, Thm. 2.7]. Here we underline again that, considering subgroups G of $PGU(3,71)$ with $|G|$ satisfying one of the cases classified in (4.1), quotient curves \mathcal{H}_{72}/G of \mathcal{H}_{72} of genus 7 can be obtained. However, in each of these cases there exists at least a subgroup of $N_{PGU(3,71)}(G)/G$ which is not isomorphic to any subgroup of $PSL(2,8)$. The following is the complete list of quotient curves \mathcal{H}_{72}/G where $|G|$ satisfies (4.1) and $g(\mathcal{H}_{72}/G) = 7$.

$|G| = 72$ and $G \cong C_{72}$. In this case $C_{71} = \langle \alpha \rangle$ where α is either of type (A) or of type (B1) from [29, Lemma 2.2]. In both cases we can assume up to conjugation that \mathcal{H}_{72} is given by the Fermat equation $\mathcal{H}_{72} : x^{72} + y^{72} + z^{72} = 0$ and α admits a diagonal matrix representation of type

$$\alpha = [a, b, 1] = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

where $o(a)$ and $o(b)$ divide $p + 1 = 72$. Since \mathcal{H}_{72}/G inherits at least a cyclic diagonal group of order 72 of type $[\gamma, 1, 1], [1, \gamma, 1]$ or $[1, 1, \gamma]$ for some γ of order 72, we conclude that \mathcal{H}_{72}/G is not isomorphic to \mathcal{F}, as $PSL(2,8)$ does not contains abelian groups of order 72.

$|G| = 72$ and $G \cong SmallGroup(72, \ell)$ where $\ell \in \{9, 18, 36\}$. Arguing as in the previous case, we observe that $\text{Aut}(\mathcal{H}_{72}/G)$ inherits a cyclic group of order n where $n \mid 72$ and $m \geq 9$. This conflicts with $\text{Aut}(\mathcal{H}_{72}/G)$ to be isomorphic to $PSL(2,8)$.

$|G| = 180$ and $G \cong SmallGroup(180, 4)$, that is $G = \langle \sigma \rangle \cong C_{(71^2 - 1)/28}$. Since σ is of type (B2) of [29, Lemma 2.2], we can assume that up to conjugation \mathcal{H}_{72} has equation $x^{71}z + xz^{71} = y^{72}$ and σ fixes the vertexes of the fundamental triangle $T = \{(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)\}$. Thus, σ is given by a matrix representation

$$\sigma = \begin{pmatrix} a^{72} & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

where $a \in \mathbb{F}_{71^2}$ with $o(a) = o(\sigma) = 180$; see [19, Page 644 case 8]. Consider the automorphism α of \mathcal{H}_{72} given by

$$\begin{pmatrix} \xi^{72} & 0 & 0 \\ 0 & \xi & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

where $o(\xi) = 71^2 - 1$. Thus, $G < \langle \alpha \rangle \cong C_{71^2 - 1}$, and hence $\langle \alpha \rangle/G \cong C_{28} < \text{Aut}(\mathcal{H}_{72}/G)$. Since $PSL(2,8)$ has no cyclic subgroups of order 28, the curves \mathcal{H} and \mathcal{H}_{72}/G are not isomorphic.
\(|G| = 240\) and \(G \cong C_5 \times C_{48}\). The center \(Z(G)\) is cyclic of order 24. Geometrically,
\(Z(G) = \langle \alpha \rangle\) where \(\alpha\) is of type (A) in \([29, \text{Lemma 2.2}]\). The center of \(\alpha\) is given by the fixed common point \(P \notin H_{72}\) of \(C_5\) and \(C_{48}\). By direct checking, using again a matrix representation for \(C_{48}\) as in the previous case, we observe that the entire \(C_{712-1} \subset PGL(3,71)\) containing \(C_{48}\) normalizes \(C_5\) as well. This yields the quotient curve \(H_{72}/G\) to admit a cyclic group of automorphisms of order greater than 9, a contradiction.

\(|G| = 240\) and \(G \cong C_{240}\). Arguing as in the case \(|G| = 180\) we observe that \(H_{72}/G\) admits a cyclic automorphisms group of order \((71^2 - 1)/240 = 21\). Since \(PSL(2,8)\) has no cyclic subgroups of order 21, the curves \(\mathcal{F}\) and \(H_{72}/G\) are not isomorphic.

\(|G| = 315\) and \(G \cong \text{SmallGroup}(315,2)\). As \(H_{72}/G\) admits at least a cyclic automorphisms group of order \((71^2 - 1)/315\), the claim follows.

\(|G| = 336\) and \(G \cong \text{SmallGroup}(336,6)\). In this case a contradiction is obtained observing that the quotient curve \(H_{72}/G\) inherits a cyclic automorphisms group of order at least 15.

\(|G| = 324\) and \(G \cong \text{SmallGroup}(324,81)\). In this case a contradiction is obtained observing that the quotient curve \(H_{72}/G\) inherits a cyclic automorphisms group of order at least 16.

We now proceed with a case-by-case analysis for those cases for which a numerical contradiction to the Riemann-Hurwitz formula is obtained.

\(|G| = 60\). In this case \(\deg(\Delta) = 4248 = 59 \cdot 72\). Since \(G\) contains exactly 59 non-trivial elements whose contribution to \(\deg(\Delta)\) is at most 72, every non-trivial element of \(G\) is a homology and hence in particular \(o(\sigma) | (q+1)\) for every \(\sigma \in G \setminus \{id\}\); see \([29, \text{Thm. 2.7}]\). Since \(5 | |G|\) and \(5 \nmid (p+1)\), this case is not possible.

\(|G| = 63\). In this case \(\deg(\Delta) = 4214\), and \(G_i \cong \text{SmallGroup}(63,i)\) for \(i = 1, \ldots, 4\). Also, \(G_1 = \{12_{12}, 9_{42}, 7_6, 3_2, 1_1\}\), \(G_2 = \{63_{36}, 21_{12}, 9_6, 7_6, 3_2\}\), \(G_3 = \{21_{12}, 7_6, 3_{34}, 1_1\}\), \(G_4 = \{21_{48}, 7_6, 3_8, 1_1\}\), where \(n_m\) means that there are \(m\) elements of order \(n\) in the group. By \([29, \text{Thm. 2.7}]\) this gives \(\deg(\Delta) \leq 3204\), \(\deg(\Delta) \leq 684\), \(\deg(\Delta) \leq 3204\), \(\deg(\Delta) \leq 684\) respectively, a contradiction.

\(|G| = 64\). Since every \(\sigma \in G\) is a 2-elements, by \([29, \text{Thm. 2.7}]\) we have that \(i(\sigma) \in \{0, 2, 72\}\). Hence we can write \(\deg(\Delta) = 4200\) as \(72 \cdot i + 2 \cdot j\) for some \(0 \leq i + j \leq 63\). Such \(i\) and \(j\) do not exist and we have a contradiction.

\(|G| = 70\). Arguing as in the previous case, we can write \(\deg(\Delta) = 4128 = 72 \cdot i + 2 \cdot j\) for some \(0 \leq i + j \leq 69\). By direct computation with MAGMA, the unique possibility is \((i,j) = (57,12)\) and \(G \cong \text{SmallGroup}(70,k)\) for \(k = 1, \ldots, 4\). Since \(70 = p - 1\), by \([29, \text{Thm. 2.7}]\) the elements \(\sigma \in G\) such that \(i(\sigma) = 72\) are those of order equal to 2. Thus \(i\) equals the number of involutions in \(G\). If \(G \cong \text{SmallGroup}(70,1)\) then \(i = 5\), if \(G \cong \text{SmallGroup}(70,2)\) then \(i = 7\), if \(G \cong \text{SmallGroup}(70,3)\) then \(i = 35\), and if \(G \cong \text{SmallGroup}(70,4)\) then \(i = 1\). Since in all cases \(i \neq 57\) this case cannot occur.
\(|G| = 72\). In this case \(G \cong \text{SmallGroup}(72, a)\) for \(a = 1, \ldots, 50\), and \(\deg(\Delta) = 4104\) can be written as \(72 \cdot i + 3 \cdot j\) for some \(0 \leq i + j \leq 71\) by [29, Thm. 2.7]. By direct checking with MAGMA \((i, j) = (57, 0)\) thus \(G\) does not contains Singer subgroups. We consider the remaining cases according to the previous results obtained for groups of order 72. We discard those cases for which \(G\) contains more than 57 involutions, which implies \(i > 57\).

Assume that \(G \cong \text{SmallGroup}(72, 1)\). Since \(G\) has a unique involution, which is a homology, \(G\) fixes an \(\mathbb{F}_{712}\)-rational point \(P\) with \(P \notin \mathcal{H}_{72}\). This implies that \(G\) is contained in the maximal subgroup \(\mathcal{M}_{71}\) of \(\text{PGU}(3, 71)\) fixing a \(\mathbb{F}_{712}\)-rational point off \(\mathcal{H}_{72}\). The center of \(G\) is cyclic of order 4 and it is generated by a homology. In fact assume by contradiction that \(Z(G)\) is generated by an element \(\gamma\) of type (B1). The elements \(\alpha \in G\) of odd order commute with \(\gamma\) and they fix a common point which is the center of the unique involution of \(G\). Thus, \(\alpha\) fixes the fixed points of \(\gamma\). This implies that the entire group \(G\) fixes the fixed points of \(\gamma\), and hence \(G\) fixes pointwise a self-polar triangle \(T\) with respect to the unitary polarity defined by \(\mathcal{H}_{72}\), \(G \leq C_{72} \times C_{72} = \text{Stab}_{\text{PGU}(3, 71)}(T)\) and \(G\) is abelian, a contradiction. Thus \(\gamma\) is a homology. From [28, Page 6], \(Z(\mathcal{M}_{71})\) is a cyclic group of order 71 which is generated by a homology of center \(P\). This implies that every element \(\beta \in G \setminus Z(G)\) such that \(\langle \beta \rangle\) intersects non-trivially \(Z(G)\) is of type (B1) since otherwise \(\beta \in Z(\mathcal{M}_{71})\) and hence \(\beta \in Z(G)\), a contradiction. Looking at the subgroups structure of \(G\) we get that \(G\) contains at most \(72 - 2 - 36 = 34\) homologies, so this case cannot occur.

If \(G \cong \text{SmallGroup}(72, i)\), \(i = 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 16, 20, 27, 28, 30, 47\), then arguing as above we get that \(G\) contains at most 35, 10, 45, 41, 47, 47, 35, 47, 9, 9, 47, 45, 17, 56, 47, 47 homologies respectively, a contradiction.

If \(G \cong \text{SmallGroup}(72, 7)\) or \(G \cong \text{SmallGroup}(72, 17)\) then \(G\) normalizes three distinct subgroups of order 2, and hence fixes their centers. Then \(G\) fixes the vertexes of self-polar triangle \(T\) with respect to the unitary polarity defined by \(\mathcal{H}_{72}\) but \(G\) is not abelian. Such a subgroup does not exist.

If \(G \cong \text{SmallGroup}(72, 15)\) then two cases are distinguished depending on the unique element of \(\alpha \in G\) of order 3 being a homology or not. By direct checking with MAGMA, if \(\alpha\) is a homology then \(\alpha \in Z(G)\). Since \(Z(G)\) is trivial, this case cannot occur. Thus \(\alpha\) is of type (B1): in this cases \(G\) contains at most \(71 - 2 - 24\) homologies, a contradiction.

If \(G \cong \text{SmallGroup}(72, 19)\). Since \(G\) normalizes 7 groups of order 2, we have that \(G\) has 7 fixed points \(P_1, \ldots, P_7\) which are \(\mathbb{F}_{712}\)-rational but not in \(\mathcal{H}_{72}\). This proves that in particular every element of \(G\) is a homology, a contradiction.

The cases \(G \cong \text{SmallGroup}(72, 21)\) and \(G \cong \text{SmallGroup}(72, 22)\) cannot occur as in this case the unique subgroup of \(G\) of order 3 must be central, a contradiction.
If $G \cong \text{SmallGroup}(72, \ell)$ with $\ell \in \{29, 32, 33, 34, 35, 37, 38, 49, 50\}$, then G fixes the vertexes of a self-polar triangle T with respect to the unitary polarity defined by H_{72} but G is not abelian, a contradiction.

The case $G \cong \text{SmallGroup}(72, \ell)$ with $\ell \in \{39, 40, 41\}$ cannot occur as a subgroups of $\text{PGU}(3, 71)$. In fact G contains a unique elementary abelian subgroup of order 9 which is made by 6 homologies and 2 elements of type (B1). Thus elements of order 3 cannot be all conjugate, a contradiction.

The cases $G \cong \text{SmallGroup}(72, \ell)$ with $\ell \in \{42, 43, 44\}$ cannot occur since at least one involution of G must be central, a contradiction. The cases $G \cong \text{SmallGroup}(72, 45)$ and $G \cong \text{SmallGroup}(72, 46)$ cannot occur since at least one element of order 3 in G must be central, a contradiction.

$|G| = 80$. In this case we can write $\deg(\Delta) = 4008 = 72 \cdot i + 2 \cdot j$, for $0 \leq i + j \leq 79$. By direct checking with MAGMA the unique possibility is $(i, j) = (55, 24)$. From [29, Thm. 2.7], the elements σ of G for which $i(\sigma) = 72$ are those with $o(\sigma) \in \{2, 4, 8\}$. Forcing $G \cong \text{SmallGroup}(80, k)$ to have at least 55 elements of order in $\{2, 4, 8\}$, we get $k \in \{28, 29, 30, 31, 32, 33, 34, 50\}$. Denote by o_i the number of elements $\alpha \in G$ such that $o(\alpha) = i$. By direct checking with MAGMA we obtain that in each of these cases $o_2 + o_4 + o_8 = 63$ and hence $j = 79 - 63 = 16$, a contradiction.

$|G| = 81$. In this case $\deg(\Delta) = 3996 = 72 \cdot i + 3 \cdot j$ for some $0 \leq i + j \leq 80$. By direct checking with MAGMA the unique possibility is $(i, j) = (55, 12)$. This proves that G must contain at least 12 elements of order 3, as the unique elements β in G with $i(\beta) = 3$ are those with $o(\beta) = 3$ from [29, Thm. 2.7]. We note that these elements cannot be contained in cyclic groups of order 9, as Singer groups of order 9 does not exists in $\text{PGU}(3, 71)$ because $9 \nmid (71^2 - 71 + 1)$. This yields $G \cong \text{SmallGroup}(81, k)$ with $k \in \{1, 2, 3, 4\}$. The case $G \cong \text{SmallGroup}(81, 1)$ cannot occur, as G is cyclic of order not a divisor of $71^2 - 71 + 1$ and hence G cannot contains Singer subgroups. Case $G \cong \text{SmallGroup}(81, 2)$ cannot occur, as from a composition of elements of type (B1) or homologies it is not possible to generate Singer subgroups. Case $G \cong \text{SmallGroup}(81, 3)$ cannot occur, as elements of order 9 split in 3 conjugacy classes giving rise to at least 18 elements of order 3 of type (B1). Hence $j \neq 12$. Case $G \cong \text{SmallGroup}(81, 4)$ cannot occur, since elements of order 3 generates a subgroup of G isomorphic to $C_3 \times C_3$ but Singer subgroups do not commute.

$|G| = 84$. Since $84 \mid (71^2 - 1)$, by [29, Thm. 2.7] we have that $i(\sigma) \in \{0, 2, 3, 72\}$ for any $\sigma \in G$. Writing $\deg(\Delta) = 3960 = 71 \cdot i + 2 \cdot j + 3 \cdot k$ for $0 \leq i + j + k \leq 83$ we get that $(i, j, k) = (54, 3m, 2(12 - m))$ for some $m = 0, \ldots, 5$ or $(i, j, k) = (55, 0, 0)$. We note that $(i, j, k) = (55, 0, 0)$ cannot occur as G contains at least an element γ with $o(\gamma) = 7$ for which $i(\gamma) = 2$ from [29, Thm. 2.7]. This implies that $(i, j, k) = (54, 3m, 2(12 - m))$ for some $m = 0, \ldots, 5$ and hence G contains at least $54 + 14 = 68$ elements α such that $o(\alpha) \in \{2, 3, 4, 6, 12\}$. By direct checking with MAGMA, $G \cong \text{SmallGroup}(84, \ell)$ where
$\ell \in \{1, 2, 7, 9, 11\}$. For all these cases a contradiction is obtained combining the value of the parameter k with the lengths of the conjugacy classes of elements of order 3.

$|G| = 90$. We argue as in the previous cases. For $\sigma \in G$ we have $i(\sigma) \in \{0, 2, 3, 72\}$. We can write $\deg(\Delta) = 3008 = 72 \cdot i + 2 \cdot j + 3 \cdot k$, for $0 \leq i + j + k \leq 90$. Also, we observe that $j \leq 4$ since G contains at least 4 elements of order 5. By direct computation with MAGMA we obtain that $(i, j, k) = (53, 3m, 2(12 - m))$ for some $m = 2, \ldots, 11$. Forcing $|\{\sigma \in G \mid o(\sigma) = 2, 3, 6, 9, 18\}| \geq 53$ we get $G \cong \text{SmallGroup}(90, \ell)$ where $\ell \in \{7, 9, 11\}$. Assume that $G \cong \text{SmallGroup}(90, 7)$. Hence $|\{\sigma \in G \mid o(\sigma) = 2, 3, 6, 9, 18\}| = 71$ and $j = 18 = 3 \cdot 6$. This yields $k = 2(12 - 6) = 12$ which is impossible, as there exists a unique conjugacy class of elements of order 3 whose length is not equal to 12. Assume that $G \cong \text{SmallGroup}(90, 9)$ or $G \cong \text{SmallGroup}(90, 11)$. Hence $|\{\sigma \in G \mid o(\sigma) = 2, 3, 6, 9, 18\}| = 59$ and $j = 30 = 3 \cdot 10$. This yields $k = 2(12 - 10) = 4$ which is impossible, as there exists a unique conjugacy class of elements of order 3 whose length is not equal to 4.

$|G| = 96$. Here for $\sigma \in G$ we have $i(\sigma) \in \{0, 2, 3, 72\}$ and $\deg(\Delta) = 3816 = 72 \cdot i + 2 \cdot j + 3 \cdot k$ for $0 \leq i + j + k \leq 95$. By direct computation with MAGMA $(i, j, k) = (52, 3m, 2(12 - m))$ for some $m = 0, \ldots, 12$ or $(i, j, k) = (53, 0, 0)$. Forcing $\tau = |\{\sigma \in G \mid o(\sigma) = 2, 3, 4, 6, 8, 12, 24\}| \geq 52$ we have $G \cong \text{SmallGroup}(96, \ell)$ with $\ell \in \{3, 6, 7, \ldots, 17, 20, 58, 61, \ldots, 231\}$. We note that elements of order 3 in G are all conjugated as $9 \mid |G|$. This implies that if $k \neq 0$ then k is exactly the number o_3 of elements of order 3 in G. Assume that $G \cong \text{SmallGroup}(96, 3)$. Then $\tau = 95$ and hence $j = 0 = 3 \cdot 0$. This implies that $k = 2(12 - 0) = 24$, since the number of elements of order 3 in G is not equal to 24 we have a contradiction. Using the same argument we can exclude all the remaining cases for G. In fact if $\ell = 6, 7, 8$ then $\tau = 71$ and $k = 8 \neq o_3$, if $\ell = 9, \ldots, 58$ then $\tau = 95$ and $k = 24 \neq o_3$, if $\ell = 61, 62, 63$ then $\tau = 71$ and $k = 8 \neq o_3$, while if $\ell \geq 64$ then $\tau = 71$ and $k = 8 \neq o_3$.

$|G| = 105$. We write $\deg(\Delta) = 3708 = 72 \cdot i + 2 \cdot j + 3 \cdot k$ where $10 \leq i + j + k \leq 104$ as $j \geq 10$ because G admits at least 4 elements of order 5 and 6 elements of order 7. By direct checking with MAGMA either $(i, j, k) = (50, 3m, 2(18 - m))$ for some $m = 4, \ldots, 18$ or $(i, j, k) = (51, 3m, 2(6 - m))$ for some $m = 4, \ldots, 6$. Since the unique elements α in G for which $i(\alpha)$ can be equal to 72 are those of order 3 and their number is always less then 50, this case is not possible.

$|G| = 108$. For $\sigma \in G$ we have $i(\sigma) \in \{0, 2, 3, 72\}$ and elements of order 27, 54 or 108 do not exist as these integers do not occur as element orders in $\text{PGU}(3, 71)$. We can write $\deg(\Delta) = 3672 = 72 \cdot i + 2 \cdot j + 3 \cdot k$, for $0 \leq i + j + k \leq 107$. By direct checking with MAGMA, $(i, j, k) = (49, 3m, 2(24 - m))$ for some $m = 0, \ldots, 10$ or $(i, j, k) = (50, 3m, 2(12 - m))$ for some $m = 0, \ldots, 12$ or $(i, j, k) = (51, 0, 0)$. All these conditions force $G \cong \text{SmallGroup}(108, \ell)$ with $\ell = 6, \ldots, 45$.
If $G \cong \text{SmallGroup}(108,6)$ then $j = 0$ and hence $k \in \{48, 24, 0\}$. Since G contains 8 elements of order 3 we get that $k = 0$ and $(i, j, k) = (51, 0, 0)$. Here G contains 36 elements of order 12 which are all conjugated. They are all of type (B1) because otherwise G contains at least $36 + 18 + 1 + 2 > 51$ homologies, a contradiction. The center $Z(G) \cong C_6$ is generated by a homology as it has to commute with 6 groups of order 12 which are of type (B1). Also, G contains a normal cyclic group of order 18 which contains the central involution $\omega \in Z(G)$. If such a normal subgroup is generated by a homology then it must be contained in $Z(G)$, a contradiction. The same holds for the elements of order 6 and 3 contained in this normal subgroup. Thus G contains at most $107 - 36 - 2 - 2 - 6 = 61$ homologies. Arguing in the same way for the other elements of order 18 contained in G we get that G contains at most $61 - 12 = 49 < 51$ homologies, a contradiction.

The case $G \cong \text{SmallGroup}(108,7)$ cannot occur as a subgroup of $\text{PGU}(3,71)$. In fact $Z(G) \cong C_{18}$ and it is generated by homologies as it has to commute with the elements of order 36 which are of type (B2) from [29, Thm. 2.7]. Clearly, the elements of order 12 contained in cyclic groups of order 36 are homologies as they are powers of elements of type (B2). This implies that there exist at least 6 elements of order 12 which are contained in $Z(G)$, a contradiction.

Assume that $G \cong \text{SmallGroup}(108,8)$. Thus, $j = 0$ and $k = 0$ since G contains exactly 26 elements of order 3 which are normalized by involutions. This yields $(i, j, k) = (52, 0, 0)$. Arguing as in the previous case, we get that elements of order 12 and 4, which are all conjugated, are of type (B1), as they contain a central involution not belonging to the center of G. Thus G contains at most $107 - 4 \cdot 9 - 9 \cdot 2$ homologies. On the other hand, there exists no cyclic subgroup of G of order 6 generated by homology, containing a central involution, and not contained in the center of G and therefore $i \neq 52$.

If either $G \cong \text{SmallGroup}(108,9)$, $G \cong \text{SmallGroup}(108,10)$ or $G \cong \text{SmallGroup}(108,11)$ then a contradiction is obtained arguing as in the previous case.

Denote by o_i the number of elements having order equal to i in G. We can exclude all the cases for which $o_2 + o_3 + o_4 + o_6 + o_9 + o_{12} + o_{18} = 107$, $o_2 = 1$ and $o_6 > 2$. This allows us to consider just the cases $G \cong \text{SmallGroup}(108, \ell)$ with $\ell \in \{12, 14, 15, \ldots, 31, 36, \ldots, 45\}$.

Assume that $G \cong \text{SmallGroup}(108,12)$. Then G fixes an \mathbb{F}_{722}-rational point P with $p \notin \mathcal{H}_{72}$ as G has a central involution. Since G contains elements of type (B2), $Z(G)$ must be cyclic and generated by a homology. Thus, this case cannot occur.

Assume that $G \cong \text{SmallGroup}(108,14)$. Since $j = 36$ we get that $(i, j, k) = (50, 36, 0)$. The elements of order 12 contained in $Z(G)$ are homologies. The other elements of order 12, the non-central elements of order 6, and the elements of order 18 in G are of type (B1), as the cyclic groups that they generate have non-trivial intersection with $Z(G)$, a contradiction. This yields that G contains at most 71 homologies. To have $i = 50$ we need 21 homologies more, but this cannot happen as the lengths of the conjugacy classes of the remaining elements in G are all even.
Assume $G \cong \text{SmallGroup}(108, 15)$. Here $j = 0$ and either $k = 0$ and $i = 51$ or $k = 24$ and $i = 50$. The elements of order 12 in G are of type (B1), because otherwise G contains at least $36 + 18 + 1$ homologies, a contradiction. This yields G to have at most 71 homologies. Since $Z(G)$ commutes with all these elements of type (B1) it is generated by a homology. We note that the elements of order 6 are of type (B1) because they are obtained as a composition $\alpha \beta$ where α is an involution which is not central and β is a central element of order 3. This implies that G contains at most $71 - 18 = 53$ homologies. The right number of homologies cannot be obtained as the elements of order 4 must be all homologies but the elements of order 3 are divided into conjugacy classes of length 12.

Assume that $G \cong \text{SmallGroup}(108, 16)$. In this case $j = 0$ and since G contains just 6 elements of order 3 we get $k = 0$ and $i = 51$. Looking at the conjugacy classes of elements in G we observe that G contains 39 involutions, which are then homologies, and that just the elements of order 3 or 9 can be homologies as well, otherwise a direct computation shows that $i > 51$. The unique possibility is that the normal subgroup C_9 of G is generated by a homology which implies that G fixes a point P which is \mathbb{F}_{71}-rational but $P \not\in H_{72}$. By [28, Page 6] C_9 must be contained in $Z(G) = \{id\}$, contradiction.

Assume that $G \cong \text{SmallGroup}(108, 17)$. Since $j = 0$ we have that either $i = 50$ or $i = 51$. Denote by $T := \{\alpha \in G \mid o(\alpha) \neq 2, \text{ and } \alpha \text{ is a homology}\}$. Then we require that either $|T| = 23$ or $|T| = 24$. Looking at the lengths of the conjugacy classes of elements in G we observe that they are all even, and hence the case $|T| = 23$ cannot occur. Since the elements of order 6 are divided into three conjugacy classes each of length 18, they are all of type (B1) since otherwise $|T| > 20$ and G contains no conjugacy classes of length 4 or two conjugacy classes of length equal to 2. Thus, the homologies of T are all of order 3. The unique possibility is that the remaining 24 homologies of order 3 are divided into 3 distinct conjugacy classes, of length 12, 6 and 6 respectively. This group cannot occur as a subgroup of $PGU(3, 71)$ as every subgroup of type $C_3 \times C_3$ of $PGU(3, 71)$ contains exactly 6 homologies and 2 elements of type (B1), a contradiction.

Assume that $G \cong \text{SmallGroup}(108, 18)$. Denoting T as before, we note that $|T| = 48$ as the lengths of the conjugacy classes of elements in G are all even. Since by a direct analysis of the conjugacy classes in G, $|T| \leq 31$, we have a contradiction.

Assume that $G \cong \text{SmallGroup}(108, 19)$. Since G fixes a points P which is \mathbb{F}_{71}-rational but $P \not\in H_{72}$ and $Z(G)$ is cyclic and generated by a homology, we get that every $\beta \in G$ such that $\beta \not\in Z(G)$ and $|Z(G) \cap \langle \beta \rangle| > 1$ is of type (B1). This implies that $48 = |T| \leq 29$, a contradiction.

Assume that either $G \cong \text{SmallGroup}(108, 20)$ or $G \cong \text{SmallGroup}(108, 21)$. Here we need $|T| = 48$. Since the length of the 3 conjugacy classes of elements of order 9 is 24, we have that at most one of these conjugacy classes is given by homologies. Elements of order 3 split into 4 conjugacy classes each of length 2. Since they give rise to a subgroup of G which is isomorphic to $C_3 \times C_3$ we get that 6 of them are homologies while 2 of them
are of type (B1) and that they fix the vertexes of a self-polar triangle. Since G contains also homologies of order 2 lying on the sides of the same triangles, G must contain also 6 homologies of order 6, which are obtained as a composition $\alpha \beta$ of homologies having a common center and such that $o(\alpha) = 2$, $o(\beta) = 3$. The remaining 24 elements of order 9 cannot be homologies since otherwise G must contain a subgroup isomorphic to C_{18} generated by a homology of order 9 and an involution. Since this implies that $|T| < 51$ we have a contradiction.

Assume that $G \cong \text{SmallGroup}(108, 22)$. Here $j = 0$ and either $k = 0$ with $|T| = 48$, or $k = 48$ with $i = 46$ or $k = 24$ with $i = 47$. The lengths of the conjugacy classes of elements of order which is not equal to 2 are all even. This shows that the last case cannot occur. The elements of order 3 generate 13 subgroups of type $C_3 \times C_3$ sharing the same normal subgroup of G of order 3 which is generated by a homology, as different groups of type $C_3 \times C_3$ fix different \mathbb{F}_{712}-points. Since G contains 26 elements of type (B1) and the lengths of the conjugacy classes of elements of order 3 are $(24, 24, 24, 6, 2)$, where the last class is given by two homologies, this case cannot occur.

Assume that $G \cong \text{SmallGroup}(108, 23)$. In this case $|T| = 32$ and $Z(G) \cong C_6$. Since G contains two normal subgroup isomorphic to C_6, we note that just the central one is generated by a homology. Arguing as in the previous cases, observing that if $\alpha \notin Z(G)$ and $\langle \alpha \rangle \cap Z(G)$ is not trivial then α is of type (B1), we get that $|T| < 51$, a contradiction.

Assume that $G \cong \text{SmallGroup}(108, 24)$. In this case $Z(G) \cong C_{18}$ is generated by a homology, $(i, j, k) = (51, 0, 0)$ and $|T| = 44$. If $\alpha \notin Z(G)$ and $\langle \alpha \rangle \cap Z(G)$ is not trivial then α is of type (B1). This yields $|T| < 51$, a contradiction.

The cases $G \cong \text{SmallGroup}(108, 25)$ and $G \cong \text{SmallGroup}(108, 26)$ cannot occur as subgroups of $PGU(3, 71)$. In fact, it is sufficient to observe that from the number and intersection structures of subgroups of type $C_3 \times C_3$ of G at least a subgroup C_3 must be generated by a homology having the same center and axis of the generator of $Z(G)$. Since this implies that $C_3 \subseteq Z(G)$ but $|Z(G)| = 2$, we have a contradiction.

The case $G \cong \text{SmallGroup}(108, 27)$ cannot occur as G contains 55 involutions implying that $|T| > 55$.

Assume that $G \cong \text{SmallGroup}(108, 28)$. This case can be discarded observing that G contains 4 subgroups isomorphic to $C_3 \times C_3$, and hence 8 elements of type (B1). The lengths of the conjugacy classes of elements of order 3 are $(6, 6, 6, 6, 2)$ where the last two elements are contained in $Z(G)$ and hence are homologies, a contradiction.

Assume that $G \cong \text{SmallGroup}(108, 29) = C_9 \times C_3 \times C_2 \times C_2$. Here G fixes the vertexes of a self-polar triangle and we need $|T| = 52$. Since by direct checking $|T| = 3 + (2 + 2 + 2) + (2 + 2 + 2) + (6 + 6 + 6) = 33$, this case cannot occur.

Assume that $G \cong \text{SmallGroup}(108, 30)$ or $G \cong \text{SmallGroup}(108, 31)$. Then G fixes the vertexes of a self-polar triangle but G is not abelian, a contradiction.
Assume that \(G \cong \text{SmallGroup}(108,36) \). Then \((i,j,k) = (51,0,0)\) and \(|T| = 42\). Since having homologies of order 12 would imply that \(|T| > 42\), we get that they are all of type (B1) and \(Z(G) \) is generated by a homology of order 3. Since there exist subgroups of type \(C_3 \times C_3 \) not containing the central element of order 3 this case cannot occur.

Assume that \(G \cong \text{SmallGroup}(108,37) \). Since \((i,j,k) = (51,0,0)\) then the elements of order 6 are homologies and there are just two elements of order 3 are of type (B1). Since these two elements must be contained in a subgroup \(C_6 \) generated by a homology we have a contradiction.

Assume that \(G \cong \text{SmallGroup}(108,38) \). This case cannot occur as \(G \) contains too many elements of order 3 fixing the vertexes of the same self-polar triangle.

Assume that either \(G \cong \text{SmallGroup}(108,39) \) or \(G \cong \text{SmallGroup}(108,40) \). In this case \(k = 0 \) and \(|T| = 12\). Since \(G \) contains 13 subgroups of type \(C_3 \times C_3 \), and hence more than 12 homologies, this case cannot occur.

Assume that \(G \cong \text{SmallGroup}(108,41) \). In this case \(Z(G) \cong C_3 \times C_3 \) and the three involutions of \(G \) are not central, a contradiction.

Assume that \(G \cong \text{SmallGroup}(108,42) \). This group cannot occur as a subgroup of \(\text{PGU}(3,71) \) as it fixes a point \(P \) which is \(\mathbb{F}_{712} \)-rational but \(P \notin \mathcal{H}_{72} \), its center is isomorphic to \(C_3 \times C_3 \times C_2 \) and \(G \) contains too many elements of order 3 fixing the same self-polar triangle.

Assume that \(G \cong \text{SmallGroup}(108,43) \). This group cannot occur as a subgroup of \(\text{PGU}(3,71) \) as \(G \) cannot normalize 5 groups of order 3.

The case \(G \cong \text{SmallGroup}(108,44) \) cannot occur as \(G \) contains 55 involution and hence \(|T| > 51\).

Assume that \(G \cong \text{SmallGroup}(108,45) \). Since \(G \) fixes the vertexes of a self-polar triangle but contains more than one subgroup isomorphic to \(C_3 \times C_3 \) this case cannot occur.

\(|G| = 112\). From [29, Thm. 2.7] for \(\sigma \in G \) we have \(i(\sigma) \in \{0,2,72\} \). By direct checking with MAGMA the pairs \((i,j)\) with \(\deg(\Delta) = 3624 = 72 \cdot i + 2 \cdot j \) and \(0 \leq i + j \leq 111 \), are \((i,j) = (49,48)\) and \((i,j) = (50,12)\). Since there are no groups of order 112 having at least 49 elements of order equal to 2, 4 and 8 and either 48 or 12 elements of order in \(\{7,14,16,28,56,112\} \), this case cannot occur.

\(|G| = 120\). We write \(\deg(\Delta) = 3528 = 71 \cdot i + 2 \cdot j + 3 \cdot k \) where \(4 \leq i + j + k \leq 119 \) as \(G \) contains at least a subgroup of type \(C_5 \) and hence \(j \geq 4 \) from [29, Thm. 2.7]. By direct checking with MAGMA either \((i,j,k) = (47,3m,2(24 - m))\) for some \(m = 2,\ldots,24 \) or \((i,j,k) = (48,3m,2(12 - m))\) for some \(m = 2,\ldots,12 \). Denote as before \(o_i \) the number of elements in \(G \) or order \(i \). Then from [29, Thm. 2.7], \(j = 119 - (o_2 + o_3 + o_4 + o_6 + o_8 + o_{12} + o_{24}) \). Forcing 3 to divide \(j \) we get that no groups of order 120 satisfies the condition, a contradiction.
|G| = 126. We write $\deg(\Delta) = 3456 = 72 \cdot i + 2 \cdot j + 3 \cdot k$, for some $6 \leq i + j + k \leq 125$, as G contains at least 6 elements of order 7 which implies $j \geq 6$ from [29, Thm. 2.7]. By direct checking with MAGMA, either $(i, j, k) = (45, 3m, 2(36 - m))$ for some $m = 2, \ldots, 8$, or $(i, j, k) = (46, 3m, 2(24 - m))$ for some $m = 2, \ldots, 24$, or $(i, j, k) = (47, 3m, 2(12 - m))$ for some $m = 2, \ldots, 12$. There are 16 groups of order 126 up to isomorphism, we will denote them as $\text{SmallGroup}(126, \ell)$, with $\ell = 1, \ldots, 16$. Table 1 summarizes the possible values m, i, k corresponding to each $G \cong \text{SmallGroup}(126, \ell)$ in order to obtain a quotient curve H_{72}/G of genus 7, according to the number of elements of order in $\{7, 14, 21, 42, 63, 126\}$, that is, the value of j.

Table 1. $G \cong \text{SmallGroup}(126, \ell)$, values for i, k and m

<table>
<thead>
<tr>
<th>ℓ</th>
<th>m</th>
<th>(i,k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>(45,69), (46,36), (47,12)</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>(46,24), (47,0)</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>(46,12)</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>(46,12)</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>(45,60), (46,36), (47,12)</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>(46,24), (47,0)</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>(45,60), (46,36), (47,12)</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>(46,24), (47,0)</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>(46,12)</td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>(46,12)</td>
</tr>
<tr>
<td>15</td>
<td>18</td>
<td>(46,12)</td>
</tr>
</tbody>
</table>

If $G \cong \text{SmallGroup}(126, 1)$ then G contains just 2 elements of order 2, a contradiction.

If $G \cong \text{SmallGroup}(126, 2)$ then G contains 2 elements of order 2 and hence $k = 0$ and $(i, j, k) = (47, 36, 0)$. The elements of order 18 in G are of type (B1) because otherwise $i > 47$, and all the remaining elements are homologies. Every subgroup $C_9 = \langle \alpha \rangle$ in G is such that α^3 generates the unique subgroup of order 3 of G. Since there exists just one cyclic group of order 9 generated by a homology having a fixed center, we have a contradiction.

Assume that $G \cong \text{SmallGroup}(126, 4)$. This case can be excluded observing that G contains just 2 elements of order 3, but we need $k = 12$.

The case $G \cong \text{SmallGroup}(126, 5)$ cannot occur as G contains just 2 elements of order 3.

Assume that $G \cong \text{SmallGroup}(126, 7)$. Since G contains 44 elements of order 3, either $(i, k) = (46, 36)$ or $(i, k) = (47, 12)$. A contradiction is obtained observing that the lengths of the conjugacy classes of elements of order 3 are $(14, 14, 14, 2)$ and hence neither $k = 36$ nor $k = 12$ can be obtained.
Assume that $G \cong \text{SmallGroup}(126,8)$. Since the lengths of the conjugacy classes of elements of order 3 are $(28, 14, 2)$ we get that $(i, k) = (47,0)$. The elements of order 6 are all of type (B1) because otherwise $i > 47$ and all the remaining elements are homologies. All these elements normalize a group isomorphic to C_3 which is generated by a homology, hence they share a fixed point and commute. This implies that every $\alpha \beta$ with $o(\alpha) = 2$ and $o(\beta) = 3$ generates an element of order 6. Since there are just 42 elements of order 6 we have a contradiction.

Assume that $G \cong \text{SmallGroup}(126,9)$. A contradiction is obtained as before looking at the lengths of the conjugacy classes of elements of order 3 with respect to the admissible values of k.

Assume that $G \cong \text{SmallGroup}(126,10)$. Since G normalizes an involution, we get that G fixes a point P which is \mathbb{F}_{712}-rational but $P \not\in \mathcal{H}_{72}$. Thus G cannot contain Singer subgroups and $(i,j,k) = (47,36,0)$. Since G contains a unique element of order 2, which is central, arguing as before, we get that every element of order 6 that does not generate $Z(G)$ is of type (B1) because otherwise it would be central itself. Thus $Z(G)$ is generated by a homology, the remaining elements of order 6 are of type (B1) and the remaining elements of G are all homologies. Also, G contains 7 elementary abelian group of type $C_3 \times C_3$ and hence at least 14 elements of type (B1) of order 3, a contradiction.

The cases $G \cong \text{SmallGroup}(126,13)$ and $G \cong \text{SmallGroup}(126,15)$ cannot occur as G contains just 6 and 8 elements of order 3 respectively.

$|G| = 128$. We write $\deg(\Delta) = 3432 = 72 \cdot i + 2 \cdot j$ with $0 \leq i + j \leq 127$. By direct checking with MAGMA this implies that either $(i,j) = (46,60)$ or $(i,j) = (47,24)$. Denote by o_i the number of elements in G having order equal to i. Since a group of order 126 with $o_{16} + o_{32} + o_{64} + o_{128} = 60$ and $127 - (o_{16} + o_{32} + o_{64} + o_{128}) \geq 46$ or $o_{16} + o_{32} + o_{64} + o_{128} = 24$ and $127 - (o_{16} + o_{32} + o_{64} + o_{128}) \geq 47$ does not exist, we get a contradiction.

$|G| = 135$. Writing $\deg(\Delta) = 3348 = 71 \cdot i + 2 \cdot j + 3 \cdot k$ for $4 \leq i + j + k \leq 134$, we get that either $(i,j,k) = (43,3m,2(42-m))$ for some $m = 2, \ldots, 7$, or $(i,j,k) = (44,3m,2(30-m))$ for some $m = 2, \ldots, 29$, or $(i,j,k) = (45,3m,2(17-m))$ for some $m = 2, \ldots, 17$, or $(i,j,k) = (46,3m,2(6-m))$ for some $m = 2, \ldots, 6$. Since by direct checking with MAGMA there are no groups of order 135 with $o_3 + o_9 \geq 43$ and 3 dividing $134 - (o_3 + o_9) = j$, this case cannot occur.

$|G| = 140$. We write $\deg(\Delta) = 3228 = 72 \cdot i + 2 \cdot j$ for some $4 \leq i + j \leq 139$. This yields either $(i,j) = (43,96)$ or $(i,j) = (44,60)$ or $(i,j) = (45,24)$. Since there are no groups of order 140 with $o_2 + o_4 \geq 43$ and $139 - (o_2 + o_4) \in \{96,60,24\}$, this case cannot occur.

$|G| = 144$. We write $\deg(\Delta) = 3240 = 72 \cdot i + 2 \cdot j + 3 \cdot k$ for some $0 \leq i + j + k \leq 143$. By direct checking with MAGMA we get that $(i,j,k) = (41,3m,2(48-m))$ for some $m = 0, \ldots, 6$, or $(i,j,k) = (42,3m,2(36-m))$ for some $m = 0, \ldots, 29$, or $(i,j,k) = (43,3m,2(24-m))$ for some $m = 0, \ldots, 24$, or $(i,j,k) = (44,3m,2(12-m))$ for some $m = 0, \ldots, 12$, or $(i,j,k) = (45,0,0)$.

Assume that $G \cong \text{SmallGroup}(144, 1)$. In this case G contains 72 elements of order 16 which are of type (B2) by [29, Thm. 2.7]. Thus $Z(G) \cong C_8$ is generated by a homology. Arguing as before, since G has just one involution which is central, we get that G contains at most $8 + 1$ homologies, a contradiction.

If $G \cong \text{SmallGroup}(144, 2)$ then G is cyclic and hence it contains 71 homologies, a contradiction.

Assume that $G \cong \text{SmallGroup}(144, 3)$. Since $j = 0$ and the number of elements of order 3 is 2 we have $(i, j, k) = (45, 0, 0)$. This implies that the 96 elements of order 9, which are all conjugated, are of type (B1), and all the remaining elements but 2 are homologies. The non-trivial elements of a group of order 3 are of type (B1) and obtained as powers of a homology of order 6, a contradiction.

Assume that $G \cong \text{SmallGroup}(144, 4)$. In this case $Z(G) \cong C_2$, $(i, j, k) = (45, 0, 0)$ and, arguing as before, homologies can occur only of odd order. Then $i < 45$, a contradiction.

Assume that $G \cong \text{SmallGroup}(144, \ell)$ for $\ell \in \{5, \ldots, 27, 31, \ldots, 50\}$. Every cyclic group that intersects non-trivially $Z(G) \cong C_8$ is generated by an element of type (B1), G contains less than 41 homologies, a contradiction.

Assume that $G \cong \text{SmallGroup}(144, \ell)$ with $\ell \in \{28, 29, 30, 51\}$. Here $m = 24$ and G contains exactly one involution. Thus, $(i, j, k) = (47, 72, 0)$. A contradiction is obtained observing that G has one involution and the remaining elements are divided into conjugacy classes of even length.

Assume that $G \cong \text{SmallGroup}(144, 52)$. Since G contains 8 elements of order 3 and $j = 0$ we get $(i, j, k) = (45, 0, 0)$. A contradiction is obtained observing that $Z(G) \cong C_4$ is generated by a homology, G fixes a point P which is \mathbb{F}_{71^2}-rational but $P \notin \mathcal{H}_{72}$ and $i \leq 39$.

Arguing as in the previous case, all $G \cong \text{SmallGroup}(144, \ell)$ with $\ell \in \{53, 54, \ldots, 62\}$ can be excluded.

Assume that $G \cong \text{SmallGroup}(144, \ell)$ with $\ell \in \{63, \ldots, 67, 69, 70, 71, 72, 74, 76, \ldots, 79, 84, 86, 90, 92, \ldots, 95, 100, 105, \ldots, 108, 134\}$. A contradiction is obtained observing that G fixes the vertexes of a self-polar triangle and G is not abelian, thus G cannot occur as a subgroup of $\text{PGU}(3, 71)$.

Assume that $G \cong \text{SmallGroup}(144, 68)$. In this case G contains 98 elements of order 3 divided into 4 conjugacy classes of lengths $(28, 28, 28, 2)$. The conjugacy classes of length 2 cannot be given by elements of Singer subgroups, as 2 divides the order of their normalizers. We note that $k \in \{96, 72, 48, 24\}$ or $k = 0$. Since 96, 72, 48, 24 are not divisible by 28, we get $(i, j, k) = (45, 0, 0)$. G contains 16 elementary abelian groups of order 9: this gives rise to $16 \cdot 4$ homologies and so this case can be excluded.

If $G \cong \text{SmallGroup}(144, 73)$ then G has a normal involution and hence it fixes a point $P \notin \mathcal{H}_{72}$ which is \mathbb{F}_{71^2}-rational. As before we can obtain a contradiction noting that each
cyclic group which intersects $Z(G)$ non-trivially is generated by an element of type (B1). This forces $i < 45$, a contradiction.

If $G \cong \text{SmallGroup}(144, 75)$ then either G fixes the vertexes of a self-polar triangle without being abelian or $i < 45$, a contradiction.

Assume that $G \cong \text{SmallGroup}(144, \ell)$ with $\ell \in \{80, 81, 82, 83, 85, 89, 97, 99, 115, 121, 122, 124, 126, 128, \ldots, 133, 1135, \ldots, 140\}$. Since G normalizes an involution, it fixes a point $P \notin \mathcal{H}_{72}$ which is \mathbb{F}_{72}-rational, hence $(i, j, k) = (45, 0, 0)$. Every cyclic group intersecting non-trivially $Z(G)$ is generated by an element of type (B1). Thus $i < 4$, a contradiction.

Assume that $G \cong \text{SmallGroup}(144, 87)$. In this case $(i, j, k) = (45, 0, 0)$, G contains 37 involutions and 6 homologies of order 3 which are contained in a subgroup isomorphic to $C_3 \times C_3$. Then the number of the remaining homologies is $45 - 37 - 6 = 2$. Since there are no conjugacy classes for the remaining elements of length 2 we get a contradiction.

If $G \cong \text{SmallGroup}(144, \ell)$ with $\ell \in \{88, 96\}$ then G contains more than 45 involutions, a contradiction.

Assume that $G \cong \text{SmallGroup}(144, 91)$. This group cannot occur as a subgroup of $\text{PGU}(3, 71)$ as the number and the conjugacy class structures of elements of order 6 are not compatible with the ones of elements of order 3 and 2.

Assume that $G \cong \text{SmallGroup}(144, 98)$. The center $Z(G)$ is cyclic of order 2, and hence as before the elements that generate a cyclic group containing $Z(G)$ are of type (B1). Since G contains an elementary abelian group of order 9 and 37 involutions then G contains at least $37 + (2 + 2 + 2)$ homologies and we need to find two extra homologies. Since C_4 is not central it cannot be generated by a homology. We get a contradiction looking at the lengths of the conjugacy classes of the remaining elements.

If $G \cong \text{SmallGroup}(144, 104)$ then G contains at least 3 homologies of order 2, 6 homologies of order 3 and 6 homologies which are contained in a subgroup of type $C_6 \times C_6$. We need to find other extra 30 homologies, but this number is not compatible with the lengths of the remaining conjugacy classes, as 4 does not divide 30.

Assume that $G \cong \text{SmallGroup}(144, 123)$. To obtain the right homologies configuration we need 12 homologies of order 4 and 6 homologies of order 6. The center $Z(G)$ is cyclic of order 6 and it is generated by a homology. Therefore the other elements α of order 6 such that $\langle \alpha \rangle \cap Z(G)$ is an element of order 3 in $Z(G)$ cannot be homologies because they are not central. A contradiction.

Assume that $G \cong \text{SmallGroup}(144, 125)$. In this case G contains 37 homologies of order 2. We need $45 - 37$ extra homologies, but this is not compatible with the lengths of the conjugacy classes of elements in G.

Assume that $G \cong \text{SmallGroup}(144, 127)$. Other than the involution we need G to contain 26 homologies and hence every element of order 3 must be a homology. Since they form
an elementary abelian group \(C_3 \times C_3 \) which contains at least 2 elements of type (B1) we get a contradiction.

\(|G| = 160.\) Writing \(\deg(\Delta) = 3048 = 72 \cdot i + 2 \cdot j \) for \(4 \leq i + j \leq 159 \) we get that \((i, j) \in \{(39, 120), (40, 84), (41, 48), (42, 12)\}.\) Since by direct checking with MAGMA there are no groups of order 160 with at least 39 elements of order in \(\{2, 4, 8\} \) and such that 3 divides the number of elements of order in \(\{5, 10, 16, 20, 32, 40, 80, 160\}, \) we get a contradiction.

\(|G| = 162.\) We first observe that \(G \) must not contain elements of order in \(\{27, 54, 81, 162\}, \) since such orders do not occur for elements in \(PGU(3, 71); \) see [29, Lemma 2.2]. Writing \(\deg(\Delta) = 3024 = 72 \cdot i + 3 \cdot j \) for \(0 \leq i + j \leq 161 \) we get that \((i, j) \in \{(37, 120), (38, 96), (39, 72), (40, 48), (41, 24), (42, 0)\}.\) Since by direct checking with MAGMA there are no groups of order 162 with at least 37 elements of order in \(\tau = \{2, 6, 9, 18\} \) and such that either there no elements of order not in \(\tau, \) or their number is divisible by 24, we get a contradiction.

\(|G| = 168.\) Writing \(\deg(\Delta) = 2952 = 72 \cdot i + 2 \cdot j + 3 \cdot k \) for \(6 \leq i + j + k \leq 159 \) we get that \((i, j, k) = (36, 3m, 2(60 - m))\) for some \(m = 2, \ldots, 11, \) or \((i, j, k) = (37, 3m, 2(48 - m))\) for some \(m = 2, \ldots, 34, \) or \((i, j, k) = (38, 3m, 2(36 - m))\) for some \(m = 2, \ldots, 36, \) or \((i, j, k) = (39, 3m, 2(24 - m))\) for some \(m = 2, \ldots, 24, \) or \((i, j, k) = (40, 3m, 2(12 - m))\) for some \(m = 2, \ldots, 12.\) By direct checking with MAGMA the condition that either \(j = 0 \) or \(3 \mid j \) and \(i \geq 39 \) yields \(G \cong SmallGroup(168, \ell) \) with \(\ell \in \{1, 4, 5, 7, \ldots, 18, 23, \ldots, 28, 34, \ldots, 38, 42, 43, 46, \ldots, 51, 53, 54, 56\}.\)

The cases \(G \cong SmallGroup(144, \ell) \) with \(\ell \in \{1, 7, \ldots, 11, 23, 42, 43, 47, 49, 53\} \) can be excluded because \(2 \mid |Z(G)|, \) which implies that \(G \) fixes a point \(P \notin \mathcal{H}_{72} \) which is \(\mathbb{P}^{12}\)-rational and hence that \(k = 0, \) a contradiction to the required values \((i, j, k)\) for \(\deg(\Delta). \)

The cases \(G \cong SmallGroup(144, \ell) \) with \(\ell \in \{4, 5, 12, \ldots, 18, 24, \ldots, 28, 34, 37\} \) can be excluded using the fact that \(2 \mid |Z(G)|. \) Hence every element of even order generating a cyclic group containing an involution of the center cannot be an homology without being central. This yields \(G \) to contain a small number of homologies.

The cases \(G \cong SmallGroup(144, \ell) \) with \(\ell \in \{35, 36, 38, 46, 50, 56\} \) can be excluded because the number of involutions contained in \(G \) is greater than the total number of homologies that \(G \) can have according to the desired value of \(\deg(\Delta). \)

The cases \(G \cong SmallGroup(144, \ell) \) with \(\ell \in \{48, 54\} \) can be excluded because \(G \) fixes the vertexes of a self-polar triangle but \(G \) is not abelian.

\(|G| = 180.\) Writing \(\deg(\Delta) = 2808 = 72 \cdot i + 2 \cdot j + 3 \cdot k \) for \(4 \leq i + j + k \leq 179 \) we get that \((33, 6, 140), \) or \((i, j, k) = (34, 3m, 2(60 - m))\) for some \(m = 2, \ldots, 25, \) or \((i, j, k) = (35, 3m, 2(48 - m))\) for some \(m = 2, \ldots, 48, \) or \((i, j, k) = (36, 3m, 2(36 - m))\) for some \(m = 2, \ldots, 36, \) or \((i, j, k) = (37, 3m, 2(24 - m))\) for some \(m = 2, \ldots, 24, \) or \((i, j, k) = (38, 3m, 2(12 - m))\) for some \(m = 2, \ldots, 12.\)
The cases $G \cong \text{SmallGroup}(180, \ell)$ with $\ell \in \{1, 10, 14, 23\}$ can be excluded as $5 \mid |Z(G)|$ yields G to contain too many homologies.

The cases $G \cong \text{SmallGroup}(180, \ell)$ with $\ell \in \{2, 3, 5, 9, 15, 16, 17\}$ can be excluded since $2 \mid |Z(G)|$ and hence every element of even order generating a cyclic group containing an involution of the center cannot be an homology without being central. This forces G to contain a small number of homologies.

The cases $G \cong \text{SmallGroup}(180, \ell)$ with $\ell \in \{7, 11, 25, 27, 29, 30, 34, 36\}$ can be excluded since G contains too many involutions and hence too many homologies.

The cases $G \cong \text{SmallGroup}(180, \ell)$ with $\ell \in \{6, 8, 13, 18, 20, 28, 31, 32, 33, 35, 37\}$ can be excluded as they cannot occur as subgroups of $\text{PGU}(3, 71)$.

The cases $G \cong \text{SmallGroup}(180, \ell)$ with $\ell \in \{12, 22\}$ can be excluded as G fixes the vertexes of a self-polar triangle and it is not abelian.

The cases $G \cong \text{SmallGroup}(180, \ell)$ with $\ell \in \{19, 21, 26\}$ can be excluded since the value of i is not compatible with the lengths of the conjugacy classes of elements in G.

The case $G \cong \text{SmallGroup}(180, 23)$ can be excluded since G acts on the vertexes of a self-polar triangle but its order does not divide the order of the maximal subgroup of $\text{PGU}(3, 71)$ fixing globally a self-polar triangle; see [19, Thm. A.10].

$|G| = 189$. Writing $\deg(\Delta) = 2700 = 72 \cdot i + 2 \cdot j + 3 \cdot k$ for $6 \leq i + j + k \leq 179$ we get that $(i, j, k) = (32, 3m, 2(66 - m))$ for some $m = 2, \ldots, 24$, or $(i, j, k) = (33, 3m, 2(54 - m))$ for some $m = 2, \ldots, 18$, or $(i, j, k) = (34, 3m, 2(42 - m))$ for some $m = 2, \ldots, 14$, or $(i, j, k) = (35, 3m, 2(30 - m))$ for some $m = 2, \ldots, 10$, or $(i, j, k) = (36, 3m, 2(18 - m))$ for some $m = 2, \ldots, 6$, or $(i, j, k) = (37, 3m, 2(6 - m))$ for some $m = 2, \ldots, 2$. Forcing G to contain no elements of order in $\{27, 189\}$, as they do not occur as orders of elements in $\text{PGU}(3, 71)$ and the numerical conditions above, we get $G \cong \text{SmallGroup}(189, \ell)$ with $\ell \in \{3, \ldots, 13\}$. We have that $k \geq 1$ and G normalizes a cyclic group of order 7, which is generated by an element of type (B2) by [29, Thm. 2.7]. Such a group fixes at least a point $P \notin \mathcal{H}_{72}$ which is \mathbb{F}_{72}-rational and this implies that G cannot contain Singer subgroups. Therefore all these cases can be excluded.

$|G| = 192$. Writing $\deg(\Delta) = 2664 = 72 \cdot i + 2 \cdot j + 3 \cdot k$ for $0 \leq i + j + k \leq 179$ we get that $(i, j, k) = (31, 3m, 2(72 - m))$ for some $m = 0, \ldots, 16$, or $(i, j, k) = (32, 3m, 2(60 - m))$ for some $m = 0, \ldots, 24$, or $(i, j, k) = (33, 3m, 2(48 - m))$ for some $m = 0, \ldots, 39$, or $(i, j, k) = (34, 3m, 2(36 - m))$ for some $m = 0, \ldots, 36$, or $(i, j, k) = (35, 3m, 2(24 - m))$ for some $m = 0, \ldots, 24$, or $(i, j, k) = (36, 3m, 2(12 - m))$ for some $m = 0, \ldots, 48$, or $(i, j, k) = (37, 3m, 2(0 - m))$ for some $m = 0, \ldots, 6$. Denote by o_i the number of elements of order i in G. Forcing, as for the previous case, G to have no elements of order in $\{64, 96, 192\}$ and $o_0 \geq 24$ for $m = 0$, $o_3 \geq 8$ for $m = 32$, $o_3 \geq 16$ for $m = 16$, we get that $G \cong \text{SmallGroup}(192, \ell)$ with

\[\ell \in \{3, 4, 57, 58, 78, 79, 80, 81, 180, 181, 182, 184, \ldots, 199, 201, \ldots, 204, 944, 955, 956, 992, 1000, 1001, 1002, 1008, 1009, 1020, \ldots, 1025, 1489, \ldots, 1495, \} \]
The cases $G \cong \text{SmallGroup}(192, \ell)$ with $\ell \in \{57, 58, 78, 79, 80, 81, 186, 187, 203, 204\}$ can be excluded as G normalizes an involution and hence it cannot contain Singer subgroups, but $m \neq 0$.

In the remaining cases a contradiction is obtained observing that the elements of order 3 form a unique conjugacy class in G and that o_3 is not equal to any value which is admissible for k.

$|G| = 210$. Writing $\deg(\Delta) = 2448 = 72 \cdot i + 2 \cdot j + 3 \cdot k$ for $10 \leq i + j + k \leq 209$ we get that $(i, j, k) = (27, 3m, 2(84 - m))$ for some $m = 4, \ldots, 14$, or $(i, j, k) = (28, 3m, 2(72 - m))$ for some $m = 4, \ldots, 37$, or $(i, j, k) = (29, 3m, 2(68 - m))$ for some $m = 4, \ldots, 60$, or $(i, j, k) = (30, 3m, 2(48 - m))$ for some $m = 4, \ldots, 48$, or $(i, j, k) = (31, 3m, 2(36 - m))$ for some $m = 4, \ldots, 36$, or $(i, j, k) = (32, 3m, 2(24 - m))$ for some $m = 4, \ldots, 24$, or $(i, j, k) = (33, 3m, 2(12 - m))$ for some $m = 4, \ldots, 12$. By direct checking with MAGMA $G \cong \text{SmallGroup}(210, \ell)$ with $\ell \in \{5, 6, 8, 9, 10, 12\}$. All these cases can be excluded as G cannot contain a sufficient number of homologies with respect to $\deg(\Delta)$.

$|G| = 216$. Writing $\deg(\Delta) = 2376 = 72 \cdot i + 3 \cdot k$ for $0 \leq i + k \leq 215$ we get that $(i, k) \in \{(26, 168), (27, 144), (28, 120), (29, 96), (30, 72), (31, 48), (32, 24), (33, 0)\}$. By direct checking with MAGMA, forcing G to contain no elements of order in $\{27, 54, 108, 216\}$, we get $G \cong \text{SmallGroup}(216, \ell)$ with $\ell \in \{12, \ldots, 20, 25, \ldots, 177\}$.

Cases $G \cong \text{SmallGroup}(216, 12)$ and $G \cong \text{SmallGroup}(216, 13)$ cannot occur as G fixes the vertexes of a self-polar triangle and G is not abelian.

Assume that $G \cong \text{SmallGroup}(216, 14)$. A contradiction can be obtained since $2 \mid |Z(G)|$ and hence every element of even order generating a cyclic group containing an involution of the center cannot be an homology without being central. This yields G to contain a small number of homologies.

Cases $G \cong \text{SmallGroup}(216, 15)$ and $G \cong \text{SmallGroup}(216, 16)$ cannot occur as subgroups of $PGU(3, 71)$, since $Z(G)$ must contain at least a subgroup of order 3.

Case $G \cong \text{SmallGroup}(216, 17)$ can be excluded as G contains $16 + 11$ homologies, a contradiction.

Assume that $G \cong \text{SmallGroup}(216, 18)$. In this case G fixes the vertexes of a self-polar triangle T and it is abelian. This implies that G is contained in the stabilizer in $PGU(3, 71)$ of T which is abelian and isomorphic to $C_{72} \times C_{72}$. Suppose that G is such that $q(H_{72}/G) = 7$. Then the quotient curve H_{2}/G would inherit the quotient group $C_{72} \times C_{72}/G$ which is abelian of order 24. Since $PSL(2, 8)$ does not contain abelian subgroup of order 216, the claim follows.

Assume that $G \cong \text{SmallGroup}(216, 19)$ or $G \cong \text{SmallGroup}(216, 20)$. Since G has a unique involution, as before, G cannot contain Singer subgroups and hence $i = 33$. Since
G contains 4 distinct subgroups isomorphic to $C_3 \times C_3$, G contains 16 homologies of order 3. The center $Z(G)$ is generated by a homology of order 24. This proves that G contains at least 39 homologies, a contradiction.

Assume that $G \cong \text{SmallGroup}(216,25)$. As in the previous cases $i = 33$, G fixes a point $P \notin H_{72}$ which is \mathbb{F}_{712}-rational, and G contains no Singer subgroups. This group cannot occur as a subgroup of $PGU(3,71)$ as it contains 4 groups isomorphic to $C_3 \times C_3$ sharing a fixed homology of order 3 having center at P. Since they generate 8 elements of order 3 and of type (B1), we have a contradiction to the conjugacy class structure of elements of order 3 in G.

The cases $G \cong \text{SmallGroup}(216, \ell)$ with $\ell \in \{26, 27, 30, \ldots, 86, 100, \ldots, 152\}$ cannot occur as a subgroup of $PGU(3,71)$ as G has to contain at least a central element of order 3, while $3 \nmid |Z(G)|$.

The cases $G \cong \text{SmallGroup}(216, \ell)$ with $\ell \in \{28, 29\}$ can be excluded since G contains too many involutions with respect to the desired value of i.

Assume that $G \cong \text{SmallGroup}(216,87)$. In this case G contains too many involution compared to the desired value for i.

The case $G \cong \text{SmallGroup}(216,88)$ cannot occur as a subgroup of $PGU(3,71)$ as G contains 4 elementary abelian groups of order 9, which generate exactly 8 elements of type (B1) and order 3. This fact is in contradiction with the structure of the conjugacy classes of elements of order 3 in G.

The cases $G \cong \text{SmallGroup}(216, \ell)$ with $\ell \in \{89, 90, 91, 98\}$ cannot occur as G must contain at least a central element of order 2.

If $G \cong \text{SmallGroup}(216,92)$ then, looking at the structure of the elementary abelian subgroups of G, G contains at least $12 \cdot 4 + 2 + 18 + 3$ homologies, a contradiction.

The cases $G \cong \text{SmallGroup}(216, \ell)$ with $\ell \in \{93, 94, 96, 97, 99, 165\}$ can be excluded as G contains too many involution with respect to the desired value for i.

If $G \cong \text{SmallGroup}(216,95)$ then G contains at least $13 \cdot 4 + 2 + 18 + 3$ homologies, a contradiction.

If $G \cong \text{SmallGroup}(216, \ell)$ with $\ell \in \{153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 166, 167\}$, then G contains too many homologies with respect to the desired value for i. This fact can be deduced looking at the number and the structure of subgroups isomorphic to $C_3 \times C_3$ and the number of involutions in G.

If $G \cong \text{SmallGroup}(216, \ell)$ with $\ell = 168, \ldots, 177$ then G contains an abelian subgroup of order 54, a contradiction to [19, Thm. 11.79] as $4g + 4 = 32$.

If $G \cong \text{SmallGroup}(216,155)$ then either $(i,k) = (33,0)$ or $(i,k) = (32,24)$. In fact the lengths of the conjugacy classes C_1, C_2 and C_3 of elements of order 3 are $|C_1| = 8$ are $|C_2| = 1$, $|C_3| = 4$ and $\sigma \in C_1$ cannot be such that $i(\sigma) = 3$ since it is a power
of an element of order 6. Assume that \((i, k) = (33, 0)\). We note that the elements of order 3 generate 13 elementary abelian groups of order 9. Since \(k = 0\) each of them must contain exactly two elements of type (B1) and 6 elements of type (A). Since one elementary abelian group is given by 8 elements of order 3 which are all conjugated, this case cannot occur. Assume now that \((i, k) = (32, 24)\). In particular the number of homologies which are not involutions must be equal to \(32 - 9 = 23\). The elements of order 8 or 12, which are conjugated, cannot be homologies since their number is strictly greater than 23. If elements of order 6 or 4 are generated by homologies then \(G\) contains exactly either \(18 + 2 + 9 = 29\) or \(18 + 9 = 27\) homologies, a contradiction.

\(|G| = 224\). We write \(\deg(\Delta) = 2280 = 72 \cdot i + 2 \cdot j\), for some \(6 \leq i + j \leq 223\). By direct checking with MAGMA \((i, j) \in \{(27, 168), (28, 132), (29, 96), (30, 60), (31, 24)\}\). Since for every \(G \cong \text{SmallGroup}(224, \ell)\) with \(\ell = 1, \ldots, 197\) we have that \(j = 96\), we need \((i, j) = (29, 96)\). Forcing \(G\) to contain at least 29 elements of order a divisor of 72, we have \(G \cong \text{SmallGroup}(224, \ell)\) with

\[
\ell \in \{8, \ldots, 11, 13, 14, 16, 19, \ldots, 26, 28, 30, 31, 36, \ldots, 43, 63, \ldots, 67, 71, \ldots, 74,
82, \ldots, 87, 91, \ldots, 96, 100, 101, 102, 104, 107, 110, 112, 115, \ldots, 121, 128,
129, 130, 131, 137, \ldots, 141, 143, 146, 147, 174, 181, 187\}.
\]

Assume that \(G \cong \text{SmallGroup}(224, \ell)\) for some \(\ell \in \{8, 9, 10, 14, 16, 19, 20, \ldots, 24, 26, 36, 37, 38, 41, 63, \ldots, 67, 72, 73, 74, 82, 83\}\). Then \(G\) fixes the vertexes of a self-polar triangle \(T\) and \(G\) is not abelian, a contradiction.

If \(G \cong \text{SmallGroup}(224, \ell)\) for \(\ell \in \{11, 13, 25, 28, 30, 31\}\) then \(G\) contains at least 33, 33, 17, 17, 15, 29 homologies, a contradiction.

If \(G \cong \text{SmallGroup}(224, \ell)\) with \(\ell \in \{39, 40, 42, 43, 143, 146\}\) then \(G\) normalizes an element \(\gamma\) of type (B2). Denote by \(P, Q, R\) the fixed points of \(\gamma\); then they are \(\mathbb{F}_{712}\)-rational and \(P \notin \mathcal{H}_{72}, Q, R \in \mathcal{H}_{72}\). Thus, \(G\) fixes \(P\) and \(G \leq \mathcal{M}_{71} = \text{Stab}_{\text{PGU}(3, 71)}(P)\). If \(\alpha \in G\) is a homology then either \(\alpha(Q) = Q\) and \(\alpha(R) = R\) which implies \(\alpha \in Z(\mathcal{M}_{71})\) (see [28, Page 6]), or \(o(\alpha) = 2\) and \(\alpha(R) = Q\) as homologies act with long orbits outside their center. Since the number of involutions in \(G\) is not equal to 29 and \(|Z(G)| = 2\), we have a contradiction.

If \(G \cong \text{SmallGroup}(224, 71)\) then \(G\) contains too many involution, and hence too many homologies, with respect to \(i = 29\).

By direct checking with MAGMA, excluding the cases for which \(G\) fixes the vertexes of a self-polar triangle but \(G\) is not abelian, we just need to analyze \(G \cong \text{SmallGroup}(224, \ell)\) with \(\ell \in \{96, 101, 102, 104, 107, 110, 112, 137\}\).

If \(G \cong \text{SmallGroup}(224, \ell)\) with \(\ell \in \{96, 101, 102, 104, 137\}\) then \(G\) contains more than 29 involution and hence more than 29 homologies, a contradiction.
If $G \cong \text{SmallGroup}(224, 107)$, $G \cong \text{SmallGroup}(224, 110)$, $G \cong \text{SmallGroup}(224, 112)$ then G contains at least 23, 19, 15 homologies. The extra homologies cannot be found because of the lengths of the conjugacy classes of elements in G.

$|G| = 240$. We write $\text{deg}(\Delta) = 2088 = 72 \cdot i + 2 \cdot j + 3 \cdot k$ where $4 \leq i + j + k \leq 239$. By direct checking with MAGMA, Table 2 gives the complete list of possibilities for the triple (i, j, k).

Table 2. Admissible values for (i, j, k)

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>k</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3m</td>
<td>2(108-m)</td>
<td>$m=2,3$</td>
</tr>
<tr>
<td>21</td>
<td>3m</td>
<td>2(96-m)</td>
<td>$m=2,\ldots,26$</td>
</tr>
<tr>
<td>22</td>
<td>3m</td>
<td>2(84-m)</td>
<td>$m=2,\ldots,49$</td>
</tr>
<tr>
<td>23</td>
<td>3m</td>
<td>2(72-m)</td>
<td>$m=2,\ldots,72$</td>
</tr>
<tr>
<td>24</td>
<td>3m</td>
<td>2(60-m)</td>
<td>$m=2,\ldots,60$</td>
</tr>
<tr>
<td>25</td>
<td>3m</td>
<td>2(48-m)</td>
<td>$m=2,\ldots,48$</td>
</tr>
<tr>
<td>26</td>
<td>3m</td>
<td>2(36-m)</td>
<td>$m=2,\ldots,36$</td>
</tr>
<tr>
<td>27</td>
<td>3m</td>
<td>2(24-m)</td>
<td>$m=2,\ldots,24$</td>
</tr>
<tr>
<td>28</td>
<td>3m</td>
<td>2(12-m)</td>
<td>$m=2,\ldots,12$</td>
</tr>
</tbody>
</table>

Also, Table 3 gives the complete list of cases $G \cong \text{SmallGroup}(240, \ell)$ that have to be considered. For each case the required triple (i, j, k) is described.

Table 3. Required values for m, k and i for $G \cong \text{SmallGroup}(240, \ell)$

<table>
<thead>
<tr>
<th>ℓ</th>
<th>m</th>
<th>k</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,\ldots,4</td>
<td>72</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>32</td>
<td>64</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>89,\ldots,91</td>
<td>16</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td>92,\ldots,94</td>
<td>32</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>105,\ldots,110</td>
<td>32</td>
<td>8 = o_3</td>
<td>26</td>
</tr>
<tr>
<td>189</td>
<td>16</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td>190</td>
<td>32</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>191</td>
<td>64</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>194</td>
<td>32</td>
<td>8 = o_3</td>
<td>26</td>
</tr>
<tr>
<td>197,198</td>
<td>32</td>
<td>8 = o_3</td>
<td>26</td>
</tr>
<tr>
<td>204</td>
<td>64</td>
<td>16</td>
<td>27</td>
</tr>
</tbody>
</table>

If $G \cong \text{SmallGroup}(224, 1)$ then G normalizes an element γ of type (B2). Denote by P, Q, R the fixed points of γ; then they are \mathbb{F}_{71^2}-rational and $P \notin \mathcal{H}_{72}$ but $Q, R \in \mathcal{H}_{72}$.
Thus, G fixes P and $G \leq \mathcal{M}_{71} = \text{Stab}_{\text{PGU}(3,71)}(P)$ and if $\alpha \in G$ is a homology then either $\alpha(Q) = Q$ and $\alpha(R) = R$ which implies $\alpha \in Z(\mathcal{M}_{71})$ (see [28, Page 6]), or $o(\alpha) = 2$ and $\alpha(R) = Q$ as homologies act with long orbits outside their center. This implies that G contains 39 homologies, a contradiction.

If $G \cong \text{SmallGroup}(240, 3)$ then G contains just 7 homologies, a contradiction.

The cases $G \cong \text{SmallGroup}(240, \ell)$ where $\ell \in \{32, 89, \ldots, 94, 191, 204\}$ can be excluded as G must contain Singer subgroups but elements of order 3 form a unique conjugacy class in G with $o_3 \neq k$.

The cases $G \cong \text{SmallGroup}(240, \ell)$ where $\ell \in \{105, 107, \ldots, 110, 189, 190\}$ can be excluded as G must contain Singer subgroups but all elements of order 3 are normalized by at least one involution and hence they cannot be elements from Singer subgroups of $\text{PGU}(3,71)$.

The cases $G \cong \text{SmallGroup}(240, \ell)$ where $\ell \in \{106, 194, 197, 198\}$ can be excluded as G contains too many involution compared to the desired value for i.

$|G| = 243$. We write $\deg(\Delta) = 2052 = 72 \cdot i + 3 \cdot j$ for $0 \leq i + j \leq 242$. Also, note that elements of order in $\{27, 81, 243\}$ cannot exist as they do not occur as element of $\text{PGU}(3,71)$, see [29, Lemma 2.2]. This yields $G \cong \text{SmallGroup}(243, \ell)$ with $\ell \in \{47, 51, \ldots, 67\}$. By direct checking with MAGMA $(i, j) \in \{(20, 204), (21, 180), (22, 156), (23, 132), (24, 108), (25, 84), (26, 60), (27, 36), (28, 12)\}$ and hence G must contain Singer subgroups of order 3.

If $G \cong \text{SmallGroup}(243, 47)$ then the elements of order 3 of G such that their contribution to $\deg(\Delta)$ is 3 are either 0 or 18, since 243 does not divide the order of the normalizer of a Singer subgroup of $\text{PGU}(3,71)$; see [19, Thm. A.10]. Since 18 is not an admissible value for k we have a contradiction.

If $G \cong \text{SmallGroup}(243, \ell)$ for $\ell \in \{51, 52, 53, 54\}$ then, arguing as in the previous case, the normal subgroups of order 3 cannot be Singer subgroups as 243 does not divide the order of the normalizer of a Singer subgroup of $\text{PGU}(3,71)$. Since they generate an elementary abelian group of order 9, G contains 3 normal homologies of order 3, and hence G fixes the vertexes of a self-polar triangle. This proves that G cannot contain Singer subgroups, a contradiction.

Assume that $G \cong \text{SmallGroup}(243, \ell)$ where $\ell \in \{55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66\}$, then G contains a central subgroup of order 3 which is generated by a homology. In fact it is a power of more than 9 different elements of order 9 where at least two of them are of type (B1) and fix different self-polar triangles. Thus G fixes a point P off \mathcal{H}_{72} which is \mathbb{F}_{712}-rational and hence $j = 0$, a contradiction.
If $G \cong \text{SmallGroup}(243,67)$ then G is an elementary abelian 3-group. As before G contains no Singer subgroups as all the elements of order 3 are normal in G and 243 does not divide the order of the normalizer of a Singer subgroup of $PGU(3,71)$, a contradiction.

$|G| = 252$. There exist 46 different structures for groups of order 252 up to isomorphism. We write $\text{deg}(\Delta) = 1944 = 72 \cdot i + 2 \cdot j + 3 \cdot k$ for some $6 \leq i + j + k \leq 251$. By direct checking with MAGMA Table 4 summarizes the possibilities for (i, j, k) with respect to $\text{deg}(\Delta)$.

Table 4. Admissible values for (i, j, k)

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>k</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>3m</td>
<td>2(108-m)</td>
<td>$m=2,\ldots,17$</td>
</tr>
<tr>
<td>19</td>
<td>3m</td>
<td>2(96-m)</td>
<td>$m=2,\ldots,40$</td>
</tr>
<tr>
<td>20</td>
<td>3m</td>
<td>2(84-m)</td>
<td>$m=2,\ldots,63$</td>
</tr>
<tr>
<td>21</td>
<td>3m</td>
<td>2(72-m)</td>
<td>$m=2,\ldots,72$</td>
</tr>
<tr>
<td>22</td>
<td>3m</td>
<td>2(60-m)</td>
<td>$m=2,\ldots,60$</td>
</tr>
<tr>
<td>23</td>
<td>3m</td>
<td>2(48-m)</td>
<td>$m=2,\ldots,48$</td>
</tr>
<tr>
<td>24</td>
<td>3m</td>
<td>2(36-m)</td>
<td>$m=2,\ldots,36$</td>
</tr>
<tr>
<td>25</td>
<td>3m</td>
<td>2(24-m)</td>
<td>$m=2,\ldots,24$</td>
</tr>
<tr>
<td>26</td>
<td>3m</td>
<td>2(12-m)</td>
<td>$m=2,\ldots,12$</td>
</tr>
</tbody>
</table>

All the cases $G \cong \text{SmallGroup}(252, \ell)$ with $\ell \in \{1,2,3,4,5,7,13,14,16,\ldots,19,22,24,43,45\}$ can be excluded as G contains just one involution which is central. This implies that non-central elements of even order cannot be homologies. We get that the number of homologies in G is strictly less that 18, a contradiction.

If $G \cong \text{SmallGroup}(252,6)$ then, denoting by φ the Euler totient function, G contains exactly $1 + 2 + 2 + \varphi(9) + \varphi(12) + \varphi(18) + \varphi(36) = 35$ homologies, a contradiction.

If $G \cong \text{SmallGroup}(252,8)$ then, G contains too many involution with respect to the desired value of i, a contradiction.

If $G \cong \text{SmallGroup}(252,9)$ then G fixes the vertexes of a self-polar triangle but G is not abelian, a contradiction.

All the cases $G \cong \text{SmallGroup}(252, \ell)$ with $\ell \in \{10,11,21,23,27,29,31,32,35,38,39,40,42\}$ can be excluded as G normalizes a cyclic subgroup of order 7 which is generated by an element of type (B2), by [29, Lemma 2.2]. Thus, if $\alpha \in G$ is a homology then either $\alpha \in Z(G)$ or $o(\alpha) = 2$. This proves that G cannot contain i homologies.
All the cases $G \cong \text{SmallGroup}(252, \ell)$ with $\ell \in \{12, 15, 25, 26, 30, 33, 34, 36, 37, 41, 46\}$ can be excluded as G contains too many homologies with respect to the desired value of i.

The case $G \cong \text{SmallGroup}(252, 20)$ cannot occur as a subgroup of $PGU(3, 71)$ as $Z(G)$ must be cyclic.

Assume that $G \cong \text{SmallGroup}(252, 28)$. Then G fixes a point $P \notin \mathcal{H}_{72}$ which is \mathbb{P}_{12}-rational as G normalizes an involution. This implies that G cannot contain Singer subgroups and hence all the elements of order 3 are either of type (B1) or homologies. Since G contains 7 subgroups isomorphic to $C_3 \times C_3$, it contains at least 29 homologies of order 3. Also, G contains 15 involution, a contradiction.

The case $G \cong \text{SmallGroup}(252, 44)$ cannot occur as a subgroup of $PGU(3, 71)$ as at least an element of order 3 must be central but $3 \nmid |Z(G)|$.

$|G| = 270$. There exist 30 structures for groups of order 252 up to isomorphism. We write $\deg(\Delta) = 1728 = 72 \cdot i + 2 \cdot j + 3 \cdot k$ for some $4 \leq i + j + k \leq 269$. Forcing G to contain no elements of order in $\{27, 54, 135, 270\}$, we get $G \cong \text{SmallGroup}(270, \ell)$ with $\ell \geq 5$.

By direct checking with MAGMA we have that Table 5 summarizes the possibilities for (i, j, k) with respect to $\deg(\Delta)$.

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>k</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>3m</td>
<td>2(120-m)</td>
<td>$m=2, \ldots, 15$</td>
</tr>
<tr>
<td>15</td>
<td>3m</td>
<td>2(108-m)</td>
<td>$m=2, \ldots, 38$</td>
</tr>
<tr>
<td>16</td>
<td>3m</td>
<td>2(96-m)</td>
<td>$m=2, \ldots, 61$</td>
</tr>
<tr>
<td>17</td>
<td>3m</td>
<td>2(84-m)</td>
<td>$m=2, \ldots, 84$</td>
</tr>
<tr>
<td>18</td>
<td>3m</td>
<td>2(72-m)</td>
<td>$m=2, \ldots, 72$</td>
</tr>
<tr>
<td>19</td>
<td>3m</td>
<td>2(60-m)</td>
<td>$m=2, \ldots, 60$</td>
</tr>
<tr>
<td>20</td>
<td>3m</td>
<td>2(48-m)</td>
<td>$m=2, \ldots, 48$</td>
</tr>
<tr>
<td>21</td>
<td>3m</td>
<td>2(36-m)</td>
<td>$m=2, \ldots, 36$</td>
</tr>
<tr>
<td>22</td>
<td>3m</td>
<td>2(24-m)</td>
<td>$m=2, \ldots, 24$</td>
</tr>
<tr>
<td>23</td>
<td>3m</td>
<td>2(12-m)</td>
<td>$m=2, \ldots, 12$</td>
</tr>
</tbody>
</table>

If $G \cong \text{SmallGroup}(270, \ell)$, $\ell = 5, 6, 7$ then G contains $31, 7, 7$ homologies, a contradiction.

The cases $G \cong \text{SmallGroup}(270, \ell)$ with $\ell \in \{8, 9\}$ can be excluded as they do not occur as subgroups of $PGU(3, 71)$.

The cases $G \cong \text{SmallGroup}(270, \ell)$ with $\ell \in \{10, 11\}$ can be excluded as G normalizes a cyclic subgroup of order 5, which is generated by an element of type (B2), by [29, Thm. 2.7], and hence the unique homologies of G are either central or of order 2. Since i is not
equal to the sum of the number of element of order 2 and the number of the remaining non-trivial elements of \(Z(G) \), this case cannot occur.

The cases \(G \cong \text{SmallGroup}(270, \ell) \) with \(\ell \in \{12, 14, 15, 16, 18, 19, 27, 28, 29\} \) can be excluded as \(G \) contains too many involutions with respect to the desired number of homologies \(i \). By direct checking all the remaining cases do not occur as subgroups of \(\text{PGU}(3, 71) \).

\[|G| = 280. \] We write \(\deg(\Delta) = 1608 = 72 \cdot i + 2 \cdot j \) for some \(10 \leq i + j \leq 279 \). By direct checking with MAGMA, \((i, j) \in T = \{(15, 264), (16, 228), (17, 192), (18, 156), (19, 120), (20, 84), (21, 48), (22, 12)\} \). Denote by \(o_i \) the number of elements of order \(i \) in \(G \). Since there are no groups of order \(280 \) with \((o_5 + o_7 + o_{10} + o_{14} + o_{20} + o_{28} + o_{35} + o_{40} + o_{56} + o_{70} + o_{140} + o_{280}) \in \{12, 48, 84, 120, 156, 192, 228, 264\} \) and \((o_2 + o_4 + o_8) \geq ij \) where \(ij \) denotes the value of \(i \) corresponding to \(j = (o_5 + o_7 + o_{10} + o_{14} + o_{20} + o_{28} + o_{35} + o_{40} + o_{56} + o_{70} + o_{140} + o_{280}) \) in \(T \), this case cannot occur.

\[|G| = 288. \] As before we can exclude all \(\text{SmallGroup}(288, \ell) \) with \(\ell = 1, \ldots, 1045 \) containing elements of order in \(\{32, 96, 288\} \). Writing \(\deg(\Delta) = 1512 = 72 \cdot i + 2 \cdot j + 3 \cdot k \) with \(0 \leq i + j + k \leq 287 \) we get that \(i = 10, \ldots, 21 \). We observe that \(G \cong \text{SmallGroup}(288, \ell) \) is such that \(2 \mid |Z(G)| \) unless \(\ell \in \{73, 74, 75, 397, 406, 407, 634, 635, 636\} \). If \(2 \mid |Z(G)| \) then \(G \) cannot contain Singer subgroups as they cannot be centralized by involutions; see [19, Thm. A.10]. This implies that \(k = 0 \) and hence \((i, j) \in \{(14, 258), (15, 222), (17, 150), (18, 114), (19, 78), (20, 42), (21, 6)\} \). Since there are no groups of order \(288 \) with \((o_{16} + o_{48} + o_{144}) \in \{258, 222, 186, 150, 114, 78, 42, 6\} \) all these cases cannot occur.

Assume that \(G \cong \text{SmallGroup}(288, \ell) \) with \(\ell = 73, 74, 75 \). These cases can be excluded as \(G \) does not contain sufficient elements of order 3.

Assume that \(G \cong \text{SmallGroup}(288, \ell) \) with \(\ell \in \{397, 406, 407, 634, 635, 636\} \). These cases can be excluded as the desired values for \(k \) are not compatible with the lengths of the conjugacy classes of elements of order 3 in \(G \).

\[|G| = 315. \] We can write \(\deg(\Delta) = 1188 = 72 \cdot i + 2 \cdot j + 3 \cdot k \), where \(10 \leq i + j + k \leq 314 \). Denote by \(o_i \) the number of elements of order \(i \) in \(G \). By [29, Thm. 2.7], \(j = o_5 + p_{15} + o_{21} + o_{35} + o_{45} + o_{63} + o_{105} + o_{315} \), while \(i \leq o_3 + o_9 \) and \(k \leq o_3 \).

If \(G \cong \text{SmallGroup}(315, 1) \) then \(j = 270 \) and hence to obtain the right value for \(\deg(\Delta) \) either \((i, k) = (8, 24) \) or \((i, k) = (9, 0) \). Since \(G \) contains at least \(6 \cdot 7 + 2 = 44 \) homologies, and elements of order 9 must be homologies, we get a contradiction.

Assume that \(G \cong \text{SmallGroup}(315, 3) \). Then \(j = 270 \) and hence either \((i, k) = (8, 24) \) or \((i, k) = (9, 0) \). Since \(G \) contains at least 42 homologies this case can be excluded.

The case \(G \cong \text{SmallGroup}(315, 4) \) can be excluded as it does not occur as a subgroup of \(\text{PGU}(3, 71) \).
\(|G| = 320\). We note that \(G\) cannot contain elements of order in \(\{32, 64, 160, 320\}\) as they cannot be contained in \(PGU(3, 71)\). We write \(\deg(\Delta) = 1128 = 72 \cdot i + 2 \cdot j\) where \(4 \leq i + j \leq 319\). Then by direct checking \((i, j) \in \{(7, 312), (8, 276), (9, 240), (10, 204), (11, 168), (12, 132), (13, 96), (14, 60), (15, 24)\}\). Since there are no groups of order 320 with \(o_2 + o_4 + o_8 \geq 7\) and \(j = 319 - (o_2 + o_4 + o_8) \in \{312, 276, 240, 204, 168, 132, 96, 60, 24\}\), these cases can be excluded.

\(|G| = 324\). We write \(\deg(\Delta) = 1080 = 72 \cdot i + 3 \cdot k\) for \(0 \leq i + k \leq 324\). Then \((i, k) \in \{(2, 312), (3, 288), (4, 264), (5, 240), (6216), (7, 192), (8, 168), (9, 144), (10, 120), (11, 96), (12, 72), (13, 48), (14, 24), (15, 0)\}\).

Also, \(G\) cannot contain elements of order in \(\{27, 54, 81, 108, 162, 324\}\) as they cannot be contained in \(PGU(3, 71)\).

Assume that \(G \cong \text{SmallGroup}(324, \ell)\) with \(\ell \in \{8, 19, 23, 25\}\). Then 2 divides \(|Z(G)|\) and hence \(G\) cannot contain Singer subgroups. This case can be excluded as at least an element of order 3 must be contained in \(Z(G)\) but \(3 \nmid |Z(G)|\).

The cases \(G \cong \text{SmallGroup}(324, \ell)\) with \(\ell \in \{13, 14, 16, 18, 20, 22, 24\}\) can be excluded as they do not contain Singer subgroups, because \(2 \mid |Z(G)|\) and, looking at the number and the intersections of subgroups isomorphic to \(C_3 \times C_3\) we get that \(G\) contains a number of homologies different from \(i\).

The cases \(G \cong \text{SmallGroup}(324, \ell)\) with \(\ell \in \{46, 47, 48, 83, 87, 89, 101\}\) cannot occur as \(G\) fixes the vertexes of a self-polar triangle but \(G\) is not abelian.

All the remaining cases \(G \cong \text{SmallGroup}(324, \ell)\) with \(\ell \in \{49, 50, 51, \ldots, 176\}\) can be excluded as they do not contain Singer subgroups and looking at the number and the intersections of subgroups isomorphic to \(C_3 \times C_3\) we get that \(G\) contains number of homologies different from \(i\).

\(|G| = 336\). We write \(\deg(\Delta) = 936 = 72 \cdot i + 2 \cdot j + 3 \cdot k\) with \(6 \leq i + j + k \leq 335\). By direct checking, every \(G \cong \text{SmallGroup}(336, \ell)\) with \(\ell = 1, \ldots, 228\) and \(\ell \neq 114\) has a unique subgroup of order 7, which is hence characteristic.

Case \(G \cong \text{SmallGroup}(336, 114)\) cannot occur as a subgroup of \(PGU(3, 71)\). Thus we can assume that \(G\) has a unique Sylow 7-subgroup, say \(S\). Since a generator of \(S\) is of type \((B2)\) from [29, Thm. 2.7], \(G\) fixes a point \(P \notin \mathcal{H}_{72}\) which is \(\mathbb{F}_{712}\)-rational and \(G\) does not contain Singer subgroups. In all the remaining admissible cases we have that \((i, j) \in \{(9, 144), (5, 288)\}\). Assume that \(j = 288\). Then \(G \cong \text{SmallGroup}(336, \ell)\) with \(\ell \in \{56, 74, 75, 78, \ldots, 83, 86, 88, 89, 106, \ldots, 113, 115, 117, 168, \ldots, 170, 190, 192, 204\}\).

Assume that \(G \cong \text{SmallGroup}(336, 56)\). Then \(Z(G) \cong C_7\) and hence every element of order 3 is a homology. Since this implies that \(i > 5\) we have a contradiction.

A contradiction to \(i = 5\) is obtained also for \(G \cong \text{SmallGroup}(336, \ell)\) with \(\ell \in \{74, 75, 78, 80, 86, 88, 109, 110, 111, 112, 113, 115, 117, 168, 170, 204\}\).
If $G \cong \text{SmallGroup}(336, \ell)$ with $\ell \in \{79, 81, 82, 83, 89, 106, 107, 108, 169, 192\}$ then G fixes the vertexes of a self-polar triangle and G is not abelian, a contradiction.

The case $G \cong \text{SmallGroup}(336, 190)$ cannot occur as a subgroup of $\text{PGU}(3, 71)$ as the involution obtained as a power of an element of order 14 must be central. Assume that $j = 144$. Then $G \cong \text{SmallGroup}(336, \ell)$ with $\ell \in \{38, 39, 40, 62, 72, 94, 104\}$. Since in all these cases the number of homologies of G is 3 while $i = 9$, we have a contradiction.

$|G| = 360$. We write $\deg(\Delta) = 648 = 72 \cdot i + 2 \cdot j + 3 \cdot k$ where $4 \leq i + j + k \leq 359$. Thus, $i \leq 8$. We note that for every $G \cong \text{SmallGroup}(360, \ell)$ with $\ell = 1, \ldots, 162$ and $\ell \neq 51$, G has a unique Sylow 5-subgroup, which is generated by an element of type (B2) from [29, Thm. 2.7]. This implies, as before, that G fixes a point P off H_{72} and every element of order 3 or 9 is a homology. Denote by o_i the number of elements of order i in G. Since for every $\ell \neq 51$ we have that $o_2 + o_3 + o_9 \geq 9$, while $i \leq 8$ we have a contradiction.

Thus, assume that $G \cong \text{SmallGroup}(336, 51)$. Since G contains 5 homologies which belong to $Z(G)$ whereas all the elements of even order dividing 72 are of type (B1), we have that G contains exactly $5 + 20 \cdot i_1 + 40 \cdot i_2$ for some i_1 and i_2, a contradiction.

$|G| = 378$. We write $\deg(\Delta) = 432 = 72 \cdot i + 2 \cdot j + 3 \cdot k$, where $6 \leq i + j + k \leq 377$. Since $i \leq 5$, G must contain at least 5 involutions and it contains no elements of order in $\{27, 54, 189, 378\}$. These conditions yield $G \cong \text{SmallGroup}(378, \ell)$ with $\ell \in \{2, 6, 16, 23, 24, 25, 26, 27, 28, 33, 44, 45, 46, 48, 52, 54, 60\}$. All these cases can be excluded observing that G has a unique Sylow 7-subgroup, which implies that every element of order 3 or 9 is a homology. This yields $i > 5$, a contradiction.

$|G| = 384$. As before, G contains no elements of order in $\{32, 64, 96, 128, 192, 384\}$ and we write $\deg(\Delta) = 360 = 72 \cdot i + 2 \cdot j + 3 \cdot k$ for $0 \leq i + j + k \leq 383$. By direct checking with MAGMA $i \leq 4$ and $G \cong \text{SmallGroup}(384, \ell)$ with $\ell \leq 20169$ has 3 involutions. Thus, G contains at most one extra homology. If G contains one extra homology then G contains at least 2 extra homology, since its order is at least equal to 3. Thus $i = 3$ and G contains no homology of order different from 2. When $o_2 eq 3$ a direct checking with MAGMA shows that $2 \mid |Z(G)|$, hence G normalizes an involution and G fixes a point $P \not\in H_{72}$ which is F_{712}-rational. Also, G normalizes a group of type $C_2 \times C_2$ and acts on the vertexes of a self-polar triangle. This implies that every element of order 3 is an homology. Since G contains at least 2 elements of order 3 we have a contradiction.

$|G| = 405$. Here G contains no elements of order in $\{81, 135, 405\}$ and we write $\deg(\Delta) = 108 = 72 \cdot i + 2 \cdot j + 3 \cdot k$, obtaining either $(i, j, k) = (0, 3m, 2(18 - m))$ for some $m = 2, \ldots, 54$, or $(i, j, k) = (1, 3m, 2(6 - m))$ for some $m = 2, \ldots, 6$. By direct checking with MAGMA if $G \cong \text{SmallGroup}(405, \ell)$ with $\ell \neq 15$ then G has a unique Sylow 5-subgroup. This implies that every element of order 3 is a homology and then $i \geq 2$, a contradiction. Thus we assume that $G \cong \text{SmallGroup}(405, 15)$. In this case $j = o_5 + o_{15} + o_{27} + o_{45} = 324$. Since 324 is not an admissible value for j we have a contradiction. \qed
Question 4.5. From Theorem 4.4 the Fricke-Macbeath curve \mathcal{F} is an \mathbb{F}_{71}^2-maximal curve which is not a Galois subcover of the Hermitian curve \mathcal{H}_{72} over \mathbb{F}_{71^2}. It is still an open problem to determine whether \mathcal{F} is covered by \mathcal{H}_{72} or not. A positive answer would provide with the first known example of a maximal curve which is covered but not Galois covered by the Hermitian curve over the finite field of maximality. Otherwise, \mathcal{F} would be the first known example of an \mathbb{F}_{p^2}-maximal curve which is not covered by the Hermitian curve over a field of order p^{2h} with $h \not\equiv 0 \pmod{3}$.

Acknowledgement

The authors would like to thank Massimo Giulietti for numerous discussions on the topic which led to significant improvements. The third author would like to thank Università degli Studi di Perugia, for the financial support received during his academic visit in January-February 2017; he also was partially supported by CNPq-Brazil (grant 310623/2017-0).

References

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, via Vanvitelli 1, 06123 Perugia, Italy

E-mail address: daniele.bartoli@unipg.it

Dipartimento di Matematica Informatica ed Economia, Università degli Studi della Basilicata, Campus di Macchia Romana, viale dell'Ateneo Lucano 10, 85100 Potenza, Italy

E-mail address: maria.montanucci@unibas.it

IMECC/UNICAMP, R. Sérgio Buarque de Holanda 651, Cidade Universitária “Zeferrino Vaz”, 13083-859, Campinas, SP-Brazil

E-mail address: ftorres@ime.unicamp.br