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1 Introduction

Scatter-diagram smoothing involves drawing a smooth curve on a scatter diagram to

summarize a relationship, in a fashion that makes few assumptions initially about the

form or strength of the relationship. It is related to (and is a special case of) non-

parametric regression, in which the objective is to represent the relationship between

a response variable and one or more predictor variables, again in way that makes

few assumptions about the form of the relationship. In other words, in contrast to

”standard” linear regression analysis, no assumption is made that the relationship is

represented by a straight line (although one could certainly think of a straight line as

a special case of nonparametric regression).

Another way of looking at scatter diagram smoothing is as a way of depicting the

”local” relationship between a response variable and a predictor variable over parts

of their ranges, which may differ from a ”global” relationship determined using the

whole data set. (And again, the idea of ”local” as opposed to ”global” relationships

has an obvious geographical analogy.)
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2 Loess

A bivariate smoother is a function or procedure for drawing a smooth curve through

a scatter diagram. Like linear regression (in which the ”curve” is a straight line),

the smooth curve is drawn in such a way as to have some desirable properties. In

general, the properties are that the curve indeed be smooth, and that locally, the

curve minimize the variance of the residuals or prediction error.

The bivariate smoother used most frequently in practice is known as a ”lowess”

or ”loess” curve. The acronyms are meant to represent the notion of locally weighted

regression–a curve- or function-fitting technique that provides a generally smooth

curve, the value of which at a particular location along the x-axis is determined only

by the points in that vicinity. The method consequently makes no assumptions about

the form of the relationship, and allows the form to be discovered using the data itself.

(The difference between the two acronyms or names is mostly superficial, but there is

an actual difference in R–there are two different functions, lowess() and loess(), which

will be explained below.)

2.1 Robust Loess

Cleveland (1979) proposed the algorithm LOWESS, locally weighted scatter plot

smoothing, as an outlier resistant method based on local polynomial fits. The basic

idea is to start with a local polynomial (a k-NN type fitting) least squares fit and

then to use robust methods to obtain the final fit. Specifically, one can first fit a

polynomial regression in a neighborhood of x, that is, find β ∈ Rp+1 which minimize

n−1

n∑
i=1

Wki(x)
(
yi −

p∑
j=0

βjx
j
)2

, (2.1)

where Wki(x) denote k-NN weights. Compute the residuals ε̂i and the scale parameter

σ̂ = median(ε̂i). Define robustness weights δi = K(ε̂i/6σ̂), where K(u) = (15/16)(1−

u)2, if |u| ≤ 1 and K(u) = 0, if otherwise. Then, fit a polynomial regression as in (2.1)
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but with weights (δiWki(x)). Cleveland suggests that p = 1 provides good balance

between computational ease and the need for flexibility to reproduce patterns in the

data. The smoothing parameter can be determined by cross-validation.

2.2 Lowess/Loess in R

Note that there are actually two versions of the lowess or loess scatter-diagram

smoothing approach implemented in R. The former (lowess) was implemented first,

while the latter (loess) is more flexible and powerful. Example of lowess:

lowess(x, y, f=2/3, iter=3, delta=.01*diff(range(x))). Where we sup-

pose the following model

y = g(x) + ε

f: the smoother span. This gives the proportion of points in the plot

which influence the smooth at each value. Larger values give more smoothness.

iter: the number of robustifying iterations which should be performed.

Using smaller values of ‘iter’ will make ‘lowess’ run faster.

delta: values of ‘x’ which lie within ‘delta’ of each other replaced

by a single value in the output from ‘lowess’.

data(cars)

plot(cars, main = "lowess(cars)")

lines(lowess(cars), col = 2)

lines(lowess(cars, f=.2), col = 3)

legend(5, 120, c(paste("f = ", c("2/3", ".2"))), lty = 1, col = 2:3)

Observe that, The newer loess() function uses a formula to specify the response

(and in its application as a scatter-diagram smoother) a single predictor variable. The

loess() function creates an object that contains the results, and the predict() function

retrieves the fitted values. These can then be plotted along with the response variable.

However, the points must be plotted in increasing order of the predictor variable in

order for the lines() function to draw the line in an appropriate fashion this is done
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by using the results of the order() function applied to the predictor variable values

and the explicit subscripting (in square brackets [ ]) to arrange the observations in

ascending order.

Example of Loess: data(cars)

cars.lo <- loess(dist speed, cars)

predict(cars.lo, data.frame(speed = seq(5, 30, 1)), se = TRUE)

# to allow extrapolation

lines(speed,cars.lo$fit)

cars.lo1<-loess(dist speed, cars,span=1.5)

lines(speed,cars.lo$fit,col=2)

cars.lo2 <- loess(dist speed, cars, control = loess.control(surface =

"direct"))

predict(cars.lo2, data.frame(speed = seq(5, 30, 1)), se = TRUE)

lines(speed,cars.lo2$fit)
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