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For optical beams, transmitted by a right angle prism, the Goos-Hänchen shift can never be seen as a
pure effect. Indeed, the lateral displacement, caused by the total internal reflection, will always be

accompanied by angular deviations generated by the transmission through the incoming and outgoing
interfaces. This combined effect can be analysed by using the Taylor expansion of the Fresnel coefficients.
The analytic expression found for the transmitted beam allows to determine the beam parameters, the
incidence angles, and the axial distance for which lateral displacements are compensated by angular
deviations. Proposals to optimize experimental implementations are also briefly discussed.
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I. IntroductionI. Introduction

The interaction between optical beams and dielectric blocks
has always been the subject of great interest, leading, in
the past, to formulate the well-known laws of geometric op-
tics [1–3]. In the last century, new phenomena like Goos-
Hänchen shift [4,5,7–9] and angular deviations [10] showed
that the optical path predicted by geometric optics only rep-
resents an approximation to the real one. Theoretical studies
have been undertaken in order to understand in which situ-
ations lateral displacements and angular deviations can be
amplified and then observed in the laboratory. The omni-
presence of these phenomena [11–15] also stimulated their
application in technology [16–18].
In 1947, Goos and Hänchen [4] were the first researchers

to experimentally observe the lateral displacement of op-
tical beams transmitted, after many internal reflections, by
a dielectric block. The experimental result, today known as
Goos-Hänchen shift, was, one year later, explained by Art-
man [5]. Artmann’s observation was that multiple plane
waves, contributing to the final electromagnetic field, have
rapidly varying phases that cancel each other out. Total in-
ternal reflection is indeed characterized by a complex Fresnel
coefficient. The stationary condition gives the main term
of the phase which is responsible for the additional phase
generating the lateral shift in the optical path [6]. The di-
vergence in the Artmann formula was later removed [7,8].
Recently, for incidence in the critical region, an analytical for-

mula, based on the modified Bessel functions, was proposed
in [9] and, some years later, experimentally confirmed [19].
In 1973, Ra, Bertoni and Felsen [10] introduced the phe-

nomenon of angular deviation. This phenomenon appears
both for transmission (in this case, we have deviations from
the refraction angle predicted by the Snell law) and partial
reflection (in this case, we find deviations from the reflected
angle predicted by the reflection law). This phenomenon is
due, essentially, to the symmetry breaking of the Gaussian dis-
tribution caused by the Fresnel coefficients modulating the
Gaussian distribution in the integral form of the transmitted
and reflected beams.
Angular deviations and Goos-Hänchen sfhits have been

investigated in great detail in different fields, not only in op-
tics [11–13,16,18] but also in seismic data analysis [14,15].
In the critical region, lateral displacements and angular de-
viations generate oscillatory phenomena, theoretically pre-
dicted in [20] and, recently, experimentally confirmed in
[21,22].
In this article, we analyse the combined effect of the an-

gular deviations (caused by the transmission through the
incoming and outgoing triangular prism interfaces) and the
Goos-Hänchen shift (caused by the total internal reflection).
The study is done outside the critical region. This choice
is justified because, outside the critical region, we have the
possibility to find an analytic expression for the transmitted
beam by using the Taylor expansion of the Fresnel coefficients
and, consequently, determine the beam parameters, the in-
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Figure 1.: Geometrical layout of the dielectric
prism. In (a), a laser beam moves, along the z-
axis, from the source, S , to the air/dielectric in-
terface, 1 , forming an incidence angle, θ, with the
normal to the first interface, z̃. The beam trans-
mitted through the first interface then moves in the
dielectric prism towards the second (dielectric/air)
interface, 2 , forming an angle ψ with the normal to
the first interface, z̃, and an angle ϕ with the normal
to the second interface, z∗. These angles are related
to the incidence one by the Snell law, sin θ = n sinψ
and n sinϕ = sinφ, where ϕ = ψ+π/4. Once reflec-
ted by the second interface, the optical beam moves
to the third (dielectric/air) interface, 3 . Due to
the geometry of the prism, the upper transmitted
beam forms an angle θ with respect to the normal
to the third interface, x̃. The upper transmitted
beam is thus detected at the camera C . In (b), we
find the coordinates systems of the incident and up-
per transmitted beams, and of the prism interfaces.

cidence angles, and the axial distance for which angular devi-
ations compensate Goos-Hänchen lateral displacements. The
integral form of the beam transmitted through a dielectric
prism, see Fig. 1(a), is characterised by three Fresnel coef-
ficients: the ones corresponding to the transmission at the
left (air/dielectric) and right (dielectric/air) interfaces and
the one corresponding to the total internal reflection at the
lower (dielectric/air) interface. The upper transmitted beam
is, thus, the perfect candidate to study the combined effect
of angular deviations and Goos-Hänchen shifts. In the next
section, we fix our notation, introduce the Fresnel coefficients,
and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically
solved, so we use the Taylor expansion of the Fresnel coeffi-
cients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we
obtain a cubic equation which allows to determine the peak
position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of
pure angular deviations, this implies incidence angle below
the critical one. In this paper we analyse incidence greater
than the critical one. This allows to investigating both angular
deviations and Goss-Hänchen displacements (only present
in the case of total internal reflection). In this incidence re-
gion, it is thus possible to study when these optical effect
offset each other. Discussions, conclusions, and proposals for
experimental implementations appear in the final sections.

II. The incident beamII. The incident beam

Let us introduce the integral form of the incident beam

E
[inc]

(r) = E0

∫
dk

x
dk

y
G(k

x
, k

y
) e ik · r , (1)

where

G
(
k

x
, k

y

)
=

w2
0

4π
exp

[
−
(
k

2

x
+ k

2

y

) w2
0

4

]
is the Gaussian wave number distribution, and

k · r = kxx+ kyy + kzz

is the optical phase with |k| = 2π/λ. By using the paraxial
approximation,

kz ≈ |k| − ( k
2

x
+ k

2

y
) / 2 |k| ,

the integral in Eq. (1) can analytically be solved leading to
the following closed expression for the incident Gaussian
beam

E
[inc]

(r) =
E0 e

i |k| z

1 + i z/zR
exp

[
− x

2

+ y
2

w2
0 (1 + i z/zR)

]
, (2)

where z
R

= πw
2

0/λ is the Rayleigh axial range and w0 the
beam waist. The beam intensity is then given by

I
[inc]

(r) = I0
w

2

0

w2(z)
exp

[
− 2

x
2

+ y
2

w2(z)

]
, (3)

where I0 = E0

2 and w(z) = w0

√
1 + (z/z

R
)2 .
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Figure 2.: Critical incidence region. Numerical
lateral displacements of the maximum of the up-
per transmitted beam plotted as function of the
incidence angle, δ = ( θ − θc) |k|w0 for different
axial positions both for magnetic (a) and electric (b)
waves. The angular deviations and GH shifts refer
to an optical Gaussian beam with w0 = 100µm,
λ = 532 nm and the dielectric block to a BK7 prism,
n = 1.5195. The black zone represents the critical
incidence region in which our analytical approxim-
ation fails due to the presence of an infinity in the
Taylor expansion. In the incidence region I, δ < 4,
and III ,δ > 4, our analytical approximations show
an excellent agreement with the numerical calcula-
tions. In region I, it is clear the axial dependence of
the displacement caused by angular deviations and
in region III the lateral displacement due to the GH
shift. In region III, we do not see any angular de-
viations because the dominant contribution comes
from the Fresnel coefficients of the internal reflec-
tion.

III. The optical phaseIII. The optical phase
In the integral form of optical beams, an important role is
played by the optical phase responsible for the optical path of
the beam. In order to calculate the optical phase of the (up-
per) transmitted beam, it is useful to introduce the coordinate
system corresponding to the incident and transmitted beams
and the ones corresponding to the left, right, and lower inter-
faces, see Fig.1(b),(

x̃
z̃

)
=M (−θ )

(
x
z

)
=M

( π
4

)(
x∗
z∗

)
=M ( θ )

(
ztra
x

tra

)
,

where M(θ) = { { cos θ , − sin θ } , { sin θ , cos θ } } repres-
ents the anti-clockwise rotation matrix. The optical phase
corresponding to the beam propagating from the source to
the first interface is given by

S → 1 : k
x
x + k

z
z = kx̃ x̃ + kz̃ z̃ ,

where (
kx̃
kz̃

)
= M (−θ )

(
kx

k
z

)
.

After transmission through the left (air/dielectric) interface,
the beammoves, into the dielectric, towards the lower (dielec-
tric/air) interface with the following optical phase

1 → 2 : qx̃ x̃ + qz̃ z̃ = qx∗ x∗ + qz∗ z∗ ,

where (
qx̃
qz̃

)
= M

( π
4

)(
qx∗
qz∗

)
,

with

qx̃ = kx̃ and qz̃ =

√
n

2 |k|2 − q2

x̃ − k
2

y
.

The beam is then reflected back andmoves between the lower
and right interface with an optical phase given by

2 → 3 : qx∗ x∗ − qz∗ z∗ = qx̃ z̃ + qz̃ x̃ .

Finally, in the integral form of the (upper) transmitted beam
appears, as expected, the following optical phase

3 → C : kx̃ z̃ + kz̃ x̃ = k
x
x

tra
+ k

z
z
tra

.

IV. The upper transmitted beamIV. The upper transmitted beam
Once obtained the optical phase of the upper transmitted
beam, we can write its integral form:

E
[tra]

pol
(rtra) = E0

∫
dkx dky G

[tra]

pol
(kx , ky ) e

ik · rtra , (4)

where rtra = (xtra , y, ztra ) and

G
[tra]

pol
(k

x
, k

y
) = T

pol
(k

x
, k

y
)G(k

x
, k

y
) ,
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Figure 3.: GH shift and angular deviations as
function of the incidence angle for different axial
distances. The displacement of the maximum of the
upper transmitted beam is plotted for transverse
magnetic and electric waves, respectively in (a) and
(b). In (a), at Brewster incidence, θB = 56.65o,
the axial dependence is removed. In (b), for Brew-
ster incidence angular deviations compensate the
GH shift at an axial distance of 14.14 cm, white
dashed line. The coloured zones refer to different
axial distances. In (a) and (b), we also find the in-
cidence angle for which these optical effects offset
each other.

with

T
pol

(k
x
, k

y
) =

4 kz̃qz̃
(a

pol
kz̃ + qz̃/apol

)2
qz∗/apol

− a
pol
kz̃

qz∗/apol
+ a

pol
kz∗

×

exp{ i [ qz∗d
√
2 + ( qz̃ − kz̃ ) ( l − d ) ] } ,

(atm = n and ate = 1). The additional phase appearing in the
Fresnel coefficients is due to the fact that the discontinuities
at the air/dielectric and dielectric/air interfaces are located
at different points. This phase is responsible for the optical
path predicted by geometric optics.

In order to integrate Eq.(4), we use the first order Taylor
expansion of the transmission coefficient, i.e.

T
pol

(k
x
, k

x
) = T

pol
(0, 0)

[
1 + β

pol

k
x

|k|

]
×

exp[− i k
x
x

Snell
] , (5)

where

T
pol

(0, 0) =
4n cos θ cosψ

(a
pol

cos θ + n cosψ/a
pol

)2
×

n cosϕ/a
pol
− a

pol
cosφ

n cosϕ/a
pol

+ a
pol

cosφ
×

exp{ i [n cosϕd
√
2 + (n cosψ − cos θ )( l − d ) |k| ] }

and

x
Snell

= ( tanψ cos θ − sin θ ) l + ( cos θ + sin θ ) d .

The β
pol

factor in (5) can be expressed in terms of 3 addends,
respectively, corresponding to the transmission through the
left (air/dielectric) interface, 1 , to the reflection by the lower
(dielectric/air) interface, 2 , and, finally, to the transmission
through the right (dielectric/air) interface, 3 ,

β
pol

= β
[1]

pol
+ β

[2]

pol
+ β

[3]

pol
,

with

β
[1]

te
= tanψ − tan θ ,

β
[2]

te
= 2 tanφ ϕ′ ,

β
[3]

te
= ( tan θ − tanψ ) ψ′ ,

β
[1]

tm
= ( tanψ − tan θ/ n2 ) / ( sin2 ψ − cos2 θ ) ,

β
[2]

tm
= 2 tanφ ϕ′ / ( sin2 φ − cos2 ϕ ) ,

β
[3]

tm
= ( tan θ − n2 tanψ ) ψ′ / ( sin2 θ − cos2 ψ ) ,

where the different angles which appear in the previous for-
mulas are related to the incidence angle θ by the Snell law,
i.e. sin θ = n sinψ and n sinϕ = sinφ, the angle ϕ to ψ by
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Figure 4.: GH shift and angular deviations as
function of the axial distance for different incid-
ence angles. In (a) and (b), the white dashed line
refer to the Brewster incidence. For transverse mag-
netic waves no axial dependence is seen. For electric
waves, angular deviations compensate the GH shift
at an axial distance of 14.14 cm. The coloured zones
refer to different incidence angles. In (a) and (b), we
also find the axial distance for which these optical
effects offset each other.

the geometry of the prism, i.e. ϕ = ψ + π/4. Finally, we have
ϕ′ = ψ′ = cos θ/n cosψ.

By using the Taylor expansion (5), we can analytically solve
the integral of Eq. (4). The kx term in the exponential will be
responsible for the shift in the x

tra
coordinate, i.e.

x̃
tra

= x
tra
− x

Snell
,

centring the Gaussian beam in the optical path predicted by
the Snell and reflection laws. The constant term in (5), i.e.
T

pol
(0, 0), leads to the same integration done for the incident,

consequently we obtain the following contribution

T
pol

(0, 0) E
[inc]

( r̃tra) .

The linear term, i.e. T
pol

(0, 0)β
pol
k

x
/ |k|, is responsible for

the breaking of the Gaussian symmetry for incidence below
the critical one and for the Goos-Hänchen shift in the case of
total internal reflection. Observing that kx in the integrand
of (4) can be replaced by− i ∂/∂x̃

tra
, we obtain the following

contribution

− i T
pol

(0, 0)
β

pol

|k|
∂ E

[inc]

( r̃
tra
)

∂x̃ tra

.

The analytical expression, for the upper transmitted beam, is
then given by

E
[tra]

pol
( r̃

tra
) =

[
1 + 2 i

β
pol
x̃

tra

|k|w2

0 ( 1 + i z
tra
/z

R
)

]
×

T
pol

(0, 0) E
[inc]

( r̃
tra
) .

Finally, after algebraic manipulations, we find

E
[tra]

pol
( r̃

tra
) =

(
1 + i

β
pol
x̃

tra
+ z

tra

zR

)
×

T
pol

(0, 0)

1 + i z
tra
/z

R

E
[inc]

( r̃
tra
) . (6)

In order to check the validity of our analytical approximation,
let us briefly analyse what happens near the critical incidence
region. The critical angle is found when n sinϕc = 1, this
implies a critical incidence at

θc = arcsin
[ (

1 −
√
n2 − 1

)
/
√
2
]
. (7)

In Fig. 2, we plot the the (upper) transmitted beam shift of
the maxima with respect to the path predicted by geometric
optics. This is done by numerically integrating Eq. (4). The
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plots of the maxima, as a function of δ = (θ − θc) |k|w0, refer
to a Gaussian laser with w0 = 100µm, λ = 532 nm and
n = 1.5195 (BK7 prism). We can distinguish three regions.

Region I, before the critical region, shows an axial depend-
ence of the shift and this is caused by the modulation of the
Gaussian wave number function generated by the real Fres-
nel coefficients related to the transmission through the first
and third interface and the partial internal reflection. These
phenomena represent angular deviations to the Snell and
reflection law of geometric optics, For a detailed discussion
of pure angular deviations and its amplifications near the
Brewster incidence, we refer the reader to the article cited
in [23].
Region II determines the critical region, in such a region

the infinity in β[2]

pol
coefficients required a more complicated

technique of integration to obtain the analytical expression
for the upper transmitted beam [9] and new oscillatory phe-
nomena appear [20,22].

In region III, for incidence greater than the critical one but
near enough to amplify the GH shift with respect to angular
deviations, this axial depends breaks down. Region III will
be the region of interest for our discussion because in this
region, far enough of the critical region, angular deviations
and GH shifts can offset each other. The analysis in this
region complements the one presented in ref. [23]. In region
III, we have

tanφ = n sinϕ/ i
√
n2 sin2 ϕ− 1 ,

and consequently the intensity of the upper transmitted beam
can be written in the following form

I
[tra]

pol
(r̃

tra
) =

w
2

0

w2 (z
tra
)
T

2

pol
(0 , 0) I

[inc]

(r̃
tra
)×(1 + γ

[2]

pol
x̃

tra

z
R

)2

+

(
z
tra

+ β
[1+3]

pol
x̃

tra

z
R

)2
 , (8)

where

γ
[2]

te
= 2

n sinϕ√
n2 sin2 ϕ− 1

cos θ / n cosψ ,

γ
[2]

tm
= 2

n sinϕ√
n2 sin2 ϕ− 1

cos θ / n cosψ

n2 sin
2
ϕ − cos2 ϕ

.

and
β

[1+3]

pol
= β

[1]

pol
+ β

[3]

pol
.

V. GH shifts and angular deviationsV. GH shifts and angular deviations

The analytical expression found for the intensity of the upper
transmitted beam, see Eq. (8), allows to calculate its max-
imum and consequently to obtain the lateral displacement
with respect to the path predicted by geometric optics due
to the GH shifts and angular deviations. The intensity x̃ tra

derivative leads to the following cubic equation(
x̃

tra

w0

)3

+ a
pol

(
x̃

tra

w0

)2

+ b
pol

x̃
tra

w0

= c
pol

, (9)

where

a
pol

= 2
γ

[2]

pol
z
R
+ β

[1+3]

pol
z
tra(

γ[2]

pol

2

+ β[1+3]

pol

2
)
w0

,

b
pol

=
w

2

(z)

w2

0

 z
2

R(
γ[2]

pol

2

+ β[1+3]

pol

2
)
w2

0

− 1

2

 ,
c
pol

=
w

2

(z)

w2

0

γ
[2]

pol
zR + β

[1+3]

pol
ztra

2
(
γ[2]

pol

2

+ β[1+3]

pol

2
)
w0

.

This equation allows to calculate and compare the lateral
displacements in region III. When the GH shifts dominate no
axial dependence can be seen. When the angular deviations
become comparable with GH shifts an axial dependence is
seen in the lateral displacements.

Eq. (9) can be reduced to a linear equation by observing
that x̃ tra � w0 and that b

pol
� a

pol
for axial distance ztra �

z
2

R
/w0. The lateral displacement of the maximum is then

given by

x̃
[max]

tra
= c

pol
w0 / bpol

≈
γ

[2]

pol
+ β

[1+3]

pol
ztra / zR

|k| , (10)

where the axial independent term, proportional to λ, rep-
resents the pure GH shift [4, 5] and the axial dependent the
angular deviations due to the Fresnel transmission modula-
tion of the Gaussian wave number distribution.

Near the critical region,

θ = θc + δ / |k|w0 [ δ > 4 ],

we have

n2 sin2 ϕ − 1 ≈ 2n cosϕc ϕ
′
c δ / |k|w0 .

In the example analysed in this paper, i.e. λ = 532 nm and
w0 = 100µm, δ > 4 implies and incidence angle greater than
θc + 0.2

o . Observing that

β
[1+3]

pol
� γ

[2]

pol
∝
√
|k|w0 ,

and using the approximated expression for the γ factors, we
obtain

x̃
[max]

tra
=

σ
pol

n

√
2 cos θc

δ cosϕc cosψc

w0

|k| , (11)

with {σte , σtm } = { 1 , n2 }. Clearly the axial dependence
has been removed and this agrees with the numerical cal-
culation shown in Fig. 2, see region III at the right of the
black zone. In this region, Eq. (11) also contains the well
known

√
|k|w0 amplification for the GH shift, for details see

refs. [9, 24]. The σ factor is, finally, responsible for a further
amplification of n2 for the transverse magnetic wave, see the
scale in Fig. 2 (a) and (b).

For transverse magnetic waves, the pure Goos-Hänchen
shift is found for incidence at the Brewster angle, i.e.

β
[1+3]

tm
= 0 ⇒ θ = θ

B
= arctann ,
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see Fig. 3(a). For a given axial distance, from Eq. (10), we
can obtain the incidence angle for which the GH shift is
compensated by the angular deviation. For example, for
a camera positioned at an axial distance of

4, 8, 12, 16, 20 cm ,

for the optical beam considered in this paper, we find incid-
ence angles of

69.86o, 66.65o, 64.89o, 63.72o, 62.87o

for transverse magnetic waves, see Fig. 3(a), and of

68.36o, 62.37o, 58.37o, 55.32o, 52.82o

for transverse electric waves, see Fig. 3(b). Eq. (10) can be
also used to find, for a given incidence angle, the axial dis-
tance for which GH lateral displacements and angular devi-
ations offset each other,

z
tra

= −
γ

[2]

pol

β[1+3]

pol

z
R
. (12)

For example, for incidence angles of

45o, 50o, 55o, 60o, 65o, 70o ,

the compensation happens, for transverse electric waves, at
the axial distances

38.10, 25.45, 16.47, 10.22, 5.99, 3.23 cm ,

see Fig. 4(b). For transverse magnetic waves, the compensa-
tion happens for incidence angles greater than the Brewster
angle, θ

B
= 56.65o. For incidence angle of

60o, 65o, 70o ,

angular deviations compensate the GH shifts at the axial
distances

50.68, 11.68, 3.88 cm ,

see Fig. 4(a).

VI. DiscussionsVI. Discussions
Lateral displacements of optical beams with respect to the
path predicted by geometric optics stimulated, in the last
decades, both theoretical and experimental investigations.
Two types of displacements characterize the transmission
through dielectric blocks. The first, known as GH shift, is
due to the phase of the total internal reflection coefficient
and it is independent of the axial position of the detector.
The second one is due to the modulation of the transmission
coefficients on the wave number distribution of the incident
beam and it is dependent on the axial position of the detector.
In region III, far enough to the critical region II, GH

shifts are proportional to the wavelength of the optical
beam. When the axial distance approaches the Rayleigh
axial range also the angular deviations become proportional
to the wavelength and this open the doors to the possibil-
ity to cancel the lateral displacements induced by the total
reflection coefficient. This phenomenon is also known as
composite GH effect [26,29]. In region I, where the partial

internal reflection implies the only presence of angular devi-
ations [30] an amplification effect happens near the internal
Brewster angle, for details see ref. [23]. Region II represents
the region around the critical angle and an amplification by
a factor

√
|k|w0, see Eq. (11), is found in proximity of the

critical incidence [9,24]. Such a region is also characterized
by oscillatory phenomena [20–22] and the analytical analyt-
ical formula, obtained in this paper for the intensity of upper
transmitted beam, i.e Eq. (8), fails to reproduce the numerical
data. It is important to observe here that region II represents
a very small region of the incidence spectrum covering a
range of 8/|k|w0 around the critical angle. This means, for a
beam waist of 100 µm and a wavelength of 532 nm, a range
of 0.4o around the critical angle. Consequently, the analytical
formula presented in this paper is in excellent agreement
with the numerical data for all the incidence angles greater
than θc + 4 / |k|w0 or in the case of the beam parameters
used in our simulations for incidence angles greater than
θc + 0.4o.

VII. Conclusions and outlooksVII. Conclusions and outlooks
In this paper, by using the Taylor expansion of the Fresnel
coefficients of the transmission through the first and third
interfaces and of the total reflection by the second interface,
we have given an analytical expression for the upper trans-
mitted beam intensity, see Eq. (8). From this analytical ap-
proximation it is immediate to obtain the cubic equation to
calculate the intensity maximum. The cubic equation (9) can
then be further reduced to a linear equation (10) from which
we can obtain the incidence angles and axial distances for
which GH shifts and angular deviations offset each other. For
transverse magnetic waves this compensation effect is only
possible for incidence greater than the Brewster incidence,
θ
B
= arctan[n].
The analytical expression of the upper transmitted beam

given in this paper, see Eq. (6), is also useful in view of ex-
perimental implementations done by using the weak meas-
urements technique [26, 31]. This technique is based on
the interference between transverse electric and magnetic
waves [27, 28]. Consequently the analytical expression for
the upper transmitted beam is important to find the main
maximum of the combined optical beam which is a function
of the different lateral displacements and angular deviations
of transverse electric and magnetic waves. For the incidence
angles and axial distances for which these optical effects off-
set each other, the weak measurement breaks down because
the double peak phenomenon is no longer present. In a forth-
coming paper, we shall revise the weak measurements for
transmission through dielectric blocks in view of the analyt-
ical expression given in this article.
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