
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 212.189.140.5

This content was downloaded on 16/02/2015 at 08:11

Please note that terms and conditions apply.

Axial dependence of optical weak measurements in the critical region

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Opt. 17 035608

(http://iopscience.iop.org/2040-8986/17/3/035608)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/2040-8986/17/3
http://iopscience.iop.org/2040-8986
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Axial dependence of optical weak
measurements in the critical region

M P Araújo1, Stefano De Leo2,3 and Gabriel G Maia1

1 Institute of Physics ‘Gleb Wataghin’, State University of Campinas, Brazil
2 Department of Applied Mathematics, State University of Campinas, Brazil

E-mail: mparaujo@ifi.unicamp.br, deleo@ime.unicamp.br and ggm11@ifi.unicamp.br

Received 21 October 2014, revised 10 December 2014
Accepted for publication 22 December 2014
Published 13 February 2015

Abstract
The interference between optical beams of different polarizations plays a fundamental role in
reproducing the optical analog of the electron spin weak measurement. The extraordinary point
in optical weak measurements is represented by the possibility of estimating with great accuracy
the Goos–Hänchen (GH) shift by measuring the distance between the peaks of the outgoing
beams for two opposite rotation angles of the polarizers located before and after the dielectric
block. Starting from the numerical calculation of the GH shift, which clearly shows a frequency
crossover for incidence near the critical angle, we present a detailed study of the interference
between s and p polarized waves in the critical region. This makes it possible to determine in
which conditions axial deformations can be avoided and the GH curves reproduced. In view of a
possible experimental implementation, we give the expected weak measurement curves for
Gaussian lasers of different beam waist sizes propagating through borosilicate (BK7) and fused
silica dielectric blocks.

Keywords: weak measurements, laser, Goos–Hänchen

(Some figures may appear in colour only in the online journal)

1. Introduction

The Goos–Hänchen [GH] shift [1–3] surely is one of the
most intriguing research subjects to appear in literature in
recent decades [4–12]. This shift, which is probably one of
the clearest manifestations of the evanescent nature of
light, represents an additional contribution to the geome-
trical optical path predicted by the Snell law [13, 14]. This
quantum effect is still the subject of careful and broad
investigation and continues to stimulate new discussion
[15–22]. Of particular interest to the study presented in this
paper is the GH shift frequency crossover [23]. For inci-
dence angles θ0 far from the critical angle, θc, it is well
known that the GH shift is proportional to the wavelength,
λ, of the optical beam [2, 4, 23, 24]. For incidence at cri-
tical angle the GH shift is amplified by a factor λw0 ,
where w0 is the beam waist. This amplification has been
recently obtained analytically by using the stationary phase
method [25, 26] and then confirmed by numerical

calculations [23]. This frequency crossover will play a
fundamental role in deriving the expected experimental
curves for optical weak measurements in the critical (angle)
region.

In a recent interesting experimental paper [27], by using
the optical analog [28–30] of the electron spin weak mea-
surement [31], the behavior of the GH shift curve has been
reproduced in the region in which the incidence angles are far
enough from the critical angle to permit some important
approximations.

It is important to observe that in the optical analog of the
electron spin weak measurement, polarized light plays the
role of the spin 1

2
particles and the laser beam replaces the

coherent electron beam. Because the displacement produced
by the optical system is a lateral shift rather than an angular
deflection, as happens in the presence of the Stern–Gerlach
magnet [31], we must consider spatial distributions instead of
momentum distributions. Even though the physics is far from
the same, with sufficient attention, an optical version of the
electron spin weak measurement experiment can be con-
structed [28].
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A unified linear algebra approach to dielectric reflection
that recently appeared in the literature [29, 30] bases the
analogy between weak values and optical beam shifts of
polarized waves on the expectation value of the Artman
operator. Such an operator is shown to be Hermitian for total
internal reflection and non-Hermitian in the critical region
[29]. For the mathematical details, we refer the reader to
reference [30]. In our approach, we discuss the optical analog
of the electron spin weak measurement, by analyzing, as done
theoretically in reference [28] and experimentally in reference
[27], the distance between the peaks of the outgoing optical
beam. We recall that in the critical region, due to the breaking
of symmetry [22], the peak and mean values do not neces-
sarily coincide. In view of these comments, our discussion
can be seen as a complementary work to the one which
appears in reference [29, 30].

To make this introduction and the objective of our ana-
lysis clearer to the reader, we recall that in the optical analog
of the quantum weak measurement [27, 28], the parameters
which characterize the behavior of the distance between peaks
in the experimental curves are

ϵ ϵ Δϵ α β α β= + = − +cos ( ) cos ( ), (1)0

where α and β α γ Δγ= + + +π
2 0 are the polarization

angles of the first and second polarizer (see figure 1), and

Δ = −y y y , (2)
p s

GH GH

[ ]

GH

[ ]

where y
s p

GH

[ , ]
are, respectively, the GH shifts for s and p

polarization. For small rotation angles, i.e., Δγ ≪ 1, and for
an incoming beam with an equal mixture of polarizations, i.e.,
α π= 4, we have

ϵ Δϵ γ Δγ γ Δγ
γ

+ = + ≈ +( )tan tan
cos

.0 0 0 2
0

For incidence angles far from the critical angle, the condition

Δϵ Δ λ≫ ≈y z zw( ) w( ), (3)
GH

where λ π= + ( )z zw( ) w 1 w0 0
2

2

, is easily satisfied and, as

we shall see in detail later, the distance between the peaks of
the outgoing beams for two opposite rotations in the second
polarizer, i.e., β π γ Δγ= + ± ∣ ∣

±

3

4 0 , is given by

Δ Δ Δϵ≈Y y . (4)max GH

Consequently, for polarizer rotations which satisfy the con-
straint in (3), the experimental curve of ΔY max reproduces the
GH shift curve amplified by the factor Δϵ∣ ∣1 . The GH
behavior and its amplification (far from the critical region)
were recently confirmed in the experimental investigation
presented in reference [27].

As observed at the begining of this introduction, the
frequency crossover in the critical region [23] leads to

Δ λ λ∝ ≫y zw( ) . (5)
GH

[cri]

This critical GH shift behavior stimulates investigation into
what happens for incidence angles near the critical angle,

where, due to the amplification λzw( ) , the condition in (3)
may no longer be valid. This should modify the shape of the
experimental curves, and a new formula should be introduced
to estimate the GH shift by measuring the distance between
peaks, ΔYmax. In view of a possible experimental imple-
mentation of optical weak measurements for incidence near
the critical angle, we analyze the expected experimental
curves for mixed polarized laser Gaussian beams with
λ = 633 nm and μ=w 200, 300, and 500 m0 propagating
through BK7 and fused silica dielectric blocks.

This paper is organized as follows. In section 2, we give
the transmission coefficient for the beam propagating through
the dielectric structure of figure 2 and calculate the axial
dependence of the GH shift for BK7 (figure 3) and fused
silica (figure 4) blocks. In section 3, we introduce the idea of
weak measurement in optics and analyze the effect that the
polarizer and analyzer have on the s and p polarized waves of
the outgoing beam. For critical incidence, new parameters
have to be introduced (figure 5). The analysis of the distance
between the main peaks of the outgoing beams for two

Figure 1. Experimental layout. A schematic representation of the
optical weak measurement experiment for the observation of the
transversal distance between the main peaks of the outgoing beams
for two opposite rotations, Δγ± , of the second polarizer. The
incoming beam, which, after the first polarizer α π=( 4), has an
equal mixture of s and p polarized waves, passes through the
dielectric block ( < <z z zin out); and then, passing through the

analyzer in =z z ,A loses the global Δϕ
GH

phase. Optical weak

measurements are done by changing the rotation angle in the second
polarizer (β π γ Δγ= + ± ∣ ∣3 4 0 ). The angle γ0 is fixed to obtain, for

Δγ = 0, an outgoing beam with two identical maxima centered at
± zw( ) 2 .

2

J. Opt. 17 (2015) 035608 M P Araújo et al



opposite rotation angles of the second polarizer is presented in
section 4. There a new analytical relation between the GH
shift and the distance between peaks is also introduced. In this
section, we also present the expected experimental curves for
incoming Gaussian beams with different beam waists
( μ=w 200, 300, and500 m0 ) propagating through BK7
(figure 6) and fused silica (figure 7) dielectric blocks. The
axial dependence of optical weak measurements is clear in the
plots and is one of the important results of our analysis. The
final section gives our conclusions and outlook.

2. The GH shift for BK7 and fused Silica blocks

To obtain the mathematical expression for the transmitted

beam, E
s p

out

[ , ]
, propagating in the y–z plane through the

dielectric block (see figures 1 and 2), let us first introduce the
Gaussian wave number distribution which determines the

shape of the incoming beam, E
s p

in

[ , ]
:

θ θ
π

θ θ− = − −( ) ( ) ( )g
k

k
w

2
exp w 4 . (6)0

0
0 0

2 2⎡
⎣⎢

⎤
⎦⎥

In the electric amplitude expressions the superscript notation

distinguishes between s and p polarized light. By using the
paraxial approximation ( ≳k w 100 ), the incoming electric
field, which moves from the source laser to the left side of the
dielectric block, can be represented by [13, 14]:

∫ θ θ θ

θ θ
θ θ

= −

× − −
−

=
+

−
+

π

π

−

+
( )

( )
( )

E y z E e g

i k y i k z

E e

i
z

k

y

i
z

k

( , ) d

exp
2

1 2
w

exp
w 2

. (7)

ik z

ik z

0
2

2

0

0
0

0

0
2

2

0
2

s p

in

[ , ]

2⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

For Gaussian lasers with a small beam waist with respect
to the dimensions of the dielectric block, we can use the
step technique of quantum mechanics [32–36] and give the
Fresnel coefficients in terms of angles θ, ψ, and φ (see
figure 2).

θ ψ φ ψ π= = +nsin sin and
4

.

The transmission coefficient which characterizes the outgoing

Figure 2. Geometric path and Goos–Hänchen shift. Schematic
diagram of the dielectric block analyzed in this paper. (a) The
geometric path predicted by the Snell law, equation (11). For φ φ> c,
an additional phase, coming from the Fresnel reflection coefficients
at the down and up interfaces, must be considered. This phase is
responsible for the addition shift, equation (13), known as the Goos–
Hänchen shift and shown in (b).

Figure 3. The GH shift curves for BK7 blocks. The numerical data
for the transversal Δy

GH
shift of laser Gaussian beams passing

through a BK7 dielectric block are plotted, in the axial range
⩽ ⩽z10 cm 15 cm for different beam waists: (a) μ=w 200 m0 , (b)

μ300 m, and (c) μ500 m. The crossover frequency at the critical
angle is clear from the plots, and the axial dependence is an
additional phenomenon to be considered in optical weak
measurements.

3
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beam is obtained by the transmission through the left/right
sides and the reflection between the up/down sides of the
dielectric block. After simple algebraic manipulations (for
more details see reference [37]), we find

θ ψ θ

θ ψ

φ φ

φ φ
ϕ

=
+

×
− −

+ −

T
n

n

n n

n n
i

( )
4 cos cos

( cos cos )

cos 1 sin

cos 1 sin
exp (8)

2 2

2 2

s[ ]

2

2

Snell

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ⎡⎣ ⎤⎦

and

θ ψ θ

θ ψ

φ φ

φ φ
ϕ

=
+

×
− −

+ −

T
n

n

n n

n n
i

( )
4 cos cos

( cos cos )

cos 1 sin

cos 1 sin
exp , (9)

2 2

2 2

p[ ]

2

2

Snell

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ⎡⎣ ⎤⎦

where

ϕ φ ψ θ= + −k n AB n
AD

2 cos ( cos cos )
2

.
Snell

⎡
⎣⎢

⎤
⎦⎥

For φ <n sin 1, the outgoing beam,

∫ θ θ θ θ

θ θ
θ θ

= −

× − −
−

π

π

−

+
( )

( )
( )

E y z E e T g

i k y i k z

( , ) d ( )

exp
2

, (10)

ik z
0

2

2

0

0
0

s p s p

out

[ , ] [ , ]

2⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

is centered at

ϕ

θ

θ ψ

ψ θ

= −
∂

∂

= +

+ −

( )

( )

y
k

AB

AD

cos tan 1

tan tan
2

. (11)

0 0

0 0

Snell

Snell

0

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡⎣
⎤
⎦⎥

This represents the well-known geometrical shift predicted by
the Snell law in ray optics.

For φ >n sin 1 an additional phase comes from the
internal reflection coefficients in (8) and (9):

ϕ ϕ
φ
φ

φ
φ

= −
−

−

{ } n

n

n n

, 4 arctan
sin 1

cos
,

arctan
sin 1

cos
(12)

2 2

2 2

s p

GH

[ ]

GH

[ ]

⎧
⎨⎪
⎩⎪

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎫
⎬⎪
⎭⎪

and a new shift (the well known GH shift) must be con-
sidered. The numerical data for the propagation through BK7
(n = 1.515) and fused silica (n = 1.457) are plotted in figures 3
and 4. The data clearly show the amplification for incidence
in the critical region, and they are in excellent agreement with
the analytical prediction for incidence far from the critical
angle,

ϕ

θ

ϕ

θ

θ φ

ψ φ

φ φ

= −
∂

∂

∂

∂

=
−

×
−

{ }y y
k k

k n

n

, ,

4 cos sin

cos sin 1

1,
1

sin cos
, (13)

0 0

0
2 2

0

2
0

2
0

s p

s p

GH

[ ]

GH

[ ] GH

[ ]

GH

[ ]

0

2

⎪
⎪

⎪
⎪

⎡

⎣
⎢⎢⎢

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

⎤

⎦
⎥⎥⎥

⎧
⎨
⎩

⎫
⎬
⎭

where the w0 dependence disappears [2, 4, 23, 24]. The plots
of the GH shift for BK7 and fused silica clearly show an axial
dependence. This axial dependence, which has been recently
investigated and recognized as a possible source of angular
deviations in the optical path predicted by the Snell law [37],
must be seen in the optical weak measurement curves as well.
Understanding how this axial dependence modifies the optical
weak measurement curves in the critical region is one of the
main objectives of our study.

Figure 4. The GH shift curves for fused silica blocks. The
numerical data for the transversal Δy

GH
shift of laser Gaussian beams

passing through a fused dielectric block are plotted in the axial range
⩽ ⩽z10 cm 15 cm for different beam waists: (a) μ=w 200 m0 , (b)

μ300 m, and (c) μ500 m. The crossover frequency at the critical
angle is clear from the plots, and the axial dependence is an
additional phenomenon to be considered in optical weak
measurements.
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3. Weak measurements in optical experiments

On the basis of the results presented in the preceding section,
we can approximate the s and p polarized outgoing beams as
follows:

≈
+

E y z
E e

i
z

k

T( , )
1 2

w

ik z
0

0
2

0
s p s p

out

[ , ] [ , ]

ϕ ϕ

× −
− −

+

+ +

( )

( )

y y y

i
z

k

i

exp
w 2

, (14)

2

0
2

s p

s p

Snell GH

[ , ]

Snell,0 GH,0

[ , ]

⎡

⎣

⎢⎢⎢⎢
⎤
⎦⎥

where for y
s p

GH

[ , ]
, which represents the only entry for which we

do not have a full analytical expression, we must to use the
numerical data plotted in figures 3 and 4.

Figure 5. Angular dependence of τ , Δϕ
GH
, and γ0. The angular dependence of τ (ratio between the modulus of the amplitudes for s and p

polarized light) and Δϕ
GH

(global phase difference between s and p polarized waves) are plotted in (a) for BK7 and (c) for fused silica blocks.

The fact that in the critical region τ τ+4 (1 )
2
is practically equal to 1 makes it is very useful to simplify the expression for the outgoing

beam; see equation (19). The numerical data for γ0 make it possible to calculate the second polarizer angle (β π γ= +3 40 0), for which we

find an outgoing beam with two identical maxima centered at ± zw( ).
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The intensity of the outgoing beam coming out from the
dielectric block and moving toward the analyzer
( < <z z zout A in figure 1) is given by

α α

τ α Δϕ

< <

= +

∝ −
− −

+

+ −
− −

( )I y z z z

E y z E y z

y y y

z
i

y y y

z

,

sin ( , ) cos ( , )

tan exp
w( )

exp
w( )

, (15)

s p

s

p

out out A

out

[ ]

out

[ ]
2

Snell GH

[ ]
2

GH

Snell GH

[ ]
2

2

⎡

⎣

⎢⎢⎢⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦

⎥⎥⎥⎥
⎡

⎣

⎢⎢⎢⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦

⎥⎥⎥⎥

where τ = ∣ ∣T T0 0
s p[ ] [ ]

and Δϕ ϕ ϕ= −
s p

GH GH,0

[ ]

GH,0

[ ]
. The θ0

dependence of τ and Δϕ
GH

is plotted in figures 5(a) (BK7) and

(b) (fused silica). After removing the phase difference between
the s and p polarized light by the analyzer located at =z z A and
combining s and p polarization by the second polarizer located
at = βz z , the outgoing beam intensity becomes

τ α β

Δ

Δ

>

∝ −
+

+ −
−

β( )I Y z z

Y
y

z

Y
y

z

,

tan tan exp 2
w( )

exp 2
w( )

, (16)

2

out

GH

2

GH

2

⎡

⎣
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⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎤

⎦

⎥⎥⎥⎥⎥

Figure 6.Optical weak measurements curves for BK7 blocks. The
expected curves for the distance between the main peaks of the
beams coming out from a BK7 dielectric block and passing through
the second polarizer for two opposite rotations, Δϵ Δγ γ∣ ∣ = ∣ ∣ cos2

0,
are plotted in the axial range ⩽ ⩽z10 cm 15 cm for different beam
waists, (a) μ=w 200 m0 , (b) μ300 m, and (c) μ500 m. From the
plots, it is clear that to improve the crossover frequency and to
reduce the axial dependence, we have to work with μ⩾w 500 m0 .
Note that, also working with μ=w 500 m0 , the curve amplification

Δϵ∣ ∣1 , valid for incidence far from the critical region, is lost when
the incidence angle approaches the critical angle.

Figure 7. Optical weak measurement curves for fused silica
blocks. The expected curves for the distance between the main peaks
of the beams coming out from a fused silica dielectric block and
passing through the second polarizer for two opposite rotations,
Δϵ Δγ γ∣ ∣ = ∣ ∣ cos2

0, are plotted in the axial range
⩽ ⩽z10 cm 15 cm for different beam waists, (a) μ=w 200 m0 , (b)

μ300 m, and (c) μ500 m. From the plots, it is clear that to improve
the crossover frequency and to reduce the axial dependence, we have
to work with μ⩾w 500 m0 . Note that, also working with

μ=w 500 m0 , the curve amplification Δϵ∣ ∣1 , valid for incidence far
from the critical region, is lost when the incidence angle approaches
the critical angle.
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where

Δ= − −
+

= −Y y y
y y

y y y
2

and .

s p

p s

Snell

GH

[ ]

GH

[ ]

GH GH

[ ]

GH

[ ]

Observing that

α β ϵ
ϵ

ϵ
ϵ ϵ

Δϵ= −
+

≈
−
+

+
+( )

tan tan
1

1

1

1

2

1
,0

0
0

2

the choice of an appropriate rotation γ0 makes it possible to fix
the parameter ϵ γ=( tan )0 0 to

ϵ τ
τ

ϵ
ϵ τ

= −
+

⇒
−
+

= −1

1

1

1

1
. (17)0

0

0

The angular dependence of γ0 is plotted in figures 5(b) (BK7)
and (d) (fused silica) for incidence angles in the critical
region. This choice enables rewriting of the outgoing intensity
in terms of the parameters τ and Δϵ as follows:

Δϵ

τ
τ

Δϵ

Δ

Δ

τ
τ

Δϵ
Δ

∝ + − −
+

+ −
−

≈ + + −

I Y
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z
Y

Y

z
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2
1 exp 2
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2
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w ( )
. (18)

2 2

out

2
GH

2

GH

2
2

2
GH

2
2

⎪
⎪

⎪
⎪
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⎝
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Finally, noting that, in the critical region, τ τ+ ≈(1 ) 4
2

(see
figures 5(b)–(d), we can get a further simplification of the
outgoing beam intensity:

Δϵ Δϵ
Δ

∝ + −I Y
y

z
Y

Y

z
( , )

w ( )
exp

2

w ( )
. (19)

2 2out

GH

2
2⎡

⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

4. Behavior of peaks in the critical angle region

The starting point in optical weak measurement experiments
is to set the angles of the first and second polarizers to

α β π π γ= +{ }{ },
4

,
3

4
.0 0 0

For this choice (Δϵ = 0) we find that the outgoing intensity,

∝ −I Y Y
Y

z
( , 0) exp

2

w ( )
, (20)

2out

2
2⎡

⎣
⎢⎢

⎤
⎦
⎥⎥

is a symmetric function with two peaks centered at

= ±
±

Y zw( ) 2
max

and a minimum centered at =Y 0min . By
changing the angle of the second polarizer from β0 to
β Δγ+ ,0 we break the symmetry. In terms of

Δϵ Δγ γ= cos2
0, we find

Δϵ Δϵ
Δ

= −Y
y

z( ) w ( ) (21)2
min

GH

and

Δϵ

Δϵ Δϵ Δ

Δ
=

− ± +

±
Y

y z

y
z

( )

( ) 2 w ( )

2
w ( ). (22)

2

2

max

2

GH

2

GH

⎡⎣ ⎤⎦

It is clear that for positive Δϵ (counterclockwise rotation Δγ
around γ0), Δϵ∣ ∣+Y ( )

max
represents the position of the main peak

of the outgoing beam. For negative Δϵ, the main peak is
instead centered at Δϵ−∣ ∣−Y ( )

max
. By using equation (22), the

distance between these peaks is given by

Δ Δϵ Δϵ

Δϵ Δϵ Δ

Δ

= − −

=
− + +

+ −
Y Y Y

y z

y
z

( ) ( )

2 w ( )
w ( ). (23)

2

2

max max max

2

GH

2

GH

⎡⎣ ⎤⎦

In the region Δϵ Δ⩽ ∣ ∣ ⩽ y z0 w( )
GH

, we find

Δ⩽ ⩽ −( )z Y z2 w( ) 3 1 w( ) . (24)max

This clearly shows that by increasing the value of Δϵ∣ ∣, we
reduce the distance between the peaks. For
Δϵ Δ∣ ∣ ≫ y zw( ),

GH

Δ Δ Δϵ≈Y y . (25)max GH

For incidence angles far from the critical region, because the
GH shift is proportional to the wavelength of the laser beam,
the condition

Δ λ Δϵ≈ ≪
y

z zw( ) w( )
GH

can be easily satisfied. Thus, far from the critical region, the
experimental curves of ΔY max reproduce the GH curves
amplified by the factor Δϵ∣ ∣1 .

In the critical region, the frequency crossover and the
axial dependence, shown in figures 3 (BK7) and 4 (fused
silica), work against the validity of the constraint
Δϵ Δ∣ ∣ ≫ y zw( )

GH
. This means that in this region, the

experimental curves of ΔY max do not necessarily reproduce the
GH curves. The expected experimental curves of the distance
between peaks are plotted for different values of Δϵ∣ ∣ in
figures 6 (bk7) 7 (fused silica). The plots confirm that, at
critical incidence, the amplification does not reproduce the

Δϵ∣ ∣1 proportionality. The axial dependence is removed by
increasing the beam waist w0.

For experimental use, it is convenient to express the GH
shift, Δy

GH
, in terms of the experimental quantity ΔY max . From

7

J. Opt. 17 (2015) 035608 M P Araújo et al



equation (23), we obtain

Δ Δϵ

Δ
Δ=

−
y

z

z Y
Y

2 w ( )

2 w ( )
. (26)

2

2GH

max

2 max

The error in the GH shift is given by

σ Δ

Δ

σ Δϵ
Δϵ

Δ

Δ

σ Δ

Δ

Δ

Δ

σ

= +
+

−

+
−

( )

( )

y

y

z Y

z Y

Y

Y

Y

z Y

z

z

( )

2 w ( )

2 w ( )

2

2 w ( )

[w( )]
w( )

.

2

2

2

GH

GH

2

max

2

max

2

max

max

2

max

2

max

2

2

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

Recalling that for Δϵ = 0, the distance between the peaks
gives direct information about the beam waist,
Δ =Y z2 w( )max , we can use

σ Δ σ=( )Y z[w( )]max

in the preceding error formula and obtain

σ Δ

Δ

σ Δϵ
Δϵ

Δ

Δ

Δ

Δ

σ Δ

Δ

=

+
+

−

× +
+

( )

( )

y

y

z Y

z Y

Y z

z Y

Y

Y

( ) 2w ( )

2w ( )

1
2 w( )

2w ( )

.

2

2

2

GH

GH

2

max

2

max

2

2

max

3

max

2

2

max

max

2

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎧
⎨⎪

⎩⎪
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎫
⎬⎪

⎭⎪
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

In the region Δ⩽ ⩽z Y zw( ) 2 w( )max , we find

Δ

Δ

Δ

Δ
⩽

+

−
+

+
⩽ ∞

z Y

z Y

Y z

z Y
13

2w ( )

2 w ( )
1

2 w( )

2 w ( )
.

2

2 2

max

2

max

2

2

max

3

max

2

2⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎧
⎨⎪

⎩⎪
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎫
⎬⎪

⎭⎪

To avoid great standard deviations, we must work in the
region Δ ⩽Y zw( )max , where

σ Δϵ
Δϵ

σ Δ

Δ

σ Δ

Δ

+

⩽
( )

( )Y

Y

y

y

( )
2

max

max

2

GH

GH

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

σ Δϵ
Δϵ

σ Δ

Δ
⩽ +

( )Y

Y
( )

13 . (27)

2

max

max

2

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

From the aforementioned condition on ΔY max , by using
equation (26) we obtain

Δϵ
Δ

⩾
y

z
,

2w( )
. (28)

GH

The choice of Δϵ Δ∣ ∣ = y z2 w( )min GH
in the second polarizer

thus is an additional experimental constraint to avoid great
standard deviations.

5. Conclusions and outlook

The possibility of using the weak measurement of the electron
spin component [31] in optics [28, 29] has recently stimulated
an experiment [27] based on the interference between dif-
ferent polarizations, in which the GH shift curves are repro-
duced in the region of the validity of the standard analytic
formula (13). Nevertheless, the analytical shift (13) diverges
when the incidence angle approaches the critical angle. In a
recent paper [23], this divergence was removed and an ana-
lytic formula, valid for ≪z k2 w0

2, was proposed for the GH
shift at the critical angle:

π

≈

× − + −

− + −

{ }

{ }

y y

k z

k

n n

n n
n

,

w( )

2 2
2 2 1

1 1
1, . (29)

2 2

2

2

s p

GH

[ ]

GH

[ ]

cri

2

This closed formula, which is in excellent agreement with the
numerical data plotted in figures 3(c) and 4(c), clearly shows
the crossover frequency at the critical angle. The amplifica-
tion k zw( ) at the critical angle suggested studying with
more care the behavior of the peaks in the beam in optical
weak measurements for incidence within the critical region.
Indeed, in such a region, due to this amplification, the con-
dition Δϵ Δ∣ ∣ ≫ y zw( )

GH
and the consequent proportionality

among the experimental curves of the distance between peaks
and the GH curves are no longer valid; see, for example,
figures 6(c) and 7(c).

In our study, we have also found an axial dependence in
optical weal measurements. This axial dependence can affect
the experimental curves and, for small second polarizer
rotations and small values of the beam waist, produces a
practically flat region; see the plots in figures 6(a) and 7(a) for
Δϵ∣ ∣ = 0.01. To minimize the axial dependence, we have to
work with a laser beam with μ⩾w 500 m0 . It is important to
observe here that, also for μ=w 500 m0 , the curve amplifi-
cation Δϵ∣ ∣1 can be reproduced far from the critical
region only.
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In view of a possible experimental analysis of the study
presented in this article, we have also estimated in which
region we reach the better standard deviation for Δy

GH
in the

critical region. By using the second polarizer angle constraint,
equation (28), and the analytical formula for the GH shift at
the critical angle, equation (29), we find

Δϵ π⩾ − + −

− + −

−n n

n n

n

k z2

2 2 1

1 1

1

w( )
. (30)

2 2

2

2

2

This implies that for laser beams with μ=w 500 m0 and a
camera at ⩽z 50 cm, Δϵ∣ ∣ ≈ 0.015min for both BK7 and fused
silica dielectric blocks.

We conclude this work by observing that our analysis
does not take into account cumulative dissipations and
imperfections in the dielectric prism (such as the mis-
alignment of its surfaces) and beam reshaping caused by
interference. A phenomenological way to include mis-
alignment effects is given in reference [37]. An interesting
discussion of the origin of negative and positive lateral
shifts in a dielectric slab is investigated in reference [38]
from the viewpoint of the interference between multiple
light beams.
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