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I. INTRODUCTION

Since the experimental discovery of the mass of the
neutrinos [1] a legitimate question has been posed. Is there
a possibility of a bound state between weakly interacting
particles such as an electron and a neutrino? If the particles
involved where nonrelativistic the answer would be imme-
diate and negative. From numerical studies of the
Schrödinger equation [2] the existence of a bound state
produced by a Yukawa (attractive) coupling

VYðrÞ ¼ �g2eff
4�

exp½��r�
r

; (1)

has been found to be

g2eff
4�

� 0:84
�

m
; (2)

where � is the exchanged particle mass and m is the
reduced mass. A related derivation is the use of a surrogate
to the Yukawa potential, the Hulthen potential, VH, which
approximates the Yukawa potential for small r,

VHðrÞ ¼ � g2eff
4�

2�

exp½2�r� � 1
: (3)

Our choice of VH is made so that the terms r�1 and r0 in a
series development about r ¼ 0 are identical to the
Yukawa potential. The Schrödinger equation with the
Hulthen potential can be solved analytically [3] and the
existence of a bound state yields a similar result to that
above, i.e.

g2eff
4�

� �

m
: (4)

High mass exchanges would necessitate extremely strong
couplings, obviously unphysical for weak interactions
where �=m> 1011 [4]. However, if one considers the
relativistic corrections to the Schrödinger equation one
encounters the well-known Darwin term [5]

1

8m
r2VðrÞ; (5)

which for a Yukawa potential VYðrÞ yields
1

8m2
½�2VYðrÞ þ 4�g2eff�ðrÞ�: (6)

The first term above can be summed with the potential
contribution to yield an overall amplification factor�

1þ �2

8m2

�
VYðrÞ: (7)

This is what has been called Yukawa coupling amplifica-
tion [6]. Here the effect must be small to comply with the
very nature of correction terms. However, if one where so
bold as to assume this amplification for high �=m one
would invert the resonance condition (4), i.e.

g2eff
4�

� 8m

�
; (8)

which allows bound states even for the weak interactions.
The problem, theoretically, now shifts to determining the
resonance condition for high mass exchanges in a more
rigorous manner. A method has been introduced and ap-
plied in field theory [7,8]. It consists of confronting the
lowest ladder contributions (box and crossed) to the scat-
tering amplitude at rest, with the tree diagram contribution
(also in the rest frame). The requirement that the sum of the
former be equal or greater than the tree contribution re-
produces exactly the Hulthen condition for low �=m
within a scalar-scalar model with scalar particle ex-
changes. In this paper it will also be shown to be also valid
in the case of fermion-fermion (f-f) interacting with scalar
exchanges. More recently [9], the scalar model calculation
was extended to the high �=m limit (in either limit, ap-
proximations or numerical calculations are needed). The
high �=m result was even more restrictive than the
Hulthen inequality (4), i.e. it required even larger g2eff ,
specifically

g2eff
2�2

� �2

m1m2

=

�
ln

�2

m1m2

þ 1þ �2

1� �2
ln�

�
; (9)

with � ¼ m1=m2. However, it was noted that since the
Klein-Gordon equation lacks a Darwin term correction
there is no reason to expect Yukawa amplification. In this
paper, we essentially repeat our low and high �=m limits
for f-f interacting via scalar exchange. This case does
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contain a Darwin term identical to that of the well known
electrostatic case although some additional corrections
also exist.

In the next section, we illustrate the model and reduce
the first order ladder contributions to a single integral in
djkj ¼ dk. In Sec. III, we perform the small�=m limit and
reproduce the Hulthen inequality (4). In Sec. IV, we per-
form the high �=m limit. We propose a phenomenological

expression for the k integral based upon numerical simu-
lations. In Sec. V, we draw our conclusions.

II. THE FERMIONIC MODEL

In the center of mass system and for forward scattering
(see Fig. 1), the Feynman rules [4] for the amplitudes of the
box (h) and crossed box (� ) diagram yield

MhðpÞ ¼ ig21g
2
2

Z d4k

ð2�Þ4
�uðrÞ1 ð�pÞf½E1ðpÞ þ E2ðpÞ��0 � k6 þm1guðr

0Þ
1 ð�pÞ �uðsÞ2 ðpÞðk6 þm2Þuðs

0Þ
2 ðpÞ

Dh
1 ðpÞD2ðpÞD2

0ðpÞ
(10)

M�ðpÞ ¼ ig21g
2
2

Z d4k

ð2�Þ4
�uðrÞ1 ð�pÞfk6 þm1 þ ½E1ðpÞ � E2ðpÞ��0guðr

0Þ
1 ð�pÞ �uðsÞ2 ðpÞðk6 þm2Þuðs

0Þ
2 ðpÞ

D�
1 ðpÞD2ðpÞD2

0ðpÞ

FIG. 1. The fourth order box and crossed box diagrams in a ferminonic field model evaluated in the center of mass frame for
scattering in the forward direction.
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with

uðsÞ1;2ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1;2ðqÞ þm1;2

q �s
��q

E1;2ðqÞþm1;2
�s

 !
ðs ¼ 1; 2Þ;

�1 ¼ 1
0

� �
; �2 ¼ 0

1

� �
:

The denominators factors are,

Dh
1 ðpÞ ¼ E2

1ðkÞ � ½k0 � E1ðpÞ � E2ðpÞ�2 � i�;

D�
1 ðpÞ ¼ E2

1ðkÞ � ½k0 þ E1ðpÞ � E2ðpÞ�2 � i�;

D2ðpÞ ¼ E2
2ðkÞ � k20 � i�;

D0ðpÞ ¼ E2
0ðk� pÞ � ½k0 � E2ðpÞ�2 � i�;

(11)

where

E1;2ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

1;2

q
; E0ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ�2

q
:

At threshold (p � 0),

Mhð0Þ ¼ ið2g1g2 ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p Þ2�rr0�ss0
Z d4k

ð2�Þ4

� ðk0 þm2Þð2m1 þm2 � k0Þ
Dh

1 ð0ÞD2ð0ÞD2
0ð0Þ

;

M�ð0Þ ¼ ið2g1g2 ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p Þ2�rr0�ss0
Z d4k

ð2�Þ4

� ðk0 þ 2m1 �m2Þðk0 þm2Þ
D�

1 ð0ÞD2ð0ÞD2
0ð0Þ

:

(12)

The poles in the lower half complex k0 plane are at

kh0;1 ¼ E1ðkÞ þm1 þm2; k�0;1 ¼ E1ðkÞ �m1 þm2;

k0;2 ¼ E2ðkÞ; k0;0 ¼ E0ðkÞ þm2:

The box and crossed box diagrams give the following
fourth-order contribution to the invariant scattering ampli-
tude

Mhð0Þ þM�ð0Þ ¼ ð2g1g2 ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p Þ2
ð2�Þ3 �rr0�ss0

�
Z

d3k
X2
s¼0

½Rh
s ðkÞ þ R�

s ðkÞ�

¼
�
g1g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1m2

p
�

�
2
�rr0�ss0

�
Z 1

0
dkk2½RhðkÞ þ R�ðkÞ�: (13)

Below by Es we intend EsðkÞ and by W and � we intend
m1 þm2 and m2 �m1 respectively. A simple calculation
shows that the explicit formulas for the residues in the
k0-plane for the box and the crossed box diagram are
respectively

Rh
1 ðkÞ ¼ ½2m2ðm1 � E1Þ � k2�=f4WE1ðE1 þm1Þ½�2 � 2m1ðE1 þm1Þ�2g;

Rh
2 ðkÞ ¼ ½k2 � 2m1ðE2 þm2Þ�=f4WE2ðE2 �m2Þ½�2 þ 2m2ðE2 �m2Þ�2g;

Rh
0 ðkÞ ¼ ½2ðE0 þ 2m2Þð2m1 � E0Þ�½ðE0 �m1ÞBCþ ðE0 þm2ÞAhC� AhB�=½A2

hB
2C3� þ 2ðm1 �m2 � E0Þ=½AhBC

2�;
(14)

with Ah ¼ 2E0m1 ��2, B ¼ �2E0m2 ��2 and C ¼ 2E0, and

R�
1 ¼ ½k2 þ 2m2ðE1 þm1Þ�=f4�E1ðE1 �m1Þ½�2 þ 2m1ðE1 �m1Þ�2g;

R�
2 ¼ �½k2 þ 2m1ðE2 þm2Þ�=f4�E2ðE2 �m2Þ½�2 þ 2m2ðE2 �m2Þ�2g;

R�
0 ¼ 2ðE0 þ 2m1ÞðE0 þ 2m2Þ½ðE0 þm1ÞBCþ ðE0 þm2ÞA�C� A�B�=½A2�B2C3� þ 2ðE0 þWÞ=½A�BC2�;

(15)

with A� ¼ �ð2E0m1 þ�2Þ. It is to be noted, and can be
used in calculation, that the residues of the box and crossed
residues are related by

R�
1;2;0 ¼ �Rh

1;2;0½m1 ! �m1�: (16)

However, care must be used when applying this symmetry

because for example
ffiffiffiffiffiffi
m2

1

q
þm1 ¼ 2m1, while, under

m1 ! �m1,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�m1Þ2

p �m1 ¼ 0 � �2m1. The rule of
thumb is that square root factors should be left as such
before applying such symmetries.

Before passing to the actual calculation of the small and
large �=m results, we must discuss two important techni-
cal questions. The first is the question of the convergence
of the k integrals. The second is the feature of real pole
contributions in some of these residue integrals.

A. Convergence

Individually, the leading residues terms yield divergent
integrals, both linear and logarithmic. This was not the case
for the scalar model [8]. However, when summed, the

FERMION-FERMION BOUND STATE CONDITION FOR . . . PHYSICAL REVIEW D 78, 025006 (2008)

025006-3



divergences cancel, specifically in the limit k ! 1,

16m2
1m

2
2k

2Rh
1 ¼�m2

2

W
�ð�2þ2m1m2�3m2

1Þm2
2

Wm1k
þO

�
1

k2

�
;

16m2
1m

2
2k

2Rh
2 ¼þm2

1

W
�ð�2þ2m1m2�3m2

2Þm2
1

Wm2k
þO

�
1

k2

�
;

16m2
1m

2
2k

2Rh
0 ¼þ�

þð�2þ2m1m2Þðm3
1þm3

2Þ=W�3m2
1m

2
2

m1m2k

þO

�
1

k2

�
:

Consequently,

16m2
1m

2
2k

2Rh ¼ �m2
1m

2
2

2k3
þ O

�
1

k5

�
and

16m2
1m

2
2k

2R� ¼ þm2
1m

2
2

2k3
þ O

�
1

k5

�
:

Both these results lead to convergent integrals, however,
when summed, the leading terms again cancel and finally

16m2
1m

2
2k

2ðRh þ R�Þ ¼ � 63m3
1m

3
2

4k5
þ O

�
1

k7

�
; (17)

which is a highly convergent integrand. Notice that this
leading order result is symmetric underm1 $ m2. We have
not specified which mass, m1 or m2, is the lower mass and
the Feynman diagrams are clearly symmetric under the
interchange m1 $ m2. Any final results must therefore be
symmetric under this symmetry. This feature may be used
as a test of all of the following results.

B. Poles

By explicit observation the quadratic term in the de-
nominator of Rh

1 vanishes at �2 ¼ 2m1ðE1 þm1Þ. Poles
also occur in the expression for Rh

0 when Ah ¼ 0, i.e. at
�2 ¼ 2m1E0. Both of these conditions correspond to the
same value of k, which we indicate by kp,

k2p ¼
�
�2

2m1

�
2 ��2 (18)

No other residues have poles. Thus, Rh
1 and Rh

0 exhibit

double and single poles on the real axis at kp. However,

when summed all pole contributions cancel. This is dem-
onstrated in some detail in the Appendix. The cancellation
of the double pole is simple to show. That of the single pole
which receives a contribution from Rh

1 and four contribu-
tions from Rh

0 , one from each term in the last line of

Eq. (14), is more cumbersome to see. However, it must
be proved since it would otherwise dominate the large
�=m calculation, and radically change our conclusions.

III. THE EXCHANGE OF SMALL MASS SCALARS

For incoming fermions with mass m1 and m2 interacting
by the exchange of a scalar with mass � � m1;2, R

h and

R� contribute to the invariant scattering amplitude only for
value of k � m1;2 (indeed of the order of �). In this small

� limit, we may use the approximation

E1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

1;2

q
� m1;2 þ k2

2m1;2

:

We note, as an aside that for small� ( � m1;2) there are no

poles on the real axis. Now it is easy to show that

Rh
1 =R

h
2 ¼ O½ð�=mÞ8� � 1:

Whence in the rest of this section Rh
1 will be neglected.

The other residue contributions yield

k2Rh
2 � � 2m1m2

W

1

E4
0

þ 1

2W

k2

E4
0

� m1

m2W

k4

E6
0

;

k2R�
2 � � 2m1m2

�

1

E4
0

� 1

2�

k2

E4
0

� m1

m2�

k4

E6
0

;

k2R�
1 � þ 2m1m2

�

1

E4
0

þ 1

2�

k2

E4
0

þ m2

m1�

k4

E6
0

;

k2Rh
0 � þ 3

4

k2

E5
0

� �

2m1m2

k2

E4
0

þ �2�

2m1m2

k2

E6
0

;

k2R�
0 � � 3

4

k2

E5
0

� W

2m1m2

k2

E4
0

þ �2W

2m1m2

k2

E6
0

:

Thus,

k2½RhðkÞ þ R�ðkÞ� � �2m
1

E4
0

þ
�
1

2W
� 1

m1

�
k2

E4
0

þ
�
1

W
þ 1

m1

�
k4

E6
0

þ�2

m1

k2

E6
0

; (19)

and, by making use of the elementary integrals

4�3

�

Z 1

0

dk

E4
0

¼ 4�

�

Z 1

0

k2dk

E4
0

¼ 16�

3�

Z 1

0

k4dk

E6
0

¼ 16�3

�

Z 1

0

k2dk

E4
0

¼ 1;

we find that

Mh þM� � 2m1m2

�
g1g2
�

�
2
�
��

2

m

�3
þ 5�

16

1

W�

�
:

(20)

Comparing now this fourth-order total scattering ampli-
tude,

Mh þM� � � g21g
2
2

�

m2
1m

2
2

W�3

�
1� 5

8

�2

m1m2

�
; (21)

with the one boson exchange amplitude (tree diagram)
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� 4m1m2

g1g2
�2

; (22)

we find that the fourth-order amplitude is greater or com-
parable to the second-order amplitude when

g1g2
4�

� �

m

�
1þ 5

8

�2

m1m2

�
; (23)

which, to the leading order, reproduces exactly the Hulthen
inequality, where g2eff ¼ g1g2. We have explicitly calcu-

lated and exhibited the correction term in the above in-
equality, and we will refer to this factor in our conclusions.

IV. THE EXCHANGE OF HIGH MASS SCALARS

The high�=m limit is more difficult to treat and we rely
upon numerical tests of the following expressions. We have
three masses in our calculation of Mh;� so if we consider
an adimensional expression, it can only be a function of
�=m1 and �=m2 or alternatively of

! ¼ �2

m1m2

and � ¼ m1

m2

:

Indeed,

��2
Z 1

0
dkk2½RhðkÞ þ R�ðkÞ� ¼ Fð!;�Þ; (24)

and this can be tested numerically. Now we try to parame-
trizeMh;� by a form derived in the scalar model case. We
write,

��2
Z 1

0
dkk2½RhðkÞ þ R�ðkÞ�

¼ 	

!

�
ln!þ 1þ �2

1� �2
ln�

�
: (25)

The value 	 ¼ 1 reproduces the scalar model result. This
phenomenological form has been tested for a wide but
limited range of ! and � values, specifically for

! ¼ 106; 107; 108 and � ¼ 2; 10; 50:

In the following table

! � Phen/Num

106 2 .995

106 10 .989

106 50 .978

107 2 1.005

107 10 1.000

107 50 .993

108 2 1.012

108 10 1.008

108 50 1.003

we give the comparison of phenomenological/numerical
(Phen/Num) results for a best fit value of 	,

	 ¼ 0:663: (26)

We see that to within a few percent the agreement is good.
We could of course improve the comparison if we included
a constant term ln
 in the brackets which could correspond
to the renormalization of the logarithmic terms. However,
we consider this an excessive fitness. The important point
is that the large�=m behavior is similar to the scalar model
result. The high � resonance inequality thus reads

g2eff
2�2

� �2

	m1m2

=

�
ln

�2

m1m2

þ 1þ �2

1� �2
ln�

�
: (27)

V. CONCLUSIONS

We have applied in this paper a field theoretic approach
to the determination of the coupling strengths needed for
the existence of a fermion-fermion bound state via scalar
boson exchanges. For low �=m, we again find the Hulthen
inequality [3,8] as seen in the scalar model. For high�=m,
we obtain an even more restrictive condition (27), a result
again similar to the scalar field model [9]. The similarity
between the scalar field model and this calculation sug-
gests that the bound state inequality condition depends
essentially upon the exchanged particles rather than the
incoming ones. This was by no means obvious since the
numerators of the residues are different in the two cases.
Indeed at first sight the fermion-fermion model seemed to
yield divergent results as a simple power count of the
k-integral suggests. We have shown in this paper that the
individual divergence contributions cancel. We have also
shown that the real pole contributions to Mh also cancel
both for the double and single poles. Again it is not clear if
this would happen with, say, vector particle exchanges and
it must be said that a contribution from a simple pole would
completely alter our high�=m results. For the existence of
a relativistic bound state such a contribution could even be
desirable.
There is however a problem with our results for small

�=m and the arguments based upon the relativistic correc-
tions to the Schrödinger equation mentioned in the intro-
duction. The Dirac equation with a scalar potential
contains a Darwin term as does the better known electro-
static case [5]. This lead us to expect, at least for small
�=m (nonrelativistic) a coupling amplification. We have
purposefully kept the Oð�2=m2Þ corrections in the small
�=m case and as can be seen in the result (23) the correc-
tions terms correspond to a coupling deamplification. The
coupling constants must be somewhat increased to com-
pensate the correction terms. This result is consistent with
the tougher large �=m inequality. We predict that the
Hulthen inequality is a lower limit inequality for any
�=m. Is this disagreement between our field theory calcu-
lation and the nonrelativistic reduced mass equation seri-
ous? This may well be a matter of opinion but some
observations are in order:
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(i) The Hulthen inequality is not exactly in agreement
with the Yukawa numeric inequality. So, we have a
formal discrepancy even neglecting the relativistic
correction terms;

(ii) The higher order Feynman diagrams cannot be pa-
rametrized by a simple Yukawa potential. However,
the Coulomb potential works admirably well for
Hydrogen like atoms except for one of the supreme
successes of field theory, the Lamb shift.
Unfortunately, we known of no direct way to derive
the potential bound state spectrum from field theory;

(iii) It must also be remembered that not all the fourth
order Feynman diagrams have been calculated.

Nevertheless, we remain troubled by this result. At the very
least, we must moderate any expectations for a weak
interaction calculation in which intermediate vector parti-
cles are exchanged. We expect the same low �=m inequal-
ity (except perhaps for the correction term) but hope for a
very different high �=m result.

Our results have one physical consequence, we predict
that weak interacting fermion-fermion (or scalar-scalar)
particles cannot produce a bound state simply by Higgs
boson exchanges [1]. It is our intention to tackle the full
weak interaction case in the near future.

APPENDIX: THE POLE CONTRIBUTIONS

In this appendix, we calculate the pole contributions of
Rh
1 and Rh

0 at

kp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�2

2m1

�
2 ��2

s
:

For convenience, we define the functions FðkÞ, GðkÞ and
HðkÞ by

k2Rh
1 ðkÞ ¼ FðkÞ; (A1)

k2Rh
0 ðkÞ ¼ GðkÞ þ X3

n¼1

HnðkÞ; (A2)

where

GðkÞ ¼ 2k2ðE0 þ 2m2Þð2m1 � E0ÞðE0 �m1Þ=ðA2
hBC

2Þ;
H1ðkÞ ¼ 2k2ðE0 þ 2m2Þð2m1 � E0ÞðE0 þm2Þ=ðAhB

2C2Þ;
H2ðkÞ ¼ �2k2ðE0 þ 2m2Þð2m1 � E0Þ=ðAhBC

3Þ;
H3ðkÞ ¼ 2k2ðm1 �m2 � E0Þ=ðAhBC

2Þ:

The first pole terms in the MacLaurin series of these
functions are

fFðkÞ; GðkÞ;HðkÞg ¼
�
Fð�2ÞðkpÞ
ðk� kpÞ2

þ Fð�1ÞðkpÞ
k� kp

;
Gð�2ÞðkpÞ
ðk� kpÞ2

þGð�1ÞðkpÞ
k� kp

;
Hð�1ÞðkpÞ
k� kp

�
þ Oð1Þ;

where Fð�2ÞðkpÞ is the coefficient of ðk� kpÞ�2 in FðkÞ and
so forth.
Now for the double pole, we find that the only two

contributions are

Fð�2ÞðkpÞ ¼ �Gð�2ÞðkpÞ ¼ ð2m2
1 ��2Þð4m1m2 þ�2Þ

16m2
1W�4

k2p;

(A3)

whence their sum cancels.
The single pole contributions can be written as

fFð�1ÞðkpÞ; Gð�1ÞðkpÞ;Hð�1ÞðkpÞg

¼ kp

32m2
1W

2�6
ffð�1Þ

p ; gð�1Þ
p ;hð�1Þ

p g; (A4)

and in Table I we list the factors in graph brackets above as
a series in even powers of �. For example,

fð�1Þ
p ¼ �2W�6 � ðm2 þ �ÞW �4

2m1

�m2W
�2

8m3
1

:

The important point is contained in the last line of Table I.
All single pole contributions also cancel. Thus, in conclu-
sion, there are no real axis poles in k2ðRh þ R�Þ.

TABLE I. The coefficients of powers of �2 in the factors fð�1Þ
p , gð�1Þ

p , and hð�1Þ
p for the

single pole contributions. These factors are defined in Eq. (A4).

�6 �4=2m1 �2=8m3
1 �0=3m5

1m2

fð�1Þ
p �2W �ðm2 þ�ÞW �m2W 0

gð�1Þ
p m1 þ 2W 2�W � 2m2

1 þ 3m1m2 2m2� �ðm1 þWÞ
hð�1Þ
p;1 �m1 2m2

1 � 3m1m2 m2ð2m1 ��Þ m2

hð�1Þ
p;2 0 �m1W ��W W

hð�1Þ
p;3 0 2m1W �W 0

Sum 0 0 0 0
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