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Flavor and chiral oscillations with Dirac wave packets
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We report about recent results on Dirac wave packets in the treatment of neutrino flavor oscillation
where the initial localization of a spinor state implies an interference between positive and negative energy
components of mass-eigenstate wave packets. A satisfactory description of fermionic particles requires the
use of the Dirac equation as evolution equation for the mass eigenstates. In this context, a new flavor
conversion formula can be obtained when the effects of chiral oscillation are taken into account. Our study
leads to the conclusion that the fermionic nature of the particles, where chiral oscillations and the
interference between positive and negative frequency components of mass-eigenstate wave packets are
implicitly assumed, modifies the standard oscillation probability. Nevertheless, for ultrarelativistic
particles and sharply peaked momentum distributions, we can analytically demonstrate that these
modifications introduce correction factors proportional to m%z/ p% which are practically undetectable

by any experimental analysis.
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L. INTRODUCTION

The Dirac formalism is useful and essential in keeping
clear many of the conceptual aspects of quantum oscilla-
tion phenomena that naturally arise in a relativistic spin
one-half particle theory. The quantum oscillation phe-
nomena has stimulated the analysis of several theoretical
approaches [1,2] on the flavor conversion formula which,
sometimes, deserve special attention because of carrying
valuable physical information. The applicability of the
standard plane-wave treatment of oscillations by resorting
to intermediate [3,4] and external [5,6] wave packet frame-
works has been extensively questioned in the last years
[1,7]. Although the standard oscillation formula [8,9] could
give the correct result when properly interpreted, the plane-
wave approach implies a perfectly well-known energy
momentum and an infinite uncertainty on the space-time
localization of the oscillating particle which leads to the
destruction of the oscillating character [10]. The intermedi-
ate wave packet approach eliminates the most controversial
points rising up with the plane-wave formalism. Wave
packets describing propagating mass eigenstates guarantee
the existence of a coherence length [10], avoid the ambig-
uous approximations in the plane-wave derivation of the
phase difference [7] and, under particular conditions of
minimal slippage, recover the oscillation probability given
by the standard plane-wave treatment [11]. Otherwise, a
common argument against the intermediate wave packet
formalism is that oscillating neutrinos are neither prepared
nor observed [1]. Some authors suggest the calculation of a
transition probability between the observable particles in-
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volved in the production and detection process in the so-
called external wave packet approach [1,5]: the oscillating
particle, described as an internal line of a Feynman dia-
gram by a relativistic mixed scalar propagator, propagates
between the source and target (external) particles repre-
sented by wave packets. Anyway, it can be demonstrated
[1] that the overlap function of the incoming and outgoing
wave packets in the external wave packet model is mathe-
matically equivalent to the wave function of the propagat-
ing mass eigenstate in the intermediate wave packet
formalism. However, the overlap function takes into ac-
count not only the properties of the source, but also of the
detector. This is unusual for a wave packet interpretation
and not satisfying for causality [1]. This point was clarified
by Giunti [5] who solves this problem by proposing an
improved version of the intermediate wave packet model
where the wave packet of the oscillating particle is explic-
itly computed with field-theoretical methods in terms of
external wave packets. In order to concentrate the discus-
sion on the Dirac equation properties that we intend to
report in this manuscript, in this preliminary investigation,
we avoid the field-theoretical methods in detriment to a
clearer treatment with intermediate wave packets which
commonly simplifies the understanding of physical aspects
going with the oscillation phenomena [7,12].

Our final aim is the investigation of how the inclusion of
chiral oscillation effects can modify the flavor conversion
probability formula which was previously obtained by
using fermionic instead of scalar particles, i.e. in treating
the time evolution of the spinorial mass-eigenstate wave
packets, we shall take into account the chiral nature of
charged weak currents and the time evolution of the chiral
operator with Dirac wave packets. To do it, we shall use the
Dirac equation as the evolution equation for the mass
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eigenstates. Before introducing the Dirac formalism, in
section II we briefly review the analytic calculations [11]
with the intermediate wave packet model for scalar parti-
cles [10]. In particular, a Gaussian wave packet is chosen
to describe the localization of the initial flavor state and to
obtain an analytical expression for the flavor conversion
probability. In section III, we shall recapitulate the Dirac
formalism [13,14] and show that a superposition of both
positive and negative frequency solutions of the Dirac
equation is often a necessary condition to correctly de-
scribe the time evolution of mass-eigenstate wave packets.
The small modifications obtained in the context of a wave
packet treatment of oscillation phenomena are (briefly)
compared with quantum field-theoretical calculations
[1,15,16]. In section IV, we notice that the use of Dirac
equation solutions allows us to observe the additional
effect of chiral oscillation already introduced by De Leo
and Rotelli [17]. As a natural extension, we show how to
couple chiral to flavor oscillations in the intermediate wave
packet framework. Finally, we give, for strictly peaked
momentum distributions and ultrarelativistic particles, an
analytic expression for the coupled flavor and chiral con-
version probability. We draw our conclusions in Section V.

II. SCALAR OSCILLATING PARTICLES

The main aspects of oscillation phenomena can be
understood by studying the two flavor problem. In addi-
tion, substantial mathematical simplifications result from
the assumption that the space dependence of wave func-
tions is one-dimensional (z-axis). Therefore, we shall use
these simplifications to calculate the oscillation probabil-
ities. In this context, the time evolution of flavor wave
packets can be described by

D(z, 1) = ¢(z, 1) cosry + P,(z, 1) sinfr,
= [¢1(z, Dcos?d + ¢,(z, 1)sin’*0]v,,
+[¢1(z, 1) — ¢(z, )] cosf sinfvg
= ¢alz ,0)v, + ¢p(z 1;0)vp, ¢))

where v, and vz are flavor eigenstates and »; and v, are
mass eigenstates. The probability of finding a flavor state
vp at the instant 7 is equal to the integrated squared
modulus of the v 4 coefficient

+o00
P(va~v,g;r)=f dzl 4z, 1: )
_ sin’[26]

{1 = SFO(»)}, 2)

where SFO(r) represents the mass-eigenstate interference
term given by

SFO (1) = Re|: fj: dzpt(z, s (z, z)}. 3)
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Let us consider mass-eigenstate wave packets given at time
t =0 by

2 \1/ 2
(2, 0) = @)' ) exp[— %} explipic) (@)

where s = 1, 2. The wave functions which describe their
time evolution are

+o0 de . .
@)= [ "5 el ~ p)exsl—iE(p, m)1 + ip.2)
&)

where
E(p.,m;) = (p? + m)'/?

and

Pi)2612
)

o(p, —p) = (277612)1/4 exp[—%_—

In order to obtain the oscillation probability, we can cal-
culate the interference term SFO(¢) by solving the follow-
ing integral

/m e o(p. ~ p)e(p. — pa)expl—IAE(p,)]

—o0 27T
- _(GAP) +oo dpz 2 _
= eXp[ g }fw s (. — Po)
X expl—iAE(p.)t], (6)

where we have changed the z-integration into a
p.-integration and introduced the quantities Ap = p; —
pnpPo=%(p1 +p) and  AE(p,) = E(p,m) —
E(p., m,) The oscillation term is bounded by the exponen-
tial function of aAp at any instant of time. Under this
condition we could never observe a pure flavor eigenstate.
Besides, oscillations are considerably suppressed if aA p >
1. A necessary condition to observe oscillations is that
alAp < 1. This constraint can also be expressed by 6p >
A p where 6 p is the momentum uncertainty of the particle.
The overlap between the momentum distributions is indeed
relevant only for 6 p > A p. Consequently, without loss of
generality, we can assume

SFO (1) = Re f ,+°O ap: @*(p. — po) exp[—iAE(p)r]t.

00 27
(N

In literature, this equation is often obtained by assuming
two mass-eigenstate wave packets described by the
“same”” momentum distribution centered around the aver-
age momentum p = p,. This simplifying hypothesis also
guarantees instantaneous creation of a pure flavor eigen-
state v, at t = 0 [7]. In fact, for ¢,(z, 0) = ¢,(z, 0) we get
from Eq. (1)
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2

$.(2,0,0) = (%)1/4 exp[— <

a2

Jeslie
and

$5(2,0,6) = 0. (8)

In order to obtain an expression for ¢;(z, t) by analyti-
cally solving the integral in Eq. (5) we first rewrite the
energy E(p,, m;) as

2 2
p: — py]?
E(pz’mi)in|:1+ ZEZ 0i|

i
= E[1 + oy(o; + 2v)]'?%, 9

where

Pz — Do

, and o;=—"——.
i i

E; = (m} + py)'/2,

The use of free Gaussian wave packets is justified in non-
relativistic quantum mechanics because the calculations
can be carried out exactly for these particular functions.
The reason lies in the fact that the frequency components
of the mass-eigenstate wave packets, E(p,, m;) = p?/2m;,
modify the momentum distribution into ‘“generalized”
Gaussian, easily integrated by well-known methods of
analysis. The term p? in E(p,, m;) is then responsible for
the variation in time of the width of the mass-eigenstate
wave packets, the so-called spreading phenomenon. In
relativistic quantum mechanics the frequency components

of the mass-eigenstate wave packets, E(p, m;) =

+/p? + m?, do not permit an immediate analytic integra-

tion. This difficulty, however, may be remedied by assum-
ing a sharply peaked momentum distribution, i.e.
(aE;))"!' ~ 0; < 1. Meanwhile, the integral in Eq. (5)
can be analytically solved only if we consider terms up
to order ¢ in the series expansion. In this case, we can
conveniently truncate the power series

2
E(pzy ml') = El|:1 + g;V; + %(1 - Vlz):| + @(0'13)

2

~ E; + pyo; + ;’Z’ag (10)

l

and get an analytic expression for the oscillation probabil-
ity. The zero-order term in the previous expansion, Ej;,
gives the standard plane-wave oscillation phase. The
first-order term, p(o;, will be responsible for the slippage
due to the different group velocities of the mass-eigenstate
wave packets and represents a linear correction to the
standard oscillation phase [7]. Finally, the second-order

m?
will give the well-known spreading effects in the time
propagation of the wave packet and will be also responsible

for a new additional phase to be computed in the final

term o?, which is a (quadratic) secondary correction
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calculation. In the case of Gaussian momentum distribu-
tions for the mass-eigenstate wave packets, these terms can
all be analytically quantified [11]. By substituting (10) in
Eq. (5) and changing the p_-integration into a
o;-integration, we obtain the explicit form of the mass-
eigenstate wave packet time evolution,

+oo do:
iz, 1) = (2ma®)/* exp[—i(E;t — poz)]] %Ei

a’E?o?
o -5
m2t
X exp[—i(pot —Ez)o; — = 0'12:|
l 1 2El

— [%2(1‘)}1/4 expl—i(E;t — poz)]

(z—vi))? |
X ——————1i0,1,2) |, 11
exp|: aIZ(t) i l( Z):| ( )
where
Am* \1/2
a;(t) = a<1 + a4El¢ t2>
and

2mit)  2mit (z — v;1)?
azE?:| a’E} (1) }

The time-dependent quantities a,(7) and 6,(z, z) contain all
the physically significant information [11] which arise
from the second-order term in the power series expansion
(10). By solving the integral (7) with the approximation (9)
and performing some mathematical manipulations, we
obtain

1
0:,(t,z) = {5 arctan[

SFO (r) = BND(z) X OSC(z), (12)
where we have factored the time-vanishing bound of the

interference term given by

2a*[1 + SP%(1)]
(13)

BND(1)=[1+SP2(;)]1/4exp[_ (Avr)? }

and the time-oscillating character of the flavor conversion
formula given by

OSC (1) = Refexp[—iAEt — iO()]}

= cos[AEt + O(1)], (14)
where
t (m? Avt
P()=—A(")=p2Y, 1
and

a’py  SP(1)
25% [1+ SP(1)]

O(r) = [% arctan[SP(¢)] — } (16)

with
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AEN27 p? _
p=1—|:3+<f> }% and E=.EE (7)

The time-dependent quantities SP(7) and O(r) carry the
second-order corrections and, consequently, the spreading
effect to the oscillation probability formula. If AE < E,
the parameter p is limited by the interval [1, —2] and it

assumes the zero value when % ~ 3. Therefore, by con-
sidering increasing values of p,, from nonrelativistic (NR)
to ultrarelativistic (UR) propagation regimes, and fixing

%, the time derivatives of Sp(z) and O(r) have their
signals inverted when g—é reaches the value % The slippage
between the mass-eigenstate wave packets is quantified by
the vanishing behavior of BND(7). In order to compare
BND(#) with the correspondent function without the
second-order corrections (without spreading),

(Av1)? i|’

242

BN Dy (?) = exp|:— (18)

we substitute SP(¢) given by the expression (14) in Eq. (13)
and we obtain the ratio

BND(¢) I R AE\27-1/4
BNDys(7) [ g <a2E2> }
p*P3(AE )
2a5E8[1 + p2(REL)2 } (19)
a [ pP (azEz) ]

X exp[

The NR limit is obtained by setting p> = 1 and py = 0 in
Eq. (18). In the same way, the UR limit is obtained by
setting p> = 4 and p, = E. In fact, the minimal influence

due to second-order corrections occurs when g—é ~ % (p=
0). Returning to the exponential term of Eq. (13), we
observe that the oscillation amplitude is more relevant
when Avt < a. It characterizes the minimal slippage be-
tween the mass-eigenstate wave packets which occur when
the complete spatial intersection between themselves starts

to diminish during the time evolution. Anyway, under

Bap(H) o 1
Brpys () :

The oscillating function OSC(¢) of the interference term
SFO(r) differs from the standard oscillating term,
cos[AEt], by the presence of the additional phase ©(r)
which is essentially a second-order correction. The mod-
ifications introduced by the additional phase O(r) are dis-
cussed in Fig. 1 [11] where we have compared the time
behavior of OSC(¢) to cos| AE¢] for different propagation
regimes. The bound effective value assumed by O(¢) is
determined by the vanishing behavior of BND(?).

To illustrate this scalar flavor oscillation behavior, we
plot both the curves representing BND(z) and O(¢) in Fig. 2
[11]. We note the phase slowly changing in the NR regime.

The modulus of the phase |®(r)| rapidly reaches its upper
2
limit when % > % and, after a certain time, it continues to

evolve approximately linearly in time. But, effectively, the
oscillations rapidly vanish. By superposing the effects of

minimal slippage conditions, we always have
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Standard
2L
pf /E =0:99
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0 3
AEt/n
FIG. 1. The time behavior of OSC(¢) compared with the stan-

dard plane-wave oscillation given by cos[AE?] for different
propagation regimes. The additional phase ©(f) changes the

oscillating character after some time of propagation. The maxi-

2
mal deviation occurs for % ~1.

BND(¢) in Fig. 2 and the oscillating character OSC(z)
expressed in Fig. 1, we immediately obtain the flavor
oscillation probability which is explicitly given by

Pscalar(Va - VB; t)
_sin’[26]
2

{1 —[1 + SPX(n)] /4

(Av1)?

x CXP[_ 2221 + SP2(1)]

}cos[AEt + @(t)]}.

(20)

Obviously, the larger is the value of aE, the smaller are the
wave packet effects.

If it was sufficiently larger to not consider the second-
order corrections expressed in Eq. (9), we could compute
the oscillation probability with the leading corrections due
to the slippage effect,

Pscalar(ya — Vg; t)

sin22[20] { L exp[_ %} cos[AEt]}, 1)

which corresponds to the same result obtained by [7]. By
assuming a UR propagation regime with ¢ = L and E; ~
Do, under minimal slippage conditions (AvL < a), the
Eq. (21) reproduces the standard plane-wave result,
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FIG. 2. The time behavior of the additional phase ©(z). The
values assumed by O(t) are effective while the interference term
does not vanish. In the upper box we can observe the behavior of
Bnp(7) which determines the limit values effectively assumed by
O(7) for each propagation regime. For relativistic regimes with

2
% > %, the function O(z) rapidly reaches its lower limit as we
can observe in the small box above. We have used aE = 10.

Pscalar(Voz — Vg; L)

~ @{1 - [1 - %}COS[AEL]}

sin’[26] Am?
i L bred |

2
= sin2[20]sin2[Am L} 22)
4po

since we have assumed aE > 1.
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II1. DIRAC FORMALISM

The results in the previous section have been obtained by
considering scalar mass eigenstates. Neutrinos are, how-
ever, fermions. The time evolution of a spin one-half
particle must be described by the Dirac equation. To in-
troduce the fermionic character in the study of quantum
oscillation phenomena, we shall use the Dirac equation as
the evolution equation for the mass eigenstates. The Eq. (1)
now becomes

W(z, 1) = (2, 1) cosOvy + (2, 1) sinfv,
= [, (2, H)c0s?8 + ,(z, 1)sin’8]v,,
+ [¢1(z, 1) — (2, 1) cosf sinfvg
= a2, 1;0)v, + Pz, 1;0)vp, (23)

where i;(z, 1) satisfies the Dirac equation for a mass m;.
The natural extension of Eq. (8) reads

Ua(2,0,0) = ¢,(z,0,0)w, (24)

where w is a constant spinor which satisfies the normal-
ization condition wiw = 1.

A. Dirac wave packets and the oscillation formula

To describe the time evolution of mass-eigenstate Dirac
wave packets, we could be inclined to superpose only
positive frequency solutions of the Dirac equation. It
seems, at first glance, a reasonable choice. However,
when the initial state has the form given in Eq. (24), it is
necessary to superpose both positive and negative fre-
quency solutions of Dirac equation. In order to clear up
this point, let us express the flavor state ¢, (z, , 8) in terms
of

e = [ explip.a] 346 () ()

o 27 i=T2
X exp[—iE(p., m;)t]

+ ds*(_pz’ mi)vs(_pz’ mi) exp[—i—iE(pz’ mi)t]}'
(25)

At time ¢t = 0 the mass-eigenstate wave functions satisfy
#1(z,0) = ¥,(z, 0) (this guarantees the instantaneous cre-
ation of a pure flavor eigenstate v, as we have appointed in
section IT). The Fourier transform of ;(z, 0) is

Z [bs(pzr mi)us(pzr mi) + ds*(_pz’ mi)vs(_pz’ ml)]
i=12

(26)

By observing that the Fourier transform of ¢ ,(z, 0, 6) is
given by ¢(p. — po) (see Eq. (8)), we immediately obtain
the Fourier transform of #,(z, 0, 9),
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Qp(pz - PO)W = Z [bs(pp mi)us(pp mi)
i=1,2

+ ds*(_pzr mi)vs(_pz’ mz)] (27)

Using the orthogonality properties of Dirac spinors, we
find [14]

b*(p, m;) = e(p, — pou*t(p,, my)w,

) ) (28)
(= p,m;) = o(p, = po)v* T (—p, m)w.

These coefficients carry important physical information.
For any initial state which has the form given in Eq. (24),
the negative frequency solution coefficient d**(—p., m;)
necessarily provides a non-null contribution to the time
evolving wave packet. This obliges us to take the complete
set of Dirac equation solutions to construct the wave
packet. Only if we consider a momentum distribution given
by a delta function (plane-wave limit) and suppose an
initial spinor w being a positive energy mass eigenstate
with momentum p,, the contribution due to the negative
frequency solutions d**(—p., m;) will be null.

Having introduced the Dirac wave packet prescription,
we are now in a position to calculate the flavor conversion
formula. The following calculations do not depend on the
gamma matrix representation. By substituting the coeffi-
cients given by Eq. (28) in Eq. (25) and using the well-
known spinor properties [14],

yOE(pzy mi) - 73[)2 + n;

Z us(sz mi)l’_ls(pz’ mi) = ZE(p m) »
rag 1

i=1,2

Z vs(_pz’ mi)l_}s(_pz’ mi)

_YE(pym) + v’p. —my

=T 2E(p., m;) '
(29)
we obtain
+o0 dp .
Pz 1) = f, 55 ¢(P: = po)explip.z]

X {cos[E(pZ, m;)t]

+ 0 3
_@ et m) e mm]}w- (30)
E(pz’ mi)

By simple mathematical manipulations, the new interfer-
ence oscillating term will be written as

0
DFOM) = [ 5% (. = pul1 = flpo e, m)]
X COS[G_ (Pz, my, m2)t] + f(pp my, m2)
X cos[€e (p,, my, my)t]}, (3D
where

(p, m)E(p,, my) — p? — mym,
2E(p,, m)E(p,, my)

E
f(pz: my, mZ) =

PHYSICAL REVIEW D 71, 076008 (2005)

and
€+(p,, my, my) = E(p, m;) = E(p,, m,).

The time-independent term f(p,, m;, m,) deserves some
comments. It has a minimum at p, = 0 and two maxima at
p. = £ /mim,. We can readily observe in Fig. 3 that it
goes rapidly to zero when p, > m,;, (ultrarelativistic
limit) as well as when py < m;, (nonrelativistic limit).
It means that when we consider a momentum distribution
sharply peaked around p, > m;, or p, << m;, the cor-
rections introduced by f(p., m;, m,) are negligible. The
maximum value of f(p,, m;, m;) is

Sfumax(py my, my) = - — S——, (32)

which vanishes in the limit m; = m,.

The effects introduced by f(p,, m, m,) are relevant
only when Am = m; > m,. Meanwhile, what is interest-
ing about the result in Eq. (31) is that it was obtained
without any assumption on the initial spinor w.
Otherwise, the initial spinor carries some fundamental
physical information about the created state. And this
could be relevant in the study of chiral oscillations [17]
where the initial state plays a fundamental role. In com-
parison with the standard treatment of neutrino oscillations
done by using scalar wave packets, where the interference
term SFO(r) is given by Eq. (7) with AE(p,) =
€_(p,, my, my), we note in DFO(¢) two additional terms.
In the first one, the standard oscillating term
cos[e_(p,, my, my)t], which arises from the interference

f(pzlmllmz)

-2 0 2
pz/mI

FIG. 3. The function f(p,, m;, m,) is plotted for different
values of the ratio between m; and m,. For a momentum
distribution sharply peaked around py >> m,, (ultrarelativistic
limit), f(p,, m;, my) does not play a significant role in the
“modified” oscillation formula. When the value of m,; tends
to the value of m,, independently of the value of p, and of the
width of the momentum distribution, the maximal value assumed
by f(p., m;, m,) tends to be negligible.
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between mass-eigenstate components of equal sign fre-
quencies, is multiplied by a new factor obtained by the
products MT(pz, ml)”(pz’ mZ)’ UT(_pz’ ml)v(_pz’ m2)
and H.c. The second one is a new oscillating term,
cos[ e, (p,, my, my)t], which comes from the interference
between mass-eigenstate components of positive and nega-
tive frequencies. The factor multiplying such an additional
oscillating term is obtained by the products
MT(PZ: ml)v(_pz: mz), UT(_pZ’ ml)u(pp m2) and H.c.
The new oscillations have very high frequencies. Such a
peculiar oscillating behavior is similar to the phenomenon
referred to as Zitterbewegung. In atomic physics, the elec-
tron exhibits this violent quantum fluctuation in the posi-
tion and becomes sensitive to an effective potential which
explains the Darwin term in the hydrogen atom [18]. We
shall see later that, at the instant of creation, such rapid
oscillations introduce a small modification in the oscilla-
tion formula.

Returning to the starting point, if we had postulated a
wave packet made up exclusively of positive frequency
plane-wave solutions, the oscillation term
cos[e, (p,, my, my)t] would have vanished. It reinforces
the argument that, in constructing Dirac wave packets,
we cannot simply forget the contributions of negative
frequency components.

B. First-order modifications to the oscillation formula

A more satisfactory interpretation of the modifications
introduced by the Dirac formalism is given when we ex-
plicitly calculate DFO(f). By considering the energy
E(p., m;) expansion up to the second-order terms in
Eq. (10), we include an analysis of spreading effects. In
this preliminary study, we are, however, interested only in
first-order corrections. Thus, we approximate the fre-
quency components by

E(p,, m;) = E; + vi(p, = po)- (33)
As a consequence of this approximation, we get

1 mymy
, my, ~_1] - 1+
f(Pz my, m) 2{ V1V2< p% )

+ V1V2|:(V% + V%)(l + m1r2;12> - 2:|
0

X

Pz — pO} (34)

Po

and
Ei(pz: ml: m2) = El x E2 + (Vl * Vz)(pz - pO) (35)

For UR particles (m; < p,), we can also use the following
expression for the central energy values (E;) and the group
velocities (v;) of the mass-eigenstate wave packets,

2

i

2
m;

m
i = po + and v, =1-— .
l 2po 2p5
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This implies

flp,, my, my) = (Am>2<1 - 2@))

2pg Do
m? + m?
6+(pzr my, m2) = 2p0|:1 + W
0
P: — Do _m%-i-m%
+ 1 . ’
Po 4ps
Am? _
ef(pz)m],mz)% m |:] _pZ p0i|’
2 Po

where (Am)? = (m, — m,)* is different from Am?> =

m? — m3 which appears in the standard oscillation phase.

Finally, by simple algebraic manipulations and after
Gaussian integrations, we find

Am?t \2 Am\?2
DFO(¢) = exp| —| ———— 1 —(—
=] () '~ Gro) |
X cos[A—m2 t} + (A—m>2A—mztsin[A—m2 t}}
2po 2po) a*pj} 2pg
2 2 2\2 2
+exp| — t—2<2 M +2m2> (Am)
2a 2p; 2po
2 + 2
X {cos[p0t<2 + M 2m2>} + 2pot
21’0

(CUDO)2

2+ 2 2_|_ 2
x (2= P20 gin| por( 2 + L2 (L
2pg 2p;

(36)

As we have already noticed, the oscillating functions going
with the second exponential function in Eq. (36) arise from
the interference between positive and negative frequency
solutions of the Dirac equation. It produces very high
frequency oscillations which is similar to the quoted phe-
nomenon of Zitterbewegung [18]. The oscillation length
which characterizes the very high frequency oscillations is
given by LyfF ~ ;—70’. Obviously, L§#¥ is much smaller

than the standard oscillation length given by ng‘f = —4["?20 .

It means that the propagating particle exhibits a violent
quantum fluctuation of its flavor quantum number around a
flavor average value which oscillates with L.
Meanwhile, except at times ¢ ~ 0, it provides a practically
null contribution to the oscillation probability. To explain
such a statement, let us suppose that an experimental
measurement takes place after a time ¢ = L for UR parti-
cles. The observability conditions impose that the propa-
gation distance L must be larger than the wave packet
localization a. Since the (second) exponential function
vanishes when L >> a, for measurable distances, the effec-
tive flavor conversion formula will not contain such very
high frequency oscillation terms, and can be written as
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PDirac(va - VB;L)

zsinz[ZH] | exo| — Am?L \2
1o () |
-G T3]
2po 2pg
Am\2 Am? . [Am?
*(3n) @3 20 )i} Gn

For distances which are restricted to the interval ¢ < L <

2V2p? .. .
Amg“ we observe the minimal slippage between the wave

packets. In this case, we could suddenly approximate the
oscillation probability to

a

Ppirac(Ve — Vﬂ;L)

=[G
m m2
LGl o

however, we reemphasize that it is not valid for 7 = L ~ 0
when the rapid oscillations are still relevant (L < a). By
comparing the result of Eq. (38) with the scalar oscillation
probability of Eq. (12), we notice a deviation of the order
(g—;’;)z that appears as an additional coefficient of the cosine

function. It is not relevant in the UR limit as we have
noticed after studying the function f(p,, my, m,).

C. A brief extension to quantum field treatment

Now we try to establish a tenuous correspondence be-
tween our results and the quantum field theory (QFT)
treatment. It was extensively demonstrated in the literature
[5,6,16] that the oscillating particle cannot be treated in
isolation. The oscillation process must be considered glob-
ally: the oscillating states become intermediate states, not
directly observed, which propagate between a source and a
detector. This idea can be implemented in QFT when the
intermediate oscillating states are represented by internal
lines of Feynman diagrams and the interacting particles at
source/detector are described by external wave packets
[1,16]. In this context, let us consider the weak flavor-
changing processes occurring through the intermediate
propagation of a neutrino,

p;— pr+ a+ v, (oscillation) vg+D;— B+ Dy,

(39)

where p; and pr (D; and Dy) are, respectively, the initial
and final production (detection) particles. The amplitude
for the process is represented by
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A ={pp DF|T<6XP|:_i[dx45'[li|> - 1|P1, D)),
(40)

where HH; is the interaction Hamiltonian for the inter-
mediate particle and T is the time ordering operator.
After some mathematical manipulations [1], this amplitude
can be represented by the integral

dEd’
A= ] ot FEDIGE 1, 17)

X explip - (xp — Xp)], (41)

where the function F(E, p) represents the overlap of the
incoming and outgoing wave packets, both at the source
and at the detector, and the Green function in the momen-
tum space, G(E, p, tp, tp), represents the fermion propaga-
tor which carries the information of the oscillation process.
The overlap function is independent of production and
detection times and positions (¢p, tp, Xp, Xp) and depends
on the directions of incoming and outgoing momenta. In a
certain way, the physical conditions of source and detector,
in terms of time and space intervals, are better defined in
this framework than in the intermediate wave packet
framework. Anyway, to understand the oscillation process
we must turn back to the definition of mixing in quantum
mechanics. It is similar in field theory, except that it applies
to fields, not to physical states. This difference allows to
bypass the problems arising in the definition of flavor and
mass bases [1]. In one-dimensional spatial coordinates, the
mixing is illustrated by the unitary transformation

W,z 1;0) = G 1(0; Di(z, G(6; 1) (42)

as the result of the noncoincidence of the flavor basis (o =
«, B) and the mass basis (i = 1, 2). The Eq. (42) gives the
Eq. (23) when the generator of mixing transformations
G(0; 1) is given by

G(0;1) = exp[ﬁ f dz (2, )i (z, 1) — (2, D (2, t)}
(43)

By taking the one-dimensional representation of Eq. (41),
the propagator G(E, p,, tp, tp) can also be written in the
flavor basis as
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G*F(0;E, p.,T) = G 1 (6;)G(E, p., T)G(6;1)
= G Y(0;DG(E, p,, tp, 1p)G(0; 1), (44)

with T = tp — tp.

In particular, by following the Blasone and Vitiello (BV)
prescription [15,19], the definition of a Fock space of weak
eigenstates becomes possible and a nonperturbative flavor
oscillation amplitude can be derived. In this case, the
complete Lagrangian (density) is split in a propagation
Lagrangian,

-Ep(z’ t) = l/_jl(ZJ t)(la - ml)l//l (Z: t)
+ (2, )i — my)ihy(z, 1), 45)

and an interaction Lagrangian

Li(z 1) = (2, 1:0)(iff — my)ip,(z, 1;6)
+ gz, 1:0) (i — mg)g(z, 1, 6)
— Mag(Po(2, 1;0)Pg(z 15 6)
+ gz 15 0)ih,(z, 15.0)), (46)

where
meyg) = m1(2)00529 + mz(l)sinzﬁ
and

myg = (my — my) cosf sind.

In general, the two subsets of the Lagrangian can be
distinguished if there is a flavor transformation which is
a symmetry of L;(z, #) but not of L ,(z, #). Particle mixing

occurs if the propagator built from L ,(z, #), and represent-

ing the creation of a particle of flavor « at point z and the
|

in?[26
P(vy, — vg;t) = sin(26]

where the last approximation takes place in the relativistic
limit py > ,/m;m,. After some simple mathematical ma-
nipulations, the Eq. (49) gives exactly the oscillation
probability Pp,(v, — vg; L) calculated from Eq. (36)
when it is assumed that the wave packet width a tends to
infinity and ¢t = L.

This new oscillation formula tends to the standard one
(22) in the UR limit. If the mass eigenstates were nearly
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annihilation of a particle of flavor 8 at point z/, is not
diagonal, i.e. not zero for 8 = a. The free fields ¢,(z, 1)
can be quantized in the usual way by rewriting the mo-
mentum distributions  b*(p_, m;) and d**(—p, m;) in
Eq. (25) as creation and annihilation operators B*(p., m;)
and D*T(—p., m;). The interacting fields are then given by

boter) = [ explipa] 3 (B i i

o 27 i=T2

+ Dfr*(_pz;t)vfr(_pz;t)}: (47)

where the new flavor creation and annihilation operators
which satisfy canonical anticommutation relations are de-
fined by means of Bogoliubov transformations [19] as

By(p;;t) = G '(6;)B*(p,, m;)G(6;1),
Dy (—psn) =G (0;)D*(—p, m)G(6; 1.

By following the BV prescription [15], which takes into
account the above definitions, it was demonstrated [20]
that the flavor conversion formula can be written as

P(vy, — vg;t) = {Bj(pos 1), Bi(po; D}
+ {D5(=pos 1), Bi(po; D} (48)

which is calculated without considering the localization
conditions imposed by wave packets, i.e. by assuming that
P, = po. When the explicit form of the flavor annihilation
and creation operators are substituted in Eq. (48), it was
also demonstrated [19] that the flavor oscillation formula
becomes

{1 - f(po, my, m,)] COS[ff(Po, my, my)t] + f(po, my, my) COS[€+(P0y my, my)t]}

- sin2[20]{[1 _ (?_;)1@&[% t} + (

Am\2 ., m? + m3
am o1+ 49
o) (1) | )

L:legenerate, we could have focused on the case of a non-
relativistic oscillating particle having very distinct mass
eigenstates. Under these conditions, the quantum theory of
measurement says that interference vanishes. Therefore, as
we have already appointed, the effects are, under realistic
conditions, far from observable. Besides, in spite of work-
ing on a QFT framework, the lack of observability con-
ditions must be overcome by implementing external wave
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packets, i.e. by calculating the explicit form of Eq. (41) for
fermions. Such a procedure was applied by Beuthe for
scalar particles [1] and, in a very particular analysis, with
basis on the BV calculations and on our intermediate wave
packet results, it could be extended to the fermionic case.

IV. FLAVOR AND CHIRAL OSCILLATIONS

In treating the time evolution of the spinorial mass-
eigenstate wave packets in the previous section, we have
overlooked an important feature. We have completely dis-
regarded the chiral nature of charged weak currents and the
time evolution of the chiral operator. In the following, we
aim to investigate if (and eventually how) the flavor oscil-
lation formula could be modified by this additional effect.

It is well known that from the Heisenberg equation, we
can immediately determine whether or not a given observ-
able is a constant of the motion. If neutrinos have mass, the
operator y> does not commute with the mass-eigenstate
Hamiltonians. This means that for massive neutrinos chi-
rality is not a constant of the motion. Observing that
neutrinos with positive chirality are decoupled from
charged weak currents, this additional effect cannot be
ignored. We have already seen that localized states contain,
in general, plane-wave components of negative and posi-
tive frequencies. As an immediate consequence of this, the
interference between positive and negative frequencies,
responsible for the additional oscillatory term in DFO(z),
will also imply an oscillation in the average of chirality.
Thus, the use of Dirac equation as evolution equation for
neutrino mass-eigenstate wave packets leads to an oscil-
lation formula containing both ‘““flavor-appearance” (neu-
trinos of a flavor not present in the original source) and
‘““chiral-disappearance’” (neutrinos of wrong chirality)
probabilities.

We obtain the Dirac flavor and chiral oscillation proba-
bility formula in the same way as we have obtained the
Eq. (37). By assuming that the normalizable mass-
eigenstate wave functions ¢ ,(z, t) are created at time t =
0 as a —1 chiral eigenstate, we can write

Re

fjw dz i (z, DY iz, t)}

= fmdngoz(pz - Po){[] = f(pz, m;, m;)

—o0 27T
_ m;m;
E(pzy mi)E(pz’ mi)

+ [f(pz, i m) +

}cos[e_(pz, m;, m;)t]

m;m; }
E(p,, m)E(p., m;)

X cos[e(p,, m; m,-)t]}, (50)

with i, j = 1, 2. From this integral, it is readily seen that an
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initial —1 chiral mass eigenstate will evolve with time
changing its chirality. Once we know the time evolution
of the chiral operator, we are able to construct an effective
oscillation probability which takes into account both flavor
and chiral conversion effects, i.e.

+oo
Py — vgpit) = f dzlg (2, 1; 0)|

+o0 1 — ,)/5
— / t

.2 2 +o0
_sin 2[29] E Z|:]oo dz|; 1 (z, t)|2j|

i=1

_ Re|:f_+°° dz (2 D (2, t)ﬂ

_ sin’[26]
2

Pp(z, 1, 0)

[DCO(I) — DFCO(7)]. (51)

As done in the previous section, the terms DCO(r) and
DFCO(¢) can be rewritten by using a p_-integration,

1 & [+ed
DCO®) =5 > f Pz 02(p, — pod1 = clp, my, my)
i=1

—00 27T
X [1 = cos[2E(p,, m)t]]} (52)
and
+00 (f

DFCOW = [ p. — o[t el my )]

X cos[e_(p,, my, my)t] + c(p,, my, my)

X cos[e(p,, my, my)t]}, (53)
where

m,-mj
2E(pz’ mi)E(pz’ mj) '

c(pZ! m;, m]) = f(pZ’ mi;, m]) +

The functions ¢(p,, m;, m j) have a common maximum at
p, =0 which, contrary to what happened for
f(p,, m;,my), do not depend on the mass values,
Cmax (0, m;, m;) = 5 and, following the same asymptotic
behavior of f(p., m|, m,), go rapidly to zero for p, >
my,. As a consequence of the first-order approximation
(33), we get

[1 = viv; + viv;(v; + vj = 2) 2]
2
2 + 2 —
~ M 2m2<1 _ zpz p())’
4pg Po

C(pz, mj, m]) =

where we have considered the UR approximation in the
second term. By substituting c(p,, m; m;) in the above
integrations (52) and (53) and after some algebraic ma-
nipulations, we explicitly calculate
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2 202 — m2 \27 m2
DCO(r) = 1 — Z:n—lz + exp[—( Po — ™ t> }ﬂ{cos[
14

0 \/Eap(z)
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2p3 +m? t} N 4ps — 2m? tsin|:2p(2) + m? t}}} _omi

2002 27 2 > 0
+ exp[ _<2p00m2 t) }E{COS[ZPO "

V2ap} ) 14p§

4p} Po s*py Po 4p}
4p2 + m? 202 + m?
+ p°2 - 2zsin[ Po 2;}”, (54)
Po apy Po

A 2 2 2 + 2
DFCO(¢) = exp[—( n > t> :H|:1 M 2m2
Zﬂapo 4p5

{37
sin
2po

Am? m? + m3 Am?
:|cos[ t} + 3 731
2pg 4ps  a'py

N exp[_<4p(2) —m? — mj t)Z} m? + m3 {x COS[4p(2) +m? + m3 z}

2+2ap} 4pj 2po
4 2 2 2 4 2 4 m2 + m2
+ e mztsin[ Po T mzz”, (55)
a=py 2po

Again, in the hypothesis of minimal slippage between the mass-eigenstate wave packets (AvL < a), and for long distance

between source and detector (L > a), i.e.

L
I K—<

2

a  Am?*

the standard flavor oscillation probability is reproduced. In fact,

- 12[26]
sin
P(vy, — V,B,L;L) = |:

2 4ps

2

2
= sin?[260]sin® [A_m L }
4po

V. CONCLUSIONS

In order to quantify some subtle changes which appear
in the standard flavor oscillation probability [9] due to
chiral oscillations coupled to the flavor conversion mecha-
nism of free propagating wave packets, we have reported
about some recent results on the study of flavor oscillation
with Dirac wave packets [11]. By taking into account the
spinorial form of neutrino wave functions and imposing an
initial constraint where a pure flavor-eigenstate is created
at t = 0, for a constant spinor w, it is possible to calculate
the contribution of positive and negative frequency solu-
tions of the Dirac equation to the wave packet propagation
and, finally, to obtain the oscillation probability.
Particularly, we have noticed a term of very high oscilla-
tion frequency depending on the sum of energies in the new
oscillation probability formula. In addition, the spinorial
form of the wave functions and their chiral oscillating
character subtly modify the coefficients of the oscillating
terms in this flavor conversion formula. To describe the
time evolution of the mass eigenstates, we have assumed
an initial Gaussian localization and performed integrations
by considering a strictly peaked momentum distribution.

2 2
_m1+m2

Jr-[- Gat) =)
_ sin?[26] {1 3 COS[Am2

L}}

2po

(56)

bnder the particular assumption of UR particles, we have
been able to obtain an analytic expression for the coupled
chiral and flavor conversion formula. In case of Dirac wave
packets, these modifications introduce correction factors
which are negligible in the UR limit. We have confirmed
that the fermionic character of the particles modify the
standard oscillation probability which is previously ob-
tained by implicitly assuming a scalar nature of the mass
eigenstates.

However, we know the necessity of a more sophisticated
approach is understood. It involves a field-theoretical treat-
ment. Derivations of the oscillation formula resorting to
field-theoretical methods are not very popular. They are
thought to be very complicated and the existing quantum
field computations of the oscillation formula do not agree
in all respects [1]. The Blasone and Vitiello (BV) model
[2,15] to neutrino/particle mixing and oscillations seems to
be the most distinguished trying to this aim. They have
attempted to define a Fock space of weak eigenstates and to
derive a nonperturbative oscillation formula. Flavor crea-
tion and annihilation operators, satisfying canonical
(anti)commutation relations, are defined by means of
Bogoliubov transformations. As a result, new oscillation
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formulas are obtained for fermions and bosons, with the
oscillation frequency depending not only on the difference
but also on the sum of the energies of the different mass
eigenstates. Meanwhile, the prescription of oscillating neu-
trinos as Dirac spinors was not yet completely and accu-
rately described in a quantum field formalism. With Dirac
wave packets, the flavor conversion formula can be repro-
duced [13] with the same mathematical structure as those
obtained in the BV model [2,15]. Moreover each new
effect present in the oscillation formula can be separately
quantified.

In fact, the quantum-mechanical treatment which asso-
ciates Dirac wave packets with the propagating mass ei-
genstates is rich in physical insights which were
extensively studied in this paper. Besides the review of
analytical calculations done with Gaussian wave packets
for scalar [11] and fermionic [13] particles, the main con-
ceptual aspect arising from the formalism with Dirac wave
packets leads to the study of chiral oscillations. In the
standard model flavor-changing interactions, neutrinos
with positive chirality are decoupled from the neutrino
absorbing charged weak currents [17]. A state with left-
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handed helicity can be approximated by a state with nega-
tive chirality in the UR limit. Once we have assumed the
interactions at the source and detector are chiral only the
component with negative chirality contributes to the propa-
gation. In this case, we are obliged to consider chiral
coupled to flavor oscillations in order to compute the
modifications to the standard flavor conversion formula.
In fact, when chiral oscillations are taken into account,
these modifications introduce correction factors propor-
tional to m7 ,/ p§ which are, however, practically undetect-
able by the current experimental analysis. It leads to the
conclusion that, in spite of often being criticized, the
standard flavor oscillation formula resorting to the plane-
wave derivation can be reconsidered when properly inter-
preted, but a satisfactory description of fermionic (spin
one-half) particles requires the use of the Dirac equation
as evolution equation for the mass eigenstates.
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