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Octonionic Dirac Equation
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In order to obtain a consistent formulation of octonionic quantum mechanics (0QM), we intro-
duce left-right barred operators. Such operators enable us to find the translation rules between
octonionic numbers and 8% 8 real matrices (a translation is also given for 4 X4 complex matrices).
We develop an octonionic relativistic free wave equation, linear in the derivatives. Even if the wave
functions are only one-component we show that four independent solutions, corresponding to those of
the Dirac equation, exist.

§1. Introduction

Since the sixties, there has been renewed and intense interest in the use of
octonions in physics.” Octonionic algebra has been in fact linked with a number of
interesting subjects: structure of interactions,®? SU(3) color symmetry and quark
confinement,¥* standard model gauge group,” exceptional GUT groups,” Dirac-
Clifford algebra,” nonassociative Yang-Mills theories,””” space-time symmetries in
ten dimensions,'” and supersymmetry and supergravity theories.'”'® Moreover, the
recent successful application of quaternionic numbers in quantum mechanics,”®~'" in
particular in formulating a quaternionic Dirac equation,'®~*" suggests going one step
further and using octonions as an underlying numerical field.

In this work, we overcome the problems due to the nonassociativity of the
octonionic algebra by introducing left-right barred operators (which will be some-
times called barred octonions). Such operators complete the mathematical material
introduced in the recent papers of Joshi et al.®*® Then, we investigate their relations
to GL(8, R) and GL(4, C). Establishing this relation we find interesting translation
rules, which give us the opportunity to formulate a consistent OQM.

The philosophy behind the translation can be concisely expressed by the follow-
ing statement: “There exists at least one version of octonionic quantum mechanics
where the standard quantum mechanics is reproduced”. The use of a complex scalar
product (complex geometry)*® will be the main tool to obtain OQM.

We wish to stress that translation rules do not imply that our octonionic quantum
world (with complex geometry) is equivalent to the standard quantum world. When
translation fails the two worlds are not equivalent. An interesting case can be
supersymmetry.”®

Similar translation rules, between quaternionic quantum mechanics (QQM) with
complex geometry and standard quantum mechanics, have recently been found.'® As
an application, such rules can be exploited in reformulating in a natural way of the
electroweak sector of the standard model."”

In § 2, we discuss octonionic algebra and introduce barred operators. Then, in
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§ 3, we investigate the relation between barred octonions and 8 x 8 real matrices. In
this section, we also give the translation rules between octonionic barred operators
and GL(4, C), which will be very useful in formulating our OQM (full details of the
mathematical material appear elsewhere®”). In §4, we explicitly develop an
octonionic Dirac equation and suggest a possible difference between complex and
octonionic quantum theories. In the final section we draw our conclusions.

§2. Octonionic barred operators

We can characterize the algebras R, C, & and O by the concept of division
algebra (in which one has no nonzero divisors of zero). Octonions, which locate a
nonassociative division algebra, can be represented by seven imaginary units (e, **,
es) and e=1:

7
0=ro+mZ=Irmem. (70,7 real) )
These seven imaginary units, e, obey the noncommutative and nonassociative
algebra
enen=—Omn+ €mmpep (m, m, p=1,-,7) 2

with ennp totally antisymmetric and equal to unity for the seven combinations 123, 145,
176, 246, 257, 347 and 365. The norm, N(O), for the octonions is defined by

N(OY=(O1O0)M2=(0 O 2=(r2+ -+ rF)? 3

with the octonionic conjugate O given by
7
Ot:”o_m}::lrmem - : (4)

The inverse is then
O '=01/N(O). (O=+0) (5)

We can define an associator (analogous to the usual algebraic commutator) as
follows:

{z, y, z}=(xy)z—2(¥2), (6)

where, in each term on the right hand, we must, first of all, perform the multiplication
in brackets. Note that for real, complex and quaternionic numbers, the associator is
trivially null. For octonionic imaginary units we have

{em; €n, eﬁ}E(emen)ep_em(ene.b)zzemnpses (M
with emnps totally antisymmetric and equal to unity for the seven combinations
1247, 1265, 2345, 2376, 3146, 3157 and 4567 .

Working with octonionic numbers, the associator (6) is in general non-vanishing.
However, the “alternative condition” is fulfilled:.
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{z,y, 2} +{z, v, 2}=0. (8)

In 1989, writing a quaternionic Dirac equation,'® Rotelli introduced a barred
momentum operator

—o8li [(—ali)¢g=—a¢i]. (9)
In a recent paper,'® based upon the Rotelli operators, partially barred quaternions
g+pli [q,pEH], (10)

have been used to formulate a quaternionic quantum mechanics.
A complete generalization for quaternionic numbers is represented by the follow-
ing barred operators:

atalitalitalk. [q..EH] (11)

We refer to these as fully barred quaternions, or simply barred quaternions. They,
with their 16 linearly independent elements, form a basis of GL(4, R) and can be used
to reformulate Lorentz space-time transformations® and write down a one-
component Dirac equation.?"

Thus, it seems to us natural to investigate the existence of barred octonions:

7
Oot 2 O nlen. [Oo,.- octonions] . (12)

Nevertheless, we must observe that an octonionic barred operator, a|b, which acts on
octonionic wave functions, ¢,

[alblg=agb,

is not a well-defined object; for a=+& the triple product a¢b could be either (a¢)b or
a(¢b). So, in order to avoid the ambiguity due to the nonassociativity of the
octonionic numbers, we need to define left/right-barred operators. We will indicate
left-barred operators by a)b, with @ and & representing octonionic numbers. They
act on octonionic functions ¢ as follows:

[a)b]lg=(ag)b . (13a)
In a similar way we can introduce right-barred operators, defined by a(b,
[a(b]gp=a(¢b) . (13b)

Obviously, there are barred-operators in which the nonassociativity is not relevant,
for example

Da=1(a=1|a.

Furthermore, from Eq. (8), we have
{x,y, x}=0,

S0

a)a=ala=ala.
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In addition, it is possible to prove, by Eq. (8), that each right-barred operator can be
expressed by a suitable combination of left-barred operators. For further details, the
reader can consult the mathematical paper.?¥ So we can represent the most general
octonionic operator by only 64 left-barred objects

7
0o+ »,2—1 Om)em. [0, octonions] (14)
This suggests a correspondence between our barred octonions and GL(8, R) (a
complete discussion about the above-mentioned relationship is given in the following
section).

§3. Translation rules

In order to explain the idea of translation, let us look explicitly at the action of
the operators 1|e: and ez, on a generic octonionic function ¢

e=gotepite:prtespsteipstesps+espsterpr. [@o,-1€R] (15)

We have
[1lei]le=per=e1po— @1 — esp2+ e203— es@a+ eaps + 106~ e @7, (16a)
:0=e:p0— esp1— @2+ €193+ eops+ €105 — eape— es 1 . (16b)

If we represent our octonionic function ¢ by the following real ¢olumn vector:

P , an

we can rewrite Egs. (16a, b) in matrix form,

Po — ¢

(0 -1 0 0 0 00 0

1 0 0 0 0 00 0|]e o

0 0 0 1 0 00 0] e s

0 0 —10 0 00 0]/ —o |

00 0 0 0 10 0ol | o (182)
0 0 0 0 —-100 0] es — o

0 0 0 0 0 00 —1|| o — o

(000 0 0 0 01 0] 6
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Po — @2

(0 0 -1 000 0 o0

0 0 0 100 0 O0f]|e s

1 0 0 000 0 0]]|e @0

0 -1 0 000 0 0]/es — o

0 0 0 000 —1 0| e | —0s|" (18b)
0 0 0 000 0 —1|1|es —

0 0 0 010 0 0] e o

(000 0 001 0 0] (e os |

In this way we can immediately obtain a real matrix representation for the octonionic
barred operators 1|e; and e.. Following this procedure we can construct the complete
set of translation rules.?”

Let us now discuss of the relation between octonions and complex matrices.
Complex groups play a critical role in physics. No one can deny the importance of
U(1, C) or SU(2, C). In relativistic quantum mechanics, GL(4, C) is essential in
writing the Dirac equation. Having GL(8, ®), we should be able to extract its
subgroup GL(4, C). So, we can translate the famous Dirac-gamma matrices and
write down a new octonionic Dirac equation.

If we analyse the action of left-barred operators on our octonionic wave functions

d=¢+exptedstesds, [d-4€CQ, el (19)
we find, for example,

exp=— ot e — e +esdd

les)elg=(es)er= o+ exdr +eui —esdd .

Obviously, neither the previous operators, e: or es)ei, can be represented by matrices.
Nevertheless we note that their combined action gives us

e:p+(esdp)er=2e:¢h ,
and it allows us to represent the octonionic barred operator
et eser, (20a)

by the 4 X4 complex matrix

(20b)

S O N O
o o o O
[==J - e I ]
[==T = R = i

Following this procedure we can represent a generic 4X4 complex matrix by
octonionic barred operators. In Appendix B we give the full basis of GL(4, C) in
terms of octonionic left-barred operators. It is clear that only particular combina-
tions of left-barred operators are allowed to reproduce the associative matrix algebra.
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In order to make our discussion smooth, we refer the interested reader to the
mathematical paper of Ref. 24). We can quickly relate 1|e; with the complex matrix
114x+ which will be relevant to an appropriate definition for the octonionic momentum
operator.”® The operator 1|e; (represented by the matrix ilixs) commutes with all
operators which can be translated by 4 X4 complex matrices. This is not generally
true for a generic octonionic operator. For example, we can show that the operator
1le: does not commute with ez, explicitly:

ex{[1]er] g} =ex(der))=—erdo— esr — espf — er ¢, (21a)
[llel]{e2¢}5(92¢)el= —eie—esh +esgi t+erdf . (21b)

The interpretation is simple: e: cannot be represented by a 4 X4 complex matrix.
We conclude this section by showing explicitly an octonionic representation for
the Dirac gamma-matrices:*”

Dirac representation,

ool 2& o 18 (222)
7 - 3 3 m=1em €m 3 "=4eﬂ €n y a
r'= “‘leﬁ-L'es‘f‘ es)es—es)es ~1 27} €ps6€p)Es (22b)
3 3 3 pi521 ’
7
= ~%e7—":13—|e7+ es)es—eq)es —% p'sZilemep)es , (22c)
7
yi= ——%64—%—| ester)es—es)er —%p;:lépnep)es . (22d)

§4. Octonionic Dirac equation

In the previous section we gave the gamma-matrices in three different octonionic
representations. Obviously, we can investigate the possibility of having a more
simple representation for our octonionic y*-matrices, without translation.

Why not

e, ez, es and edes
or
e, e, es and eyer?

Apparently, they represent suitable choices. Nevertheless, the octonionic world is
full of hidden traps and so we must proceed with prudence. Let us start from the
standard Dirac equation

Y'ph=m¢, (23)

(we discuss the momentum operator in the paper of Ref. 26), where p. represents the
“real” eigenvalue of the momentum operator) and apply 7“p. to our equation

Y0y D) =my pud . (24)
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The previous equation can be concisely rewritten as
Yoy (' d)=m*¢ . (25)

Requiring that each component of ¢ satisfies the standard Klein-Gordon equation, we
find the Dirac condition, which becomes in the octonionic world

Y (r* )+ r(r'¢)=29"¢, (26)

where the parentheses are relevant because of the octonions nonassociative nature.
Using octonionic numbers and no barred operators, we can obtain, from (26), the
standard Dirac condition

{r*, r}=2¢". (27)
In fact, recalling the associator property [which follows from Eq. (7)]

{a, b, §}=—1{b,a, ¢}, la, b octonionic numbers]
we quickly find the following correspondence relation:

(ab+ ba)p=a(bp)+ b(ay) .

We have no problem in writing down three suitable gamma-matrices which satisfy the
Dirac condition (27),

(7, 7% Y)=(e, e, @), (28)
but, barred operators like
eed or ede

cannot represent the matrix y°. After straightforward algebraic manipulations, one
can prove that the barred operator, eses, does not anticommute with e,

el(espe) +elep)es=—2esdrterd)#0, [¢=¢1+ersdtesdst+ esiul (29)

whereas es)e; anticommutes with e;

e;[(e4¢')el]+[e4(el¢')]e1=0 . (303)
But we know that »°=1, whereas
{ed(esp)el}er=¢1—erdot ess—esps*+ ¢ . (30b)

Thus, we must be satisfied with the octonionic representations given in the
previous section.

We recall that the appropriate momentum operator in OQM with complex
geometry®® is

Pr=05"e, .
Thus, the octonionic Dirac equation, in covariant form, is given by

r*(dugper)=m¢ , (31)
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where 7* are represented by octonionic barred operators (22a~d). We can now
proceed in the standard manner. Plane wave solutions exist [ p=(— @|e;) commutes
with a generic octonionic Hamiltonian] and are of the form

¢(x, t)=[w(p)+ e2tez( D) + carns(p) + esua(D)] e 7' . [wr,-.4EC(1, e)]  (32)
Let us start with .

p=(0,0, p.)
from (31), we have

E(° ) —pLr’d)=m¢ . (33)

Using the explicit form of the octonionic operators y™* and extracting their action (see
Appendix A) we find

E(wr+ e2tz— eares— estts) — pal s — extua— estir + estiz) = m( oy + €2tz + eatis+ estta) .
(34)

From (34), we derive four complex equations:
(E—m)ur=+ pzus,
(E—m)ur=—paua,
(E+m)us=+pzua,
(E+m)ua=—pzuz .

After simple algebraic manipulations, we find the following octonionic Dirac solu-

tions:
E=+|E| u“’=N<1+e4E%f—ﬁ) , u‘2)=N(ez—eeﬁ>=u“’ez ;

E=*|E| um:N(E—fi—ﬁ*&)’ u“’=N(ez—|f|pj_—m+ee>=u‘3’ez

with N real mormalization constant. Setting the norm to 2|E|, we find
N=(E|+m)'"*.

We now observe (as for the quaternionic Dirac equation) a difference with respect
to the standard Dirac equation. Working in our representation (22a~d) and
introducing the octonionic spinor

a=(pu) =ut—cuteius+esus, [u=wu+eus+eius+esu)
we have

TV D=0 GO = Z@ D — @ 7@ =9yt 05 | (35)
Thus we find

uP Y+ uPaP=4(m+ espz), (36a)
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instead of the expected relation
uPgV4+uPug=y"E—y*p.+m. (36b)

Furthermore, the previous difference is compensated for if we compare the complex
projection of (36a) with the trace of (36b)

(2 D+ @ Z®)2M ] =Tr[ (2D FO+ 2D 7@)M] =4 (37)

which suggests we redefine the trace as a “complex” trace. We know that spinor
relations like (36a,b) are relevant in perturbation calculus, so the previous results
suggest us to analyze quantum electrodynamics in order to investigate possible
differences between complex and octonionic quantum field. This could represent the
aim of a future work.

§5. Conclusions

In the physical literature, we find a method to partially overcome the issues
relating to the octonions nonassociativity. Some researchers introduce a “new”
imaginary unit “/=,/—1” which commutes with all others octonionic imaginary units,
en. The new field is often called the complexified octonionic field. Different papers
have been written in such a formalism: Quark Structure and Octonions,” Octonions,
Quark and QCD,* Dirac-Clifford algebra,” Octonions and Isospin,?® and so on. In the
literature we also find a Dirac equation formulation by complexified octonions with an
embarrassing doubling of solutions: “-- the wave functions ¢ is not a column matrix,
but must be taken as an octonion. ¢ therefore consists of eight wave functions, rather
than the four wave functions of the Dirac equation”®® In this paper we have present-
ed an alternative way to look at the octonionic world. No new imaginary unit is
necessary to formulate in a consistent way an octonionic quantum mechanics.

Nevertheless, complexified ring division algebras have been used in interesting
works of Morita® to formulate the entire standard model.

Having a nonassociative algebra needs special care. In this work, we introduced
a “trick” which allowed us to manipulate octonions without useless efforts. We
summarize the more important results found in previous sections:

P-Physical Content :

P1 - We emphasize that a characteristic of our formalism is the absolute need of
a complex scalar product (in QQM the use of a complex geometry is not obligatory and
thus a question of choice). Using a complex geometry we overcame the hermiticity
problem and gave the appropriate and unique definition of momentum operator.

P2 - A positive feature of this octonionic version of quantum mechanics, is the
appearance of all four standard Dirac free-particle solutions notwithstanding the
one-component structure of the wave functions. We have the following situation for
the division algebras:
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field : complex, quaternions, octonions,
Dirac Equation: 4x4, 2x2, 1x1 (matrix dimension).

P3 - Many physical results can be reobtained by translation, so we have one
version of octonionic quantum mechanics where the standard quantum mechanics
could be reproduced. This represents for the authors a first fundamental step
towards an octonionic world. We remark that our translation will not be possible in
all situations, so it is only partial, consistent with the fact that the octonionic version
could provide additional physical predictions.

I - Further Investigations

We list some open questions for future investigation, whose study should lead to
further insights.

I4 - The reproduction in octonionic calculations of the standard QED results is a
nontrivial objective, due to the explicit differences in certain spinorial identities (see
§4). We will study this problem in a forthcoming paper.

I5 - A very attractive point is to try to treat the strong field by octonions, and then
to formulate in a suitable manner a standard model, based on our octonionic dynami-
cal Dirac equation.

We conclude by emphasizing that the core of our paper is surely represented by
the absolute need of adopting a complex geometry within the quantum octonionic
world.

Appendix A
—— y"3. Action on Octonionic Spinors ——

In the following tables, we explicitly show the action on the octonionic spinor
u=wu+ ezt eustesus, [u,-4ECQ1, el

of the barred operators which appear in ° and y’. Using such tables, after straight-
forward algebraic manipulations we find

Y uU=11+ e2tt2— estis— eslts ,

YPu=us—e;us—estn t+esuz .

y’-action o etz eslts Gl
ele —w1 e  GlUs  esls
ez‘ez - uf‘ - ezu; €4U3 CeUa
esles —ut  eud eaus et
esles —ut  eud —aud esus
esles - ui“ [22X7%) eaus CelUs
esles —ut  exur  eaus —esud
erler —ut e ewus  esud
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y*-action 73] ez esus eslUs
e ey —esud —us C2ls
1|es esuit  esus | —ud —ewud
er)es et  esur us  —eoul
es)er —eut —esud —us 2N
es)es et —esu us  —ewuf
ez)es —eut —eudf —us —eu
es)er e esus us  —esuf
ees —euf —eud —u¥ ewd
Appendix B

—— An Octonionic Basis of GL(4, C)—

In the following charts we establish the connection between 4 X4 complex
matrices and octonionic left-barred operators. We indicate with R ms( C »n) the
4 X4 real (complex) matrices by 1(7) in m#»-element and zeros elsewhere.

4X4 complex matrices and left-barred operators:
1
92,114—’7 [1_ ellel]
.‘Rle% [2e1)es+ es)er—2|e:— e+ es)es— es)es+ es)er— er) es)
9{134——«»% [2e1)es+ es)er—2|es— es+ es)er— ez)es+ er)es— es) er]
g%u*"’% [221)€7+ 67)61 - 2| €6 €6+ 22)84_ e4)€2+ es)es - ea)es]
1
92,21‘_’7 [ez+ es)el]
.‘Rzzﬂ—é~ [14 ei|e1+ e es+ es|es+ esles + erler] —% [es| ezt es]es]
1
9223 —’7 [ - 82)64 - éa) es]
1
.CRHHT.Z“ [63)87— ez)e(i]

gzal*_’% [eA'l" es)el]

ERw—% [—es)es—en)e:]
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9{33<—>% [1+ eler+ e et es|les+ esles+ e er] “%‘ [edest esles]
K 1

34“"2‘ [es) er—eu) ee]
Q 1

41‘—7 [ee— 67)61]
R 1

42‘_’7 [67) €3— ee) ez]
R —’—1—[ —ee

84779 67)65 66)64]
.‘Rw—% [1+e1|el+ez|ez+€a|es+e4|e4+es|65]_‘:13“[eﬁ|es+e7|e7]
C 1

11‘—7 [1|61+€1]
c m—% [—2e1)e:—es—2|es—ez)er+ e ert+ es)es— es)es— er)ea)
Cme—»—é-[—Zel)e4~es—2|es—e4)e1—ee)e3—ez)e7+ er)ez+ es)es)
C w—»—é— [—2e1)es+ er+2|ler—es)er— ez)es+ es)es+ es)ez— e3)e]
C 1

21""7 [— e+ ez)e1]
C 22“’% [llei—e1+ es)es— es)es—es)er+er)es) —%[ e)es—es)es)
c 1

5y [—ees+es)ed]
Couort [

24*"’7 es)es+ es)er]
C 1

31‘—’_2— [_ €5+ e4)e1]
C st [es)ea—

32‘—"2— es)ez 84)63]
C 33*’% [1les—e1+ ez)es—es)e—es)er+ er)es) —%‘ [ed)es—es)es]

C 34*"%‘ [es) est 64)37]

C 41“’% [e7+ ea)ex]



13)
14)
15)

16)
17)

18)
19)
20)
21
22)

23)
24)
25)
26)
27

28)
29)
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c 42“’% [ - €7) €2— 65) 63]
c 1
43‘—’7 [ - 67) €4— ee)es]

c 44**% [llei— e+ ez)es—es)ert+es)es— es)ed] —% [er)es—es)er]
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