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We complete the rules of translation between standard complex quantum mechanics (CQM) and
quaternionic quantum mechanics (QQM) with complex geometry. In particular we describe the way
in which (2z+1)-dimensional complex matrices are reduced to overlapping (n+1)-dimensional
quaternionic matrices with generalized quaternionic elements. This step resolves an outstanding
difficulty with reduction of purely complex matrix groups within quaternionic QM and avoids
anomalous eigenstates. As a result we present a more complete translation from CQM to QQM and
vice versa.

§ 1. Introduction

The possibility of using quaternions to describe standard quantum mechanics
received a major thrust with the adoption by Horwitz and Biedenharn” of a complex
scalar product (complex geometry®). These authors showed that this assumption
permits the definition (in analogy with standard theory) of tensor products between
single particle wave functions without encountering intractable problems of interpre-
tation and definition due to the non-commuting multiplications of quaternionic wave
functions.*’

A second important step in this objective of translation was achieved with the
introduction of the so-called barred operators,® and specifically of ¢|¢ (¢g-quaternion,
i-one of the three imaginary units) which acts upon a (quaternionic) wave function ¢
by

(glidyg=adi. oy

Originally these generalized quaternions were introduced to define an acceptable
(i-complex hermitian) momentum operator (—4|z7) within a two-component quater-
nionic Dirac equation.”

The distinction between left acting and right acting quaternions is of course
justified by the non-commutativity of quaternions. Instead of proceeding to consider
the (possibily future) generalization to 1|7 and 1/ terms, it was noted by the authors
in a previous work® that generalized quaternions, i.e., a1+ g2|7 (indicated generically
by 4| C), depend upon eight real numbers, the same number of degrees of freedom of
the most general two by two complex matrix. In fact, the already well-known
identifications of 7, j and 4 with —#/2¢ (o the Pauli matrices) and of course 1 (in %)

*) A minor criticism of the formalism of Horwitz and Biedenharn is that quaternions are used only for
single particle wave functions in their paper. In practise they use the complex translation for multiparticle
states, an unnecessary choice.
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with the 2-dimensional unit matrix can thus be extended to the most general
2-dimensional complex matrix.
A particular set of rules for translation is obtained by

M:(Zl ZZ) = M=q+q|li [c,-..€C(1, i) and q.EH] (2a)
3 C4

with
ZQl:Cl‘FCf'Jr‘]'(Ca—CEk) y
2igp=c1—c¥ —j(cs+ o).

This is equivalent to:

M=Zl+j§1+(22+].52)|l“‘-—_—> M=

Z1+i22 —(Zfl‘+22; ) (Zb)

§1+i§2 21*+2'22*

This augments the so-called symplectic rule for state vectors (column matrices)

¢a:(§a>¢z¢’a22a+]‘2a, (33)
Pi=(22z¥) = ¢pl=zt—jZ., (3b)

which in turn is consistent only within a complex geometry:

W o=t at am = (P )= g g, o)

We recall also that the rule for the tensor product of two state vectors ¢, and ¢- is thus
automatic

2122
22 221+ 7222 %
G®d=| " |e= g @@= T T =TT ). (5)
2122 2zZ1t72221 &2 23
Z122

In the same way we may derive the rules for taking the tensor product of group
elements. For example,

C11 C1i2 C221 C2R2
C1 Cz)®(21 Zz) C123 C1R4 C223 C224

= (6a)
23 24 C32) C322 C421 C4l2

9 Q®g=
Cs C4
C323 C334 C423 C44

can be translated as follows:

g1®g2=<q1+qz|i>®(pl+pz|i>=(2 Zj)(p1+pz|z'), (6b)
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where
ar=(q1+ig2)c+ (a1 +ig2)¢ —il(q1 + igz) e — (@1 + ig2)E]l7
@=(jg1 — kg2)t + (jar— kgz)e — il (ig1 — kg2)e — (g1 — kgz)cl 7
as=—(jq1+ kgz)c — (g1 + kg2) + il (g + kg)e— G + k) E]7
a=(q1—1q2)¢ +(q1 — igz)e — {[(q1— ig2)E — (@1 —igz)c]|7 .

This translation is only partial, because it connects, e.g., #-dimensional quater-
nionic representations of quaternionic groups with even 2#xn-dimensional complex
representations of corresponding (isomorphic) complex groups and vice versa.
Indeed we have presented elsewhere® a comparison between the groups® U(1, ¢) and
SU(2, ¢). 0dd complex representations of the complex groups are excluded. There
is also a problem with the irreducibility of odd dimensional complex representations
of quaternionic groups (see below).

We note, in passing, that while matrix operators may contain generalized quater-
nions, the state vectors (wave functions in general) contain only quaternionic ele-
ments. This asymmetry correctly reproduces the real/ degrees of freedom between
n-component complex column matrices and #-dimensional complex square matrices.
This is because a quaternion has 4 real degrees of freedom but a generalized quater-
nion 8.

Degrees of freedom on o c 9 JC
(#n even)
¢ 2n n n/2
Tl A\
M 2n® | n? (n/2)?

As described in previous articles,®® the above translation is inadequate for odd
dimensional complex representations, be they for groups (operators in general) or for
state vectors. In particular this problem first arose for the representation of odd
dimensional spin states, i.e., bosons (s=0, 1, ---). It is perhaps instructive to describe
briefly the situation previous to this work for these odd dimensional states.

The first discovery was the existence of anomalous solutions® for bosonic quater-
nionic dynamical equations (Klein-Gordon, Maxwell, ---).  This simply followed from
the complex geometry which imposes the orthogonality of ¢ and ¢j. If ¢ is chosen
as the purely complex solution of a given bosonic equation, then the purely quater-
nionic (j-£) solutions are given by ¢7, or more precisely, by j¢ if we wish to confront
solutions with identical 4-momentum. This feature is already present when consider-
ing the eigenvalue solutions of an odd dimensional matrix equation. For example the
(quaternionic) eigenstates of the standard spin-1 eigenvalue equation are

1 0 0 J 0 0
0,{1)10) and {O )|/ |{0O], (7
0 0 1 0 0 7

*) With generalized quaternions, we can also confront U(2, ¢) with U(1, gc), where g.€4|C.
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where the last three (anomalous) cannot mix under rotations with the first three
because of the complex nature of the 3-dimensional rotation generators. Thus the
vector space is reducible, but not apparently the operator form.* This at least was
the belief up to now. Without the simultaneuos reduction of states and operators it
was not clear if these group representations—complex odd dimensional acting upon
a quaternionic space—could be neglected. They appeared to exclude a complete
translation between CQM and QQM, which was good or bad news according to one’
s point of view.

There existed at least one way of bypassing this problem by eliminating the
anomalous solutions,”® assuming of course that the anomalous solutions are an
unwanted feature. This was to use “spinor” (fermionic-like) equations for bosons
such as the Kemmer equation which contains spin 1 plus spin 0 solutions. The
corresponding Duffin-Kemmer-Petiau #-matrices (being even dimensional, 16x16)
have a reduced form of 8 X8 quaternionic representations. In this procedure, anoma-
lous solutions do not appear for the same reason that they do not appear for the Dirac
equation. Actually the 8-complex matrices are formed of a 10-dimensional (spin 1)
and 5-dimensional (spin 0) and 1l-dimensional (unphysical A#=0) block structure.
Thus while the spin 1 case is automatic because it is even-dimensional, the spin 0 case
is handled by using the trick of adding the unphysical solution and working formally
with 6 X6 matrices. We have shown elsewhere that the Kemmer quaternionic equa-
tion is thus not equal to the Klein-Gordon quaternionic equation, etc., because it does
not have anomalous solutions. In fact this equation corresponds to the modified
equations obtained by complex-projecting the original quaternionic equations.

The above trick explicitly uses the dynamical particle equations. It has limited
the odd dimensional states to purely complex ones, and thus apparently made the
corresponding representations irreducible. 7This is not the correct interpretation, first
because we must be able to discuss the group representations of, e.g., SU(2, ¢) without
any reference to dynamical equations, and second because, in fact, the odd dimen-
sional complex representations are reducible with generalized quaternions thanks to
the overlapping feature described below. Hence, the problem of having a reducible
vector space for a non-reducible matrix representation will be partially eliminated.

§ 2. Overlapping representations
We shall describe this technique first by deriving the situation for spin 1 and then

extracting the general rules for any odd dimensional matrix. The three complex
antihermitian generators of spin 1 A»(m=1, 2, 3) are in standard form

/010 [0 100
A=—2r(101), A=—F[1 0 —1), A=-i{00 0 |. (®)
23010 CAVIRE 00 —1

*) Fermionic complex operators (but acting within a quaternionic space) being even-dimensional
matrices are reduced to half the dimension with generalized quaternions, with the maintenance of the same
number of total solutions.
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These have normal/anomalous solutions shown in Eq. (7).

Thus each eigenvalue is degenerate, and the vector space represented by the
column matrices is reducible to two three-dimensional subspaces. The conventional
form of reductions of the 3 X3 generators is not possible because it would require the
division of the 3 X3 matrices An into two distinct blocks, one of 2X 2 (quaternionic in
general and this is possible) and one of 1X1 (an J|C number), and this can be
explicitly excluded. Hermitian generators of SU(2) (spin) within the numbers %|C
exist. These are i|7, j|7, #|i.¥ However, these correspond to spin 1/2 eigenvalues
but not spin 1. It is easy to convince oneself that no one-dimensional spin 1 represen-
tations exist in H|C.

This is an example of the reduction problem mentioned previously. Now we
shall show explicitly that there exists a generalized quaternionic similarity matrix
S(S*=S7") such that the An are reduced to two overlapping 2 X 2 block forms, so that
one element, the (2, 2)-element, is common to both blocks. However, if this element
is not identically zero, it is always a composite of two terms, one of which annihilates
one of the corresponding eigenvectors. Thus the two blocks may be unlocked and
studied separately.

Explicitly, an S matrix such as that described above is given by

a ja 0
S={0 0 1], (9a)
d —jd 0
a 0d
St=| —jd 0 ja |, (9b)
0 10

where
2a=1—1il: extinguishes quaternionic elements, and
2d=1+i|{ extinguishes complex elements,

whence,
F+d*=1, atd=1, da=ad=0, (a)'=—jd, ja=d;.

The transformed generators A,=SA»S' are then given by

k ka 0
7 1
Ar=—F= kd 0 —k , 10
1 ﬁ a ( a)
0 |—kd —k

*) Note that 7, 7 and k are antihermitian generators and only within J|C do they have straightforward
hermitian equivalents. With a quaternionic geometry, one is restricted to only antihermitian generators.”
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Jj  —ja| O

-1 . .

Ap=—=| —jd| 0

=775 j ja |, (10b)

0 jd -7
a 0 0

As=—1 0 | —11] 0 . (10c)
0 0 d

In As the (2, 2)-element can be written conveniently as i#(a+d), i.e., containing a sum
of projection operators. The corresponding transformed state vectors with
eigenvalues (with respect to Bs|i or Cs|i)+1, 0, —1 are respectively

1 7 0 0 0 0
0,L,10)],11] and (O], (O], |/
0 0 0 i 1 0

We observe that the first triplet consist of vectors of the form

q
Z 1,
0

while the second triplet of vectors of the form

0
jz
q

Naturally the two triplets remain orthogonal with a complex geometry, and further-
more the separate sets of reduced 2X2 quaternionic blocks do not perform any
rotation upon one or another set of triplets. Actually the two sets of reduced 2x2
generators are connected by a similarity transformation, and thus are in turn equiva-
lent. Explicitly the sets of 2X2 reduced quaternionic representations are

- 1 [k ka -~ —1({—7 ja ~ (10
. B,=—= - .
b ﬁ(kd o)’ : fz(;‘d o)’ Bs ’“(o —1)’

~_—1({0 ka ~_1{0 ja ~_ (10
C"ﬁ(kd k)’ C ﬁ(;‘d —j)’ ? Z“'(o 1)'

The corresponding state vectors with eigenvalues +1, 0, —1, respectively, are

o) G- ) = ) 6 )
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It is of course natural to ask what the translation of these reduced 2 X 2 generators
to complex form yields. The answer, which seems obvious a posteriori, is the 4 X4
complex generators of SU(2) reducible to spin-1 @ spin-0. Not, of course, the irreduc-
ible 4 x4 representations which would correspond to spin 3/2. Because of our
derivation we would be tempted to identify the spin-0 element as a member of an
independent triplet, but this has no physical foundation. It is significant that the
reduction is not perfect in the sense that it brings along a scalar partner.

These results lead to the following consequences. One is a mechanical (auto-
matic) way of reducing any odd dimensional (otherwise irreducible) complex matrix
with quaternions into overiapping block structure. The second is the physical
significance of this procedure. For the first, we propose to add an extra row and
column of zero’s to our matrix, thus making it become an even matrix, and then
applying the tramnslation of this complex matrix to quaternions. This is a formal
trick, since we began with a complex odd dimensional matrix operating upon a
quaternionic space, i.e., considered as a quaternionic matrix without need of transla-
tion and with only a question about its reducibility. Nevertheless, this trick always
yields one or another of the overlapping block forms. For the spin-1 case studied
above, this procedure gives, e.g.,

10 0 0
! 0 00 0 O —-10
—i —i — 11
230—?1——'100_10 za(()l), (11a)
00 0 O
or/and,
000 O
100 010 0 1 0
—1 —1 = . 11b
’38_01—’ 1000 0 z“’(0—1) (116)
000 —1

This procedure avoids the need of determining S explicitly each time, and is very
simple. We also note that the resulting 2 X 2 generators exactly reproduce the tensor
product of the generators of spin 1/2®1/2=1@0. This brings us to the physical
interpretation which will be given in the conclusion.

We complete this section by giving explicitly the quick-rules for translating (and
not now reducing) a generic odd dimensional complex matrix:

1 C2 C3
* C4 Cs Cé
© C7 Cs C9

As suggested above, we add an extra row and column of zero’s to our odd dimensional
complex matrix
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¢ ¢z ¢z 0
M - ¢y s cs 0
c¢cr s ¢ 0

0000

After this we can immediately translate the blocks

C1 C2 cs 0 C7 Cs co 0
cacs)’ \es O/ \O 0/ \0 0/’

by the standard rules for even dimensional translation (2a). The final result is

vt C1 C2 C3 C :
M= Ci1 C5 C == M=\ & &,
t C4 Cs5 Cs
QS Q4
* C7 Cg C9

2=t j(c—cF)—ilei—cF—jlat+cH]i,

2@Q=(cs+jes)(1—1l7),

2Qs=(1—i|i)(c:—jed),

2Qi=co(1—1li) . (12)

§3. Conclusion

We began by admitting embarrassment with purely complex odd dimensional
matrix representations of a group (our example was SU(2)~ U(1, q)) acting upon a
quaternionic space. The space representation was reducible, but the generators (and
hence group) representations were not. Furthermore, we could not translate odd
dimensional complex vector spaces in CQM as was possible for even dimensional
spaces. Now we suggest a cure for both problems. First, the odd dimensional
complex matrices (within quaternionic space) are reducible if we allow for overlap-
ping block structures. A remmnant of, say, the anomalous solutions survives in the
form of a singlet (scalar) state. We have suggested the procedure of adding an extra
null line and column, and then formally translating as a rapid way of deriving the
reduced overlapping blocks. Even from this viewpoint, the extra lines correspond to
a one-dimensional zero generator (the added corner element), which implies the
existence of an additional scalar. In the case of translations of odd dimensional
operators from CQM to QQM, we repeat this procedure of adding an extra null line
and column, and then translating. The complex state vectors will, of course, also
acquire an extra element. This again corresponds to adding by hand an extra scalar
particle. Whether in a given theory this particle is physical or not is beyond the
scope of this paper. This depends upon the dynamics of the situation (e.g., recall the
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case of the Kemmer equation).

However, one cannot elude the impression that quaternions invite even numbers
of particle states. Thus for spin 1 we are obliged to add a scalar state, even if we
avoid the full number of anomalous copies. Perhaps it is only an accident that at the
fundamental level the number of Higgs (before spontaneous breaking) is four, as are
the number of gauge particles and the number of particle (antiparticle) fermions per
family (at least of left-handed nature). We thus have no difficulty in dealing and
translating the Salam-Weinberg model.'® We apparently have difficulty with color
(for SU(3) triplet states), but here we have two possibilities. If we include other
multiplicative groups such as SU(2)weax, the overall number of dimensions may
remain even and be translated as above. In this case, the only price we pay is our
inability to assign a natural quaternionic group to SU(3)cor. Alternatively, in a far
more ambitious study, we would be tempted to use 4 X4 (reducible) representations of
SU(3)coor before translating. This corresponds to passing to SU(4)eowor ~ SU(2, gc), or
in terms of its SU(3)cor subgroup, to consider 3 primary colors plus white (color
singlet). In this case we must identify the white quark with a physical particle, for
example, the neutrino as in the Pati-Salam model,'” or else seek refuge in spontaneous
symmetry breaking to take the white quark mass to values beyond present experimen-
tal limits.

Finally we wish to remember that within quaternionic quantum mechanics with
quaternionic geometry there is the stimulating possibility to look at fundamental
physics as proposed by Adler.”'® He suggested that the color degree of freedom
postulated in the Harari-Shupe scheme'® could be sought in a noncommutative exten-
sion of standard quantum mechanics.
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